
Automatica 105 (2019) 368–375

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Shortest Dubins paths through three points✩

Zheng Chen a,∗, Tal Shima b

a Zhejiang University, Hangzhou 310027, Zhejiang, China
b Technion — Israel Institute of Technology, Haifa 32000, Israel

a r t i c l e i n f o

Article history:
Received 22 March 2018
Received in revised form 18 December 2018
Accepted 18 March 2019
Available online 29 April 2019

Keywords:
Dubins vehicle
Traveling salesman problem
Motion planning

a b s t r a c t

The 3-Point Dubins Problem (3PDP) consists of steering a Dubins vehicle through three consecutive
points with prescribed heading orientations at initial and final points so that the resulting path is the
shortest. Characterizing the path of the 3PDP is important because (1) it provides insightful views on
the solution paths of the Dubins Traveling Salesman Problem (DTSP) and the Curvature-Constrained
Shortest-Path Problem (CCSPP) as they are natural extensions of the 3PDP and (2) some algorithms in
the literature for solving the DTSP and the CCSPP require efficient methods for solving the 3PDP. In this
paper, Pontryagin’s maximum principle is used to show that the path of 3PDP must lie in a sufficient
family of 18 types. Moreover, a formula in terms of the parameters of the 3PDP for all the 18 types is
established, and this formula reveals the relationship between the unknown orientation angle at mid
point and known parameters. By observing that the formula can be converted into some polynomials,
the 3PDP can therefore be efficiently solved by finding zeros of those polynomials. Finally, numerical
simulations illustrate the developments by comparing with the straightforward discretization-based
method.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Missions for autonomous aerial and ground vehicles are usu-
ally planned based on a hierarchical architecture. The higher level
of the architecture is about selecting and assigning targets to a
vehicle; at the lower level, the vehicle orders the sequence of
targets and routes a path visiting these targets with a minimum
cost. If the vehicle can change its direction quickly relative to
the distance between any two targets, the problem to be solved
at the lower level can be described by the Traveling Salesman
Problem (TSP) which, given a set of waypoints, consists of finding
a shortest path that visits each waypoint exactly once and finally
returns to the initial waypoint. When the cost between any two
waypoints is defined by the Euclidean distance, the problem is
dubbed the Euclidean TSP (ETSP).

Since some schemes have been available in Arora (1998),
Lawler, Lenstra, Rinnooy Kan, and Shmoys (1985) to solve the
ETSP with a complexity of n log(n) where n is the problem’s size,
the solution of ETSP has been widely applied to motion planning.
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However, when a vehicle is subject to nonholonomic constraints,
the solution from ETSP provides poor estimates for optimal paths.
Since the Dubins vehicle (Dubins, 1957), moving only forward
at a constant speed with a maximum curvature, provides an
excellent kinematic prototype for nonholonomic vehicles such as
unmanned aerial vehicles (Matveev, Teimoori, & Savkin, 2011),
fixed-wing aircrafts (Lugo-Cárdenas, Flores, Salazar, & Lozano,
2014), and thrusted skates (Lynch, 2003), the TSP for Dubins
vehicles (DTSP for abbreviation hereafter) has seen a wave of
research interests in the past two decades.

Unlike the ETSP, solving the DTSP requires not only order-
ing the sequence of waypoints but also optimizing the vehicle’s
Heading Orientation Angle (HOA) at each waypoint; this results
in another source of difficulty. Some genetic algorithms were
employed in Edison and Shima (2011) and Yu and Hung (2012)
to perform brute-force search for the global solution of DTSP.
Nevertheless, it was proven in Ny, Feron, and Frazzoli (2012)
that the DTSP was NP-hard, implying that solving the DTSP by
brute-force optimization was hardly practical for the scenarios
when the control decisions had to be made in situ or, if not
exactly, at least efficiently. Due to this challenging issue, some
heuristics are used to solve the DTSP. For example, a k-step Look-
Ahead Algorithm (LAA) was proposed in Isaiah and Shima (2015)
for the DTSP. More recently, the HOA at each waypoint was
discretized in Cohen, Epstein and Shima (2017) to formulate an
integer mathematical programming so that a standard solver was
employed to solve the DTSP.
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To approximate the solution of DTSP, a typical variant of the
DTSP, that is the Curvature-Constrained Shortest-Path Problem
(CCSPP) for which the sequence of waypoints is ordered in ad-
vance, is usually solved. Since the order of waypoints is fixed, the
solution of CCSPP is a concatenation of the shortest Dubins paths
between two configurations (a configuration consists of a position
and a HOA) according to Bellman’s principle for optimality (Bell-
man, 1957). Hence, solving the CCSPP amounts to selecting a
sequence of HOAs so that the concatenated Dubins path is the
shortest.

