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Abstract— In this paper, we study the Relaxed 3-Point Dubins
Problem (R3PDP), which consists of steering a Dubins vehicle
through three consecutive waypoints with prescribed heading
orientation angle at the initial waypoint. From a geometric
point of view, we show that the shortest path must lie in
a sufficient family of 12 candidates, and a formula in terms
of the parameters of the R3PDP is established for all the 12
candidates. Analyzing the formula indicates that the shortest
path of the R3PDP is determined by the zeros of some nonlinear
equations. We propose some efficient algorithms to find the
zeros of those nonlinear equations so that any R3PDP can
be efficiently solved. Finally, some numerical examples are
simulated, illustrating the developments of the paper.

I. INTRODUCTION

The Dubins vehicle [6], moving only forward at a constant
speed with a minimum turning radius, provides an excellent
prototype for nonholonomic vehicles, such as Unmanned
Aerial Vehicles (UAVs), ships, unmanned ground vehicles,
etc. Hence, its kinematical model has been widely employed
in the literature to study the motion planning of those
vehicles. Once there are multiple targets to visit by a Dubins
vehicle, one needs to solve a Dubins Traveling Salesman
Problem (DTSP) [16] which consists of steering a Dubins
vehicle to visit each target exactly once and finally return to
the initial target so that the path is the shortest.

Solving the DTSP requires not only to order the sequence
of waypoints but also to optimize the Heading Orientation
Angle (HOA) of the Dubins vehicle when passing through a
waypoint. It was proven in [11] that the DTSP is NP-hard.
Therefore, solving the DTSP by brute-force optimization is
hardly practical when the control decisions have to be made
in situ. Due to that difficulty, the Curvature-Constrained
Shortest-Path Problem (CCSPP), for which the order of way-
points is fixed in advance, is usually solved to approximate
the solution of the DTSP (see [7], [10], [16]).

Since the order of waypoints for CCSPP is fixed, once
the HOA at each waypoint is given, the solution path is
the concatenation of shortest Dubins paths between two
consecutive configurations (a configuration consists of a
position and a HOA) according to Bellman’s principle of
optimality [1]. Recall that the shortest Dubins path between
any two configurations can be obtained in a constant time by
checking at most six possibilities [6]. As a result, solving the
CCSPP amounts to finding a sequence of HOAs at waypoints
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so that the concatenated path is the shortest. In [7], by parti-
tioning the original CCSPP into some sub-convex problems,
a convex programming method was employed to optimize the
HOAs; however, this method is hardly practical if the number
of waypoints is large. Besides, some approximation-based
algorithms have been developed to solve the CCSPP in [10],
[14], [16]. An alternating algorithm was proposed in [16] to
approximate the HOAs of the CCSPP. Based on the principle
of receding horizon, some Look-Ahead Algorithms (LAAs)
were developed in [10], [14] to approximate the HOAs of
the CCSPP. In [14], the HOA at each waypoint was designed
by looking one target ahead along the ordered sequence of
waypoints. The 2-step LAA in [10] is a natural extension
of [14]. To be specific, the 2-step LAA looks two targets
after the current target so that a 3-point Dubins problem
(consisting of the current target and the two looked targets)
is solved to formulate the HOA at the target subsequent to
the current target. This procedure continues until it reaches
the final point of the CCSPP.

Unlike the algorithms in [10], [14], [16] to fix the order
of waypoints, some algorithms were developed in [4], [5],
[9] to solve the DTSP by discretizing the HOA at each
waypoint. In [5], the HOA at each waypoint was discretized
to formulate an integer optimization programming so that
its solution could be computed by an integer programming
solver. To reduce the computational complexity of the integer
programming, a k-step LAA was proposed in [4], [9] for
discretized DTSP inspired by the work of [10].