Some approximation-based algorithms have been proposed
in the literature to select such HOAs for the CCSPP. In Salva,
Frazzoli, and Bullo (2005), an alternating algorithm was proposed
to approximate the HOAs. A linear-time approximation algorithm
that computes a path whose length is within a constant factor
of the optimal was proposed in Lee, Cheong, Kwon, Shin, and
Chwa (2000). Based on the principle of receding horizon, some
LAAs were developed in Cohen, Epstein, Isaiah, Kuzi and Shima
(2017), Ma and Castanon (2006) and Rathinam, Sengupta, and
Darbha (2007). In Rathinam et al. (2007), each HOA was designed
by looking one target ahead. The 2-step LAA in Ma and Castanon
(2006) is a natural extension since it looks two waypoints ahead.
In Cohen, Epstein et al. (2017), a discretization-based LAA was
proposed so that further waypoints could be taken into account.

Some researchers have recently used optimization techniques
to generate the HOAs for the CCSPP. Once an optimization method
is employed, the gradient information of the CCSPP with respect
to its HOAs is usually required. While a numerical method was
available in Tang and Özgüner (2005) to approximate the gra-
dient, an analytical study was performed in Goaoc, Kim, and
Lazard (2013) to present a set of analytical gradients under the
assumption that the distance between any two consecutive points
is at least four times of the vehicle’s minimum turning radius.
With this analytical gradient and the distance assumption, it was
proven in Goaoc et al. (2013) that every CCSPP consisted of some
convex sub-problems, and a standard convex algorithm could be
used to solve the CCSPP; if the size n of the CCSPP is large, it is
however impractical to solve by convex optimization since the
number of sub-problems is up to 2n−2. In a similar direction, the
dynamic programming was applied in Takei and Tsai (2013) and
Takei, Tsai, Shen, and Landa (2010) for the CCSPP.

In addition to the aforementioned optimization methods, the
Coordinate Descent Algorithm (CDA), a mature optimization algo-
rithm that successively minimizes over a coordinate hyperplane
while fixing all other coordinates (Wright, 2015), was used to
solve the CCSPP in Sadeghi and Smith (2016). Since the solution
sequence generated by the CDA is nonincreasing, any solution
obtained by approximation methods can be further improved by
the CDA. Each step of the CDA is about optimizing a HOA at a way-
point while fixing HOAs at other waypoints; this is exactly solving
a 3-Point Dubins Problem (3PDP), consisting of three waypoints
with prescribed HOAs at initial and final waypoints. Hence, syn-
thesizing the solution path of the 3PDP will significantly reduce
the computational complexity of the CDA. In fact, the solution of
the 3PDP have other applications. An immediate example is the
discretization-based LAA (Cohen, Epstein et al., 2017) once over
3 targets are looked ahead. Another example is that, once a new
point is inserted into a mission with minimum additional cost,
the solution to a new 3PDP is required. In addition, synthesizing
the solution of 3PDP gives insightful views on the solution paths
of the DTSP and the CCSPP as they are natural extensions of the
3PDP.

Due to the significance of the 3PDP, it was studied in Goaoc
et al. (2013), Ma and Castanon (2006), Rathinam and Khargonekar
(2016) and Sadeghi and Smith (2016) with some relaxations or
strict assumptions. Assuming that the distance between any two

points is at least four times of the vehicle’s minimum turning
radius, the gradient of 3PDP with respect to the HOA at mid
point was derived in Goaoc et al. (2013). Some relaxed versions of
3PDP were studied in Ma and Castanon (2006) and Rathinam and
Khargonekar (2016). All the relaxations or assumptions in Goaoc
et al. (2013), Ma and Castanon (2006), Rathinam and Khargonekar
(2016) and Sadeghi and Smith (2016) aimed at restricting the
solution in a narrow set so that the elementary geometry can
be used to characterize the solution. For instance, with the same
assumption of Goaoc et al. (2013), the inverse geometry was used
in Sadeghi and Smith (2016) to design an iterative method for the
3PDP.

In the paper, the solution path of 3PDP will be character-
ized without any relaxations and assumptions. By using Pontrya-
gin’s maximum principle (Pontryagin, Boltyanski, Gamkrelidze,
& Mishchenko, 1962), the solution path for any 3PDP is re-
stricted into a family of 18 types. Moreover, a formula in terms
of the parameters of the 3PDP is established for all the 18 types.
This formula not only reveals the relationship of the parame-
ters of 3PDP but also rules out a possible geometric property
presented in Goaoc et al. (2013). In addition, the formula is
converted to some polynomials so that the solution path of 3PDP
can be efficiently solved by finding zeros of those polynomials.
Some numerical examples are simulated finally to illustrate the
developments presented in the paper.

2. Preliminary

In this section, the 3PDP is formulated and its necessary con-
ditions are established.

2.1. Problem statement

For a Dubins vehicle moving only forward at a constant speed
with a minimum turning radius, its configuration x := (x, y, θ ) ∈

R2
×S1 consists of a position vector (x, y) ∈ R2 and a HOA θ ∈ S1.

Without loss of generality, assume that the speed is one and the
minimum turning radius is ρ ∈ R+. Then, the kinematics for the
Dubins vehicle is given by

(Σ) :
d
dt

(x(t)
y(t)
θ (t)

)
=

(cos θ (t)
sin θ (t)
u(t)/ρ

)
where t ∈ R+ is the time and u ∈ [−1, 1] is the control.
Throughout, whenever an individual 3PDP is mentioned, we refer
to the following definition and notations.

Problem 1 (3PDP). Given three points z1, zm, and z2 in R2, let θ1
and θ2 in [0, 2π ] be the prescribed HOAs at z1 and z2, respec-
tively. Then, the 3PDP consists of steering (Σ) by u(·) ∈ [−1, 1]
on [0, tf ] from (z1, θ1), pathing zm at tm ∈ (0, tf ), to (z2, θ2) so
that tf > 0 is minimized.

As the vehicle’s speed is a constant, solving the 3PDP is equiv-
alent to finding the shortest path. Given any two configurations
(y1, η1) and (y2, η2) in X := R2

× S1, denote by

F : X 2
→ R, [(y1, η1), (y2, η2)] ↦→ F [(y1, η1), (y2, η2)]

the length of the shortest Dubins path from (y1, η1) to (y2, η2).
We denote the HOA at zm along the path of 3PDP by θm ∈ [0, 2π ),
i.e.,

θm := argmin
θ∈[0,2π )

F [(z1, θ1), (zm, θ )] + F [(zm, θ ), (z2, θ2)].

In the next subsection, the necessary conditions for the 3PDP will
be presented.



370 Z. Chen and T. Shima / Automatica 105 (2019) 368–375

2.2. Necessary conditions

Denote the costate of x ∈ X by p := [px, py, pθ ] in cotangent
space T ∗

x X . According to Pontryagin’s maximum principle (Pon-
tryagin et al., 1962), if a trajectory x(·) = [x(·), y(·), θ (·)]T ∈ X
associated with a measurable control u(·) ∈ [−1, 1] on [0, tf ] is
the solution of 3PDP, there exists a scalar p0 ≤ 0 and a continuous
mapping t ↦→ p(·) ∈ T ∗

x(·)X on [0, tf ], satisfying [p(t), p0] ̸= 0 for
t ∈ [0, tf ], such that, a.e. on [0, tf ], the followings [Eqs. (1)–(4)]
hold,⎧⎪⎪⎨⎪⎪⎩

d
dt

x(t) =
∂H(x(t), p(t), u(t))

∂pT ,

d
dt

p(t) = −
∂H(x(t), p(t), u(t))

∂xT
,

t ∈ [0, tf ] \ {tm}, (1)

H(x(t), p(t), u(t)) = max
η(t)∈[−1,1]

H(x(t), p(t), η(t)), (2)

0 ≡ H(x(t), p(t), u(t)), (3)⎧⎨⎩
px(t+m ) = px(t−m ) + λx,

py(t+m ) = py(t−m ) + λy,

pθ (t+m ) = pθ (t−m ),
(4)

where

H(x, p, u) = px cos(θ ) + py sin(θ ) + pθu/ρ + p0

is the Hamiltonian and λx and λy are two constants. Note that pθ
and the Hamiltonian H are continuous at tm because the heading
angle and the time at zm are not fixed (Bryson & Ho, 1969, Section
3.5). As abnormal solutions (p0 = 0) are covered by normal
solutions (p0 ̸= 0) (Yalcin Kaya, 2017), we shall only consider
the case of p0 < 0. Then, the pair (p, p0) is normalized so that
p0 = −1. Explicitly writing Eq. (1) yields, for t ∈ [0, tf ] \ {tm},

d
dt

(px(t)
py(t)
pθ (t)

)
=

( 0
0

px(t) sin[θ (t)] − py(t) cos[θ (t)]

)
, (5)

implying that px and py are piecewise constant and

pθ =

{
px0y − py0x + c1, t ∈ [0, tm),
(px0 + λx)y − (py0 + λy)x + c2, t ∈ (tm, tf ],

(6)

where c1 and c2 are two constants and px0 and py0 are the values
of px(·) and py(·) on [0, tm), respectively.

According to Eq. (6), if pθ (·) ≡ 0 on a nonzero interval
[t1, t2] ⊂ [t0, tf ], the graph of (x(·), y(·)) on [t1, t2] forms a straight
line segment, indicating u(·) ≡ 0 on this interval. Thus, in view
of Eq. (2), the switching of u is totally determined by pθ , i.e.,

u =

⎧⎨⎩
1, pθ > 0,
0, pθ ≡ 0,

−1, pθ < 0.
(7)

In the next section, we shall use the necessary conditions to
characterize the solution of 3PDP.

3. Characterization of the solution of 3PDP

Denote by ‘‘S’’ and ‘‘C’’ a straight line segment and a circular
arc with a radius of ρ, respectively. According to Dubins (1957)
and Sussmann and Tang (1994), the shortest Dubins path be-
tween two configurations is of type CCC or CSC or a substring
thereof. Furthermore, if denoting by R (resp. L) the corresponding
circular arc with a right (resp. left) turning direction, we have

• CCC = {RLR,LRL}, and
• CSC = {RSR,RSL,LSL,LSR}.