No matter the sequence of waypoints is fixed or optimized,
the 2-step LAA enables keeping an excellent balance be-
tween computational complexity and resulting performance
(see [4], [5], [9], [10]), in comparison with other aforemen-
tioned methods. At each step of the 2-step LAA, it amounts
to solving a Relaxed 3-Point Dubins Problem (R3PDP)
for which the Dubins vehicle moves through 3 consecutive
waypoints with prescribed HOA only at the initial waypoint.
Therefore, the computational complexity of the 2-step LAA
is not only influenced by the problem’s size, i.e., the number
of waypoints, but also by the time to solve each R3PDP. In
other words, if the time to solve each R3PDP is reduced,
the total computational complexity of the 2-step LAA will
be accordingly reduced.

Some versions of 3-point Dubins problems were studied
in the literature. In [3], [7], [15], the 3-point Dubins problem
with fixed headings at both initial and final points were
studied. In [13], a 3-point Dubins problem with free headings
at all the three points was studied. To out best knowledge,
the primary syntheses of the solution of the R3PDP were
done in [10].
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Although it was shown in [10] that the solution path of
R3PDP must lie in a sufficient family of 12 candidates,
the proof for that statement was not complete. In addition,
efficient methods to compute the solution of R3PDP were
not presented in [10]. In this paper, we provide a complete
proof for the statement that the solution path of the R3PDP
must lie in a sufficient family of 12 candidates, concatenated
by circular arcs (denoted by “C”) and straight line segments
(denoted by “S”). This result indicates that, once the optimal
HOA at the mid point of the R3PDP is given, the shortest
path can be computed in a constant time by checking
at most 12 possibilities. In order to compute the optimal
HOA at the mid point of the R3PDP, we also establish a
formula in terms of the parameters of the R3PDP for all
the 12 candidates. Analyzing this formula allows to formula
a nonlinear equation for each candidate so that the HOA
at mid waypoint is a zero of a nonlinear equation. As a
consequence, solving the R3PDP is reduced to finding zeros
of some nonlinear equations, and we accordingly present an
efficient algorithm to solve the R3PDP.

If the distance between any two consecutive waypoints is
at least four times of the minimum turning radius, the shortest
path is of type CSCS. We observe that, if the shortest path of
the R3PDP is of type CSCS, the nonlinear equation can be
converted into an 8-degree polynomial. Hence, a standard
polynomial solver can be employed to efficiently find the
optimal HOA at mid waypoint. In fact, it is reasonable in
practical applications to consider that the shortest path of the
R3PDP is of type CSCS since any two close targets can be
regarded as one waypoint. Numerical simulations (cf. Section
V) show that the proposed method is much faster than the
straightforward discretization-based method.

II. PRELIMINARY

A. Problem formulation

For a Dubins vehicle that moves only forward at a constant
speed with a minimum turning turning radius, its state x :=
(x, y, θ) ∈ R2 × S1, also called configuration, consists of a
position vector (x, y) ∈ R2 and a HOA θ ∈ S1. Without loss
of generality, we assume that the constant speed equals one
and that the turning radius is lower bounded by a positive
scalar ρ ∈ R+. Define two vector fields f0 and f1 on X :=
R2 × S1 by

f0 : X → R3, f0(x) =

 cos θ
sin θ

0

 ,
f1 : X → R3, f1(x) =

 0
0

1/ρ

 .
Then, the kinematics of the Dubins vehicle is given by

(Σ) : ẋ(t) = f0(x(t)) + u(t)f1(x(t)),

where t ∈ R+ denotes the time, the dot denotes the
differentiation with respect to time, and u ∈ R is the control
taking values in [−1, 1].

Throughout the paper, whenever an individual R3PDP is
mentioned, we refer to the following definition and notations.