According to Bellman’s principle for optimality, the solution of
3PDP can be concatenated by CCC and CSC so that it belongs to
36 types:

CCC|CCC, CCC|CSC, CSC|CCC, CSC|CSC,

or substrings thereof where the words before and after ‘‘|’’ denote
the types before and after zm, respectively.

3.1. Geometric properties for the solution of 3PDP

For notational simplicity, denote the centers of the right and
left circles tangent to the velocity at z i (i = 1, 2,m), respectively,
by

c ri := z i + ρ

[
sin θi

− cos θi

]
and c li := z i − ρ

[
sin θi

− cos θi

]
.

Lemma 1. Let C1C2C3 be the type of a Dubins path between (z1, θ1)
and (zm, θm) such that none of its subarcs vanishes. If pθ (tm) = 0
and ∥zm − cµ1 ∥ ≤ ρ for either µ = r or l, the Dubins path is not the
shortest between (z1, θ1) and (zm, θm).

Proof. By contradiction, assume the Dubins path is the shortest.
Then, Eqs. (6) and (7) are satisfied. If A and B are the initial and
terminal points of C2, we have pθ = 0 at A and B because pθ
changes its sign at A and B [cf. Eq. (7)]. As pθ (tm) = 0, it follows
that A, B, and zm lie on a straight line according to Eq. (6). How-
ever, if none subarcs of C1C2C3 disappears, A, B, and zm cannot be
on a straight line, completing the proof by contraposition. □

Lemma 2. Let CSC be the type of a Dubins path between (z1, θ1)
and (zm, θm) such that none of its subarcs vanishes. If pθ (tm) = 0,
the Dubins path is not the shortest between (z1, θ1) and (zm, θm).

Proof. By contraposition, assume the Dubins path is the shortest.
Then, Eqs. (6) and (7) are satisfied. Eq. (7) means pθ = 0 along the
straight line segment S. Since pθ (tm) = 0, it follows that zm lies on
S according to Eq. (6), indicating the final circular arc disappears.
This contradicts with the lemma’s assumption, completing the
proof. □

Theorem 1. Let C1T2C3|C4T5C6 (T ∈ {S, C}) be the type of the
shortest path of 3PDP. If none of its subarcs vanishes, C3 and C4 have
the same turning direction.

Proof. By contradiction, assume C3 and C4 have different turn-
ing directions. Under this assumption, pθ changes its sign at tm
according to Eq. (7), indicating pθ (tm) = 0 as pθ is continuous
according to Eq. (4).

If T2 = S (resp. T5 = S), Lemma 2 indicates that C1T2C3 (resp.
C4T5C6) is not the shortest path between (z1, θ1) and (zm, θm)
[resp. (zm, θm) and (z2, θ2)]. This contradicts with the assumption
that the path C1T2C3|C4T5C6 is the shortest, indicating that C3 and
C4 have the same turning direction by contraposition.

From now on, we consider that T2 = C and T5 = C. According
to Lemma 1 and Bellman’s principle, if ∥zm − cµ1 ∥ ≤ ρ for either
µ = r or l, the path C1T2C3|C4T5C6 is not optimal, contradicting
with the assumption of this theorem. Hence, if ∥zm − cµ1 ∥ ≤ ρ

for either µ = r or l, C3 and C4 have the same turning direction.
Next, we consider the rest case that ∥zm − cµ1 ∥ > ρ for µ ∈ {r, l}.
We first tackle the case that T2 = R and T5 = L, as illustrated
in Fig. 1. Let β > 0 and γ > 0 be the radians of T2 and C3,
respectively. We have β = γ since the three points A, B, and zm
lie on a straight line (pθ = 0 at A, B, and zm). According to Bui,
Souères, Boissonnat, and Laumond (1994, Lemma 3), we also have
β ∈ (π, 2π ). Let β̂ > 0 and γ̂ > 0 be the radians of T5 and
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Fig. 1. Geometry for the path of type LRL|RLR.

C4, respectively. Analogously, we have β̂ = γ̂ ∈ (π, 2π ). As a
result, there always exists a path (as shown by the thickest path)
shorter than C1T2C3|C4T5C6, contradicting with the assumption
of this theorem. For the case of T2 = L and T5 = R, the path
of C1T2C3|C4T5C6 cannot be the shortest for the same reason,
completing the proof. □

Thanks to this theorem, C3 and C4 can be written as a single
circular arc. So, we have the following result.

Corollary 1. The solution path of 3PDP must be of a type in F =

{CCCCC, CSCCC, CCCSC, CSCSC} or a substring thereof, where

• CCCCC =
{
RLRLR, LRLRL

}
,

• CCCSC =
{
RLRSR, RLRSL, LRLSL, LRLSR

}
,

• CSCCC =
{
RSRLR, LSRLR, RSLRL, LSLRL

}
,

• CSCSC =
{
RSRSR, LSRSR, RSRSL, LSRSL,

LSLSL, RSLSL, LSLSR, RSLSR
}
.

It should be noted that, along the solution paths of the DTSP
and the CCSPP, this corollary holds for the pieces of any 3 con-
secutive points.

3.2. Common formula for the types in F

In this subsection, a common formula is established for all the
18 types in F by the following theorem.

Theorem 2. Let C1T2C3T4C5 (T ∈ {S, C}) be the type of the solution
path of 3PDP so that none of its subarcs vanishes, we have
cos(φ1 − θm)
cos(α1/2)

=
cos(φ2 − θm)
cos(α2/2)

, (8)

where
(a) if T2 = S, then α1 = 0 and φ1 ∈ [0, 2π ) is the orientation angle

of the line segment T2;
(b) if T2 = C, then α1 ∈ (π, 2π ) is the radian of T2 such that

cos(α1) = (8ρ2
− ∥cµm − cµ1 ∥

2)/8ρ2 and φ1 ∈ [0, 2π ) is the
orientation angle of the vector cµm − cµ1 where µ = r if T2 = L
and µ = l otherwise;

(c) if T4 = S, then α2 = 0 and φ2 ∈ [0, 2π ) is the orientation angle
of the line segment T4; and

(d) if T4 = C, then α2 ∈ (π, 2π ) is the radian of T4 such that
cos(α2) = (8ρ2

− ∥cµm − cµ2 ∥
2)/8ρ2 and φ2 ∈ [0, 2π ) is the

orientation angle of the vector cµ2 − cµm where µ = r if T4 = L
and µ = l otherwise.

Proof. We first tackle the case of T2 = T4 = R. The proof will
be based on the geometry in Fig. 2. Let α1 > 0 and β1 ∈ [0, 2π )
be the radian of T2 and the HOA at the point B1, respectively. It
follows from Bui et al. (1994, Lemma 3) that α1 ∈ (π, 2π ). Since
pθ = 0 and H = 0 at B1 and C1, it follows

px0 cosβ1 + py0 sinβ1 − 1 = 0, (9)

Fig. 2. Geometry for the type of LRLRL where the two dashed circles are the
same one.

px0 cos γ1 + py0 sin γ1 − 1 = 0,

where γ1 = β1 − α1 is the HOA at C1. Combining these two
equations by the trigonometric sum-to-product formulas yields

0 = (px0 sin
β1 + γ1

2
− py0 cos

β1 + γ1

2
) sin

α1

2
.

Since sin(α1/2) ̸= 0 due to α1 ∈ (π, 2π ), it follows

px0 sin [(β1 + γ1)/2] − py0 cos [(β1 + γ1)/2] = 0. (10)

Let β2 ∈ [0, 2π ) and α2 > be the HOA at B2 and the radian of T4,
respectively. Analogously, we have α2 ∈ (π, 2π ) and

(px0 + λx) cosβ2 + (py0 + λy) sinβ2 − 1 = 0, (11)
(px0 + λx) cos γ2 + (py0 + λy) sin γ2 − 1 = 0,

where γ2 = β2 + α2 is the HOA at C2, indicating

0 = (px0 + λx) sin
β2 + γ2

2
− (py0 + λy) cos

β2 + γ2

2
. (12)

Also notice that φ1 := (β1 + γ1)/2 = β1 − α1/2 is the orientation
angle of the vector c lm − c l1, and that φ2 := (β2 + γ2)/2 =

β2 + α2/2 is the orientation angle of the vector c l2 − c lm. At zm,
the switching function pθ (·) and the Hamiltonian function are
continuous, implying

λx cos θm + λy sin θm = 0. (13)

Let ψ1 ∈ [0, 2π ) and ψ2 ∈ [0, 2π ) be two angles such that

cos(ψ1) = px0/
√
p2x0 + p2y0 , sin(ψ1) = py0/

√
p2x0 + p2y0 ,

and

sin(ψ2) = λx/

√
λ2x + λ2y, cos(ψ2) = λy/

√
λ2x + λ2y .

Then, Eqs. (9)–(12) are, respectively, written as

1 =

√
p2x0 + p2y0 cos(β1 − ψ1), (14)

0 =

√
p2x0 + p2y0 sin(φ1 − ψ1), (15)

1 =

√
p2x0 + p2y0 cos(β2 − ψ1) +

√
λ2x + λ2y sin(β2 + ψ2), (16)

0 =

√
p2x0 + p2y0 sin(φ2 − ψ1) −

√
λ2x + λ2y cos(φ2 + ψ2). (17)

Combining Eq. (16) with Eq. (17) leads to

cos(φ2 + ψ2) =

√
p2x0 + p2y0

[
cos(β2 − ψ1) cos(φ2 + ψ2)

+ sin(β2 + ψ2) sin(φ2 − ψ1)
]
.

Substituting Eq. (14) into this equation yields

cos(φ2 + ψ2) cos(β1 − ψ1) = cos(β2 − ψ1) cos(φ2 + ψ2)
+ sin(β2 + ψ2) sin(φ2 − ψ1).
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Using the trigonometric product-to-sum formulas, this equation
is reduced to

cos(φ2 + ψ2) cos(β1 − ψ1) =
1
2

[
cos(β2 − ψ1 − ψ2 − φ2)

+ cos(β2 + ψ2 + ψ1 − φ2)
]
.