Problem 1 (R3PDP): Given three different waypoints z1,
z2, and z3 in R2, let the HOA at z1 be fixed as θ1 ∈ [0, 2π).
Then, the R3PDP consists of steering the system (Σ) by a
measurable control u(·) ∈ [−1, 1] on [0, tf ] from (z1, θ1),
pathing through z2 at a time t2 ∈ (0, tf ), and finally reaching
z3 such that the final time tf > 0 is minimized.
As the speed of the Dubins vehicle is a constant, solving the
R3PDP is equivalent to finding its shortest path. In addition,
we denote by θ2 ∈ [0, 2π] hereafter the HOA at z2 along
the solution path of the R3PDP.

B. Necessary conditions

Denote by p = [px, py, pθ] ∈ T ∗xX the costate of x ∈ X .
Then, the Hamiltonian is

H(x,p, u) = px cos(θ) + py sin(θ) + pθu/ρ.

According to the Pontryagin’s maximum principle [12], if an
admissible controlled trajectory x(·) = [x(·), y(·), θ(·)]T ∈
X associated with a measurable control u(·) ∈ [−1, 1] on
[0, tf ] (tf > 0) is the solution of the R3PDP, then there exists
a p0 ≤ 0 and an absolutely continuous mapping t 7→ p(·) ∈
T ∗xX on [0, tf ], satisfying [p(t), p0] 6= 0 for t ∈ [0, tf ], such
that, a.e. on [0, tf ], the following equations [Eqs. (1–5)] hold,{

ẋ(t) = ∂H(x(t),p(t),u(t))
∂pT ,

ṗ(t) = −∂H(x(t),p(t),u(t))
∂x ,

∀t ∈ [0, tf ] \ {t2}, (1)

H(x(t),p(t), u(t)) = max
η(t)∈[−1,1]

H(x(t),p(t), η(t)), (2)

−p0 = H(x(t),p(t), u(t)), ∀t ∈ [0, tf ], (3)
0 = pθ(tf ), (4)

and 
px(t+2 ) = px(t−2 ) + λx,

py(t+2 ) = py(t−2 ) + λy,

pθ(t
+
2 ) = pθ(t

−
2 ),

(5)

where λx and λy are scalar constants.
As the abnormal case, i.e., p0 = 0, has been ruled out in

[17], the pair (p, p0) is normalized in this paper such that
p0 = −1. Substituting p = [px, py, pθ] explicitly into Eq. (1),
we have

d

dt

 px(t)
py(t)
pθ(t)

 =

 0
0

px(t) sin[θ(t)]− py(t) cos[θ(t)]

 (6)

This set of equations indicates that px(·) and py(·) are
piecewise constant on [0, tf ]. Hence, we have

pθ =

{
px0

y − py0x+ c1, t < t2

(px0
+ λx)y − (py0 + λy)x+ c2, t > t2

(7)

where px0 and py0 are the values of px(·) and py(·) on [0, t2),
respectively, and c1 and c2 are scalar constants.

502
Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on January 07,2024 at 16:22:52 UTC from IEEE Xplore.  Restrictions apply. 



According to Eq. (7), if pθ(·) ≡ 0 on a nonzero interval
[τ1, τ2] before or after t2, the graph of (x(·), y(·)) on [τ1, τ2]
forms a straight line segment, indicating u(·) ≡ 0 on this
interval. Thus, in view of Eq. (2), the switching of u is totally
determined by pθ, i.e.,

u =


1, pθ > 0,

0, pθ ≡ 0,

−1, pθ < 0.

(8)

In the next section, we shall use the above necessary con-
ditions to present some properties for the solution of the
R3PDP.

III. SYNTHESES FOR THE SOLUTION OF R3PDP

Denote by “S” and “C” a straight line segment and a
circular arc with a radius of ρ, respectively. According to [6],
[17], the shortest path of a Dubins vehicle between (z1, θ1)
and (z2, θ2) belongs to six possibilities in two families:
• CCC={RLR, LRL}, and
• CSC={RSR, RSL, LSL, LSR},

where “R” (resp. “L”) means the corresponding circular
arc has a right (resp. left) turning direction. Furthermore,
according to [2], the shortest path of a Dubins vehicle
between (z2, θ2) and z3 belongs to four possibilities in two
families:
• CC = {RL,LR}, and
• CS = {RS,LS}.