Reversely, using the trigonometric sum-to-product formulas, we
eventually obtain

cos (β2 − φ2) cos (ψ1 + ψ2) = cos(φ2 + ψ2) cos(β1 − ψ1).

Note that pθ = px0y − py0x + c1 ≡ 0 along the straight line
connecting B1 and C1. Because of the definition of ψ1 and the fact
that the vector c lm − c l1 is align with the straight line connecting
B1 and C1, we have ψ1 = φ1. By Eq. (13) and the definition of
ψ2, we have ψ2 = −θm + kπ . According to the law of cosines in
trigonometry and the geometry in Fig. 2, we have

cos(αi) = (8ρ2
− ∥cµi − cµm∥

2)/8ρ2, i = 1, 2.

Up to now, we have proven that Eq. (8) holds for T2 = T4 = R.
Based on the same idea, we can prove that Eq. (8) holds for
T2 = T4 = L.

Note that the path of T2 = S is the limit case of T2 = C by
considering that the radius of the circular arc is infinite. Hence,
according to the above analyses, if T2 = S, we have β1 = γ1 = φ1,
indicating α1 = 0 and φ1 is the orientation angle of the straight
line. Analogously, if T4 = S, we have β2 = γ2 = φ2, indicating
α2 = 0 and φ2 is the orientation angle of the straight line,
completing the proof. □

Remark 1. The formula in Eq. (8) gives the relationship between
the unknown θm and known parameters: (z1, θ1), (z2, θ2), zm,
and ρ. To our best knowledge, the formula in Eq. (8) holding for
such a general 3PDP does not exist in the literature. This formula
indicates followings:

• If the path of 3PDP is of type CSCmSC, according to the
proof of Theorem 2 we have px0 = cosφ1, py0 = sinφ1,
px0 + λx = cosφ2, and py0 + λy = sinφ2. Combining these
equations with Eq. (13) yields tan θm = tan[(φ1 + φ2)/2],
indicating that the mid point zm bisects the circular arc Cm.
This rules out the possibility that the radian of Cm may be
2π , stated in Goaoc et al. (2013).

• It is worth mentioning that, assuming ∥z1 − zm∥ ≥ 4ρ
and ∥z2 − zm∥ ≥ 4ρ, some formulas in terms of θm and
known parameters: (z1, θ1), (z2, θ2), zm, and ρ were pre-
sented in Sadeghi and Smith (2016) by inverse geometry. If
the path type is CSCSC, by some simple algebraic operations,
it can be shown that the results in Sadeghi and Smith (2016)
are equivalent with Eq. (8), but the results in Sadeghi and
Smith (2016) does not apply if the path is not CSCSC.

With the exception of θm, all other variables in Eq. (8) are some
algebraic combinations of (z1, θ1), zm, (z2, θ2), and ρ. Hence, it is
enough to find the zeros of Eq. (8) in order to solve the 3PDP.
However, a nonlinear equation may have multiple roots and a
numerical solver may not find all those roots. In the subsequent
section, we shall show that the formula can be converted into
polynomials so that multiple roots can be computed by a standard
polynomial solver.

4. Polynomial-based solution for 3PDP

For each type in F , the formula in Eq. (8) can be written as
multivariable polynomials in terms of sin θm and cos θm. Hence,
by substituting the half-angle formulas

sin θ =
2 tan( θ2 )

1 + tan2( θ2 )
and cos θ =

1 − tan2( θ2 )

1 + tan2( θ2 )
(18)

Table 1
The degree of polynomial for each type in F .
Degree Type

4 LSLSL, RSRSR
6 RLRLR, LRLRL

8 {CSCSC}\{RSRSR,LSLSL}, RLRSR, RSRLR, LSLRL, LRLSL

20 RLRSL, LSRLR, LRLSR, RSLRL

into Eq. (8), one obtains a polynomial in terms of tan(θm/2) and
the coefficients of the polynomial are combinations of known
variables: z1, zm, z2, θ1, θ2, and ρ. The resulting polynomial can
be solved by a standard polynomial solver to obtain tan(θm/2).
(Thanks to the development of the QR algorithm for finding
matrix eigenvalues, the problem of polynomial zero finding can
be solved efficiently in general (Higham, 2002, p. 94)). Since the
conversion of Eq. (8) into polynomials is elementary but overlong,
we present below a representative example to show the core idea.