According to Bellman’s principle of optimality [1], the
solution path of R3PDP must be the concatenation of the
shortest path between (z1, θ1) and (z2, θ2) and the shortest
path between (z2, θ2) and z3. Therefore, the solution path
of R3PDP must be among the four families:

CSC|CS, CSC|CC, CCC|CS and CCC|CC (9)

where the words before and after “|” denote the path types
before and after z2, respectively. It is apparent that the total
number of types in Eq. (9) is up to 24. To this end, once
the optimal HOA θ2 at z2 is given, one needs to compare
24 possibilities in order to solve the R3PDP.

A. Types for the solution of R3PDP

By the following lemma, we shall show that the number
of types in Eq. (9) can be reduced from 24 to 12.

Lemma 1: Given any R3PDP, if its solution has a type of
C1T2C3|C4T5 (T ∈ {C,S}) such that none of its subarcs
vanishes, we have that C3 and C4 have the same turning
direction.

Proof: By contradiction, assume that C3 and C4 have
different turning directions, indicating pθ(t2) = 0 at z2.

First of all, we assume T5 = S. Note that after t2 all the
points at which pθ = 0 lie on the same line according to
Eq. (7). Since pθ(t2) = 0 by assumption, it follows that z2

lies on the same line of T5, indicating that the length of
C4 is zero, which contradicts with the assumption that none
subarcs vanishes. Hence, by contraposition, if T5 = S, we

have pθ(t2) 6= 0, indicating that C3 and C4 have the same
turning direction.

From now on, let us consider that T5 is a circular arc.
Without loss of generality, we assume T5 = L, then the
radian v ∈ (0, 2π) of T5 should be larger than π according
to [2]. Since we have pθ = 0 at the points z2, a, and z3,
it follows that the three points line on a straight line, as
shown in Fig. 1. In this case, there always exists a straight

Fig. 1. The geometry of the type RL between (z2, θ2) and z3.

line (the dashed line) tangent C4 and passing through z3 so
that the total length is smaller. In an analogous way, one can
prove that there exists a shorter path if T5 = R. Hence, if
T5 = C, the path of C1T2C3|C4T5 is not the shortest. By
contraposition, it eventually concludes that C3 and C4 have
the same turning direction, completing the proof.
As a result of this lemma, we immediately have the following
result by writing C3 and C4 as a single circular arc.

Corollary 1: Given any R3PDP, its solution path must be
of a type in

F = {CSCS,CSCC,CCCS,CCCC}

or their substrings, where
• CSCS = {RSRS, RSLS, LSLS, LSRS},
• CSCC = {RSRL, RSLR, LSLR, LSRL},
• CCCS = {RLRS, LRLS},
• CCCC = {RLRL, LRLR}.

To this end, it amounts to checking at most 12 types instead
of 24 types in order to solve the R3PDP.

B. Formula for the paths in F
For the sake of notational simplicity, we present some

necessary notations that will be used in the remainder
of the paper. Let θi ∈ [0, 2π) be the HOA at zi,
and set (xi, yi) = zi, i = 1, 2, 3. Then, we de-
note by cri := [xi + ρ sin θi, yi − ρ cos θi]

T and cli :=
[xi − ρ sin θi, yi + ρ cos θi]

T the centres of the right and
the left circles tangent to the velocity at zi (i = 1, 2, 3),
respectively, as illustrated in Fig. 2.

Fig. 2. The geometry for the right center cri and the left center cli associated
with zi.