Example 1 (The Polynomial for RSRLR). If the path of 3PDP is
of type RSRLR, Theorem 2 indicates α1 = 0, cos(φ1 − θm) =
(cos θm,sin θm)(crm−cr1)

∥crm−cr1∥
, and cos(φ2 − θm) =

(cos θm,sin θm)(cr2−crm)
∥cr2−crm∥

. Sub-
stituting these equations into Eq. (8) and squaring the result
yield

0 =[(cos θm, sin θm)(c r2 − c rm)]
2/∥c r2 − c rm∥

2 cos2(α2/2)

−[(cos θm, sin θm)(c rm − c r1)]
2/∥c rm − c r1∥

2, (19)

where cos2(α2/2) = (cosα2 + 1)/2 = (16ρ2
− ∥c r2 − c rm∥

2)/16ρ2.
Then, substituting the explicit expressions of c r1, c

r
2, c

r
m into the

equation, we get

0 = A1 cos4 θm + A2 cos3 θm sin θm + A3 cos3 θm
+ A4 cos2 θm sin θm + A5 cos2 θm + A6 cos θm sin θm
+ A7 cos θm + A8 sin θm + A9, (20)

where A1–A9 are constant combinations of z1, z2, zm, θ1, θ2, and
ρ. Once we substitute Eq. (18) into Eq. (20), we finally obtain

0 = B1 tan8(θm/2) + B2 tan7(θm/2) + B3 tan6(θm/2)
+ B4 tan5(θm/2) + B5 tan4(θm/2) + B6 tan3(θm/2)
+ B7 tan2(θm/2) + B8 tan(θm/2) + B9,

where B1–B9 are constant combinations of A1–A9.

This example shows the corresponding polynomial for RSRLR
is of degree 8. Following the same idea as applied in Example 1,
one obtains the degrees of polynomials for other types in F ,
presented in Table 1. While the degrees of polynomials for four
types in F are up to 20, those for the rest in F are not more
than 8. In fact, a polynomial with a degree no more than 20 can
be solved efficiently. (As shown by the numerical simulations in
Section 5, the time for computing a polynomial with its degree no
more than 20 is less than the time for computing a Dubins path
between two configurations.)

Recall that the formula in (8) holds as long as none of subarcs
of the types in F vanishes. By the following lemma, the value of
θm can be readily obtained even if one or more subarcs disappear.

Lemma 3. Let T be the type of the shortest Dubins path between
two configurations (y1, η1) and (y2, η2) in X . For i = 1 and 2,
denoting the centers of the right and left circles tangent to (y i, ηi)
by

c ryi = y i + ρ

(
sin ηi

− cos ηi

)
and c lyi = y i − ρ

(
sin ηi

− cos ηi

)
respectively, the following statements hold:
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(a) If T = S, then η1 = η2.

(b) If T = CC, then we have{
∥c ry1 − c ly2∥ = 2ρ, T = RL,
∥c ly1 − c ry2∥ = 2ρ, T = LR.

(c) If T = C, then{
c ry1 = c ry2 , T = R
c ly1 = c ly2 , T = L

(d) If T = CS, then we have{
(sin η2,− cos η2)(c ry1 − y2) = ρ, T = RS
(− sin η2, cos η2)(c ly1 − y2) = ρ, T = LS

(e) If T = SC, then we have{
(− sin η1, cos η1)(c ry2 − y1) = ρ, T = SR
(sin η1,− cos η1)(c ly2 − y1) = ρ, T = SL.

Proof. The proofs for (a), (b), and (c) are trivial. For (d), we handle
the case of T = RS. Let e = (sin η2,− cos η2). Then, we have
(c ry1 − ρe − y2)T e = 0, proving the first case of (d). Note that
(e) and the second case of (d) can be proved in the same way,
completing the proof. □

Once the solution path of 3PDP either before or after zm has
one or more subarcs disappearing, one can have θm by solving a
corresponding equation in Lemma 3. By combining Lemma 3 and
Eq. (8), we present below a Polynomial-Based Method (PBM) to
solve the 3PDP.

Given a 3PDP, set K = {0, 1, . . . , 18} and i = 0. The PBM is
performed by the following steps:

1. By solving the equations in Lemma 3, we can get the HOAs at
zm for all the substrings of the 18 types in F . Let θ0 be the
HOA among the computed HOAs so that the substring is
the shortest and let T0 be the type of the shortest substring.
Set i = i + 1.

2. Let Tj’s (j = 1,. . . ,18) be the 18 types in F .

2.1 If i ≤ 18, go to step 2.2; otherwise go to step 3.

2.2 use a polynomial solver to find the zeros of the poly-
nomial corresponding to Ti, and denote by Z the set
of real roots;

2.3 Θ = {θ ∈ [0, 2π ) : θ = 2 arctan(z), z ∈ Z};
if Θ = ∅, set K = K \ {i}; otherwise set θi =

argmin
θ∈Θ

F [(z1, θ1), (zm, θ )] + F [(zm, θ ), (z2, θ2)];

2.4 set i = i + 1 and go to step 2.1;

3. Set

I = argmin
i∈K

F [(z1, θ1), (zm, θi)] + F [(zm, θi), (z2, θ2)].

Then, θm = θI and the shortest path is of type TI .

With this procedure, one can obtain θm for any 3PDP no matter
its solution path is of a type in F or a substring thereof.

Table 2
The average time to solve polynomials with degrees in {4, 6, 8, 20}.
Degree 4 6 8 20

Time (µs) 501.13 524.06 608.28 1317.7

Table 3
The time consumption of PBM compared to DBM(360).
dm >4ρ =3ρ =2ρ =ρ <ρ

Factor 45.69 24.36 27.19 32.66 36.98

5. Numerical simulations

A straightforward idea to solve the 3PDP is to discretize the
HOA at zm over [0, 2π ) and to select an angle among the dis-
cretized values so that the corresponding path is the shortest. We
call this method the Discretization-Based Method (DBM), and we
denote by DBM(l) the DBM with a discretization level of l ∈ N,
performed as

θm = argmin
θ∈Θ

F [(z1, θ1), (zm, θ )] + F [(zm, θ ), (z2, θ2)],

where Θ = {2(i − 1)π/l : i = 1, . . . , l}. In this section, we shall
present some numerical simulations to show the performance of
PBM in comparison with DBM.

5.1. Computational complexity

Through a large number of simulations, the time of solving
a polynomial (with a degree in {4, 6, 8, 20}) by the method of
finding the eigenvalues of a characteristic matrix corresponding
to each polynomial is tested by MATLAB on a desktop with
Intel(R) Core(TM) i7-3615QM CPU @2.30 GHz and shown in Ta-
ble 2, where the unit of time is microsecond (µs). Additional
simulations on the same desktop show that the time of solving a
Dubins problem between two configurations is around 4020.9 µs.
It is clear that solving a polynomial with a degree in {4, 6, 8, 20}
requires less time than solving a Dubins problem. Therefore, the
time for solving corresponding polynomials just slightly increases
the total time complexity of the PBM, and the PBM is much more
efficient than the DBM, as shown by the simulations discussed in
the next paragraph.

Let the parameters (z1, θ1), (z2, θ2), and zm be generated ran-
domly by uniform distribution; both the DBM(360) and the PBM
are tested on 10000 randomly generated 3PDPs. If dm ∈ R+ is
the minimum distance between two consecutive points of 3PDP,
Table 3 shows the improvement factors of the PBM compared
with the DBM(360) for different values of dm. Notice that the
improvement factor for dm > 4ρ is the largest since in this case
only the type of CSCSC needs to be checked. In the case of dm < ρ,
some types of CSCSC are ruled out so that only partial types in F
are required to check, resulting in a larger improvement factor in
comparison with dm = 3ρ, 2ρ, and ρ. It is worth remarking that
an iterative method was proposed in Sadeghi and Smith (2016) to
solve the 3PDP; although the improvement factor of the iterative
method is around 13.6 for dm = 4ρ, they are just around 6.8 and
5.2 when dm equals 3ρ and 2ρ, respectively. In fact, the iterative
method does not apply unless the path is of type CSCSC. To this
end, the PBM is not only more efficient but also able to handle
more general cases than the iterative method.

5.2. Accuracy

In this subsection, we present two specific examples (case A
and case B) to show the performance of the PBM.
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Fig. 3. Case A: the solution paths of the 3PDP computed by PBM and DBM(360).

Fig. 4. Case B: the solution paths of the 3PDP computed by PBM and DBM(360).

5.2.1. Case A
The parameters of the 3PDP are given by (z1, θ1) = (0, 0, π/2),

zm = (1 + cos(91.25 ∗ π/180), sin(91.25 ∗ π/180)), (z2, θ2) =

(2, 0,−π/2), and ρ = 1. These parameters are tailored so that
the shortest path is a half circle (as shown by the right picture
in Fig. 3) and θm = 1.25 deg. However, the DBM(360) will never
reach this angle so that it finds a non-optimal path, as reported
by the left picture in Fig. 3. Note that the optimal angle θm = 1.25
deg can be reached if l ≥ 1440, which however results in a higher
computational complexity.

5.2.2. Case B
We consider an example pointed out by an anonymous ref-

eree. The parameters are given by (z1, θ1) = (0, 0, 60 deg), zm =

(10, 5), and (z2, θ2) = (15, 20, 30 deg). The solution is computed
by PBM and DBM(360) for different minimum turning radius in
[1, 10], showing that the length of solution computed by PBM is
always slightly less than that by DBM (360). (This is reasonable
since the PBM leads to more accurate results.) However, we find
that when ρ ∈ [7, 8], the geometries of solutions are different
as shown by Fig. 4 where ρ = 7. Numerical simulation shows
that the geometries will be the same unless l ≥ 26000, which
means the DBM(l) requires more computation time than the PBM
in order to achieve the same geometry.

6. Conclusions

In this paper, the solution of 3PDP was studied without any
restriction and assumption. Though a direct application of Bell-
man’s principle of optimality indicates that the solution of 3PDP
should be among 36 types or their substrings, a study on the

necessary conditions led us to reduce the number of types to 18.
As a consequence, solving any 3PDP amounts to checking at most
18 types or their substrings. While the length of each substring
could be readily checked (cf. Lemma 3), a formula for the 18 types
was established. This formula revealed the relationship between
the unknown HOA at mid point and known parameters of the
3PDP. Further analyses on the formula showed that it could be
converted into some polynomials with degrees of at most 20.
Thus, an efficient PBM was proposed to solve the 3PDP. Numerical
simulations showed that the PBM was superior compared with
the straightforward DBM. It is worth mentioning that the results
of this paper allow to improve the performance of some existing
algorithms for solving the CCSPP, which is a foundational problem
in the field of motion planning.
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