Theorem 1: Given any R3PDP, if its solution path is of
a type in C1T2C3T4 (T ∈ {S,C}) such that none of its
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subarcs vanishes, then the optimal HOA θ2 at z2 takes a
value in [0, 2π) such that

cos(φ1 − θ2)

cos(α1/2)
=

cos(φ2 − θ2)

cos(α2/2)
, (10)

where
(i) if T2 = C, then α1 ∈ [π, 2π) is the radian of T2 such
that

cos(α1) = (8ρ2 − ‖cµ1 − cµ2‖2)/8ρ2 (11)

and φ1 ∈ [0, 2π) is the orientation angle of the vector cµ2−c
µ
1

where µ = r if T2 = L and µ = l otherwise;
(ii) if T4 = C, then α2 ∈ (π, 2π) is the radian of T4 such
that

cos(α2) = (5ρ2 − ‖cµ2 − z3‖2)/4ρ2 (12)

and φ2 ∈ [0, 2π) is the orientation angle of the vector cµ3−c
µ
2

where µ = l if T4 = R and µ = r otherwise;
(iii) if T2 = S, then α1 = 0 and φ1 ∈ [0, 2π) is the
orientation angle of the line segment T2; and
(iv) if T4 = S, then α2 = 0 and φ2 ∈ [0, 2π) is the
orientation angle of the line segment T4.
The proof of this theorem is elementary based on the geom-
etry of the solution path and interested readers are referred
to the proof of [3, Theorem 1]. As a result of Theorem 1,
we have that the optimal HOA θ2 at z2 is a zero of some
nonlinear equations, as shown by the following lemmas.

Lemma 2 (CCCC): Given any R3PDP, if its solution path
is of type C1C2C3C4 such that none of its subarcs vanishes,
we have

0 = 2
[(cos θ2, sin θ2)(cµ2 − cµ1 )]2

‖(cµ2 − cµ1 )‖2(16ρ2 − ‖cµ1 − cµ2‖2)

− [(cos θ2, sin θ2)(cµ3 − cµ2 )]2

‖cµ3 − cµ2‖2(9ρ2 − ‖z3 − cµ2‖2)
, (13)

0 = ‖cν3 − cµ2‖2 − 4ρ2, (14)

where µ = r (resp. l) if C3 = R (resp. L) and ν = r (resp.
l) if C3 = L (resp. R).

Proof: As φ1 is the orientation of cµ2 − cµ1 , it follows
that

cos2(φ1 − θ2) =
[(cos θ2, sin θ2)(cµ2 − cµ1 )]2

‖cµ2 − cµ1‖2
. (15)

Combining cos(α) = 2 cos2(α/2)− 1 with Eq. (11) leads to

cos2(α1/2) =
16ρ2 − ‖cµ1 − cµ2‖2

16ρ2
. (16)

Analogously, we have

cos2(φ2 − θ2) =
[(cos θ2, sin θ2)(cµ3 − cµ2 )]2

‖cµ3 − cµ2‖2
, (17)

and combining cos(α) = 2 cos2(α/2)−1 with Eq. (12) leads
to

cos2(α2/2) =
9ρ2 − ‖cµ3 − cµ2‖2

8ρ2
. (18)

Substituting Eqs. (15–18) into Eq. (10) and squaring the
result yield Eq. (13). According to the geometry in Fig. 3,
it is apparent that Eq. (14) holds, completing the proof.

Lemma 3 (CCCS): Given any R3PDP, if its solution path
is of a type C1C2C3S4 such that none of its subarcs vanishes,
we have

0 = 16ρ2
[(cos θ2, sin θ2)(cµ2 − cµ1 )]2

‖(cµ2 − cµ1 )‖2(16ρ2 − ‖cµ1 − cµ2‖2)

− (cosφ2 cos θ2 + sinφ2 sin θ2)2, (19)

0 = ρ+ (cµ2 − z3)
T

(
cos(φ2 + Iµπ/2)
sin(φ2 + Iµπ/2)

)
, (20)

where µ = r (resp. l) if C3 = R (resp. L).
Proof: Substituting Eq. (15) and Eq. (16) into Eq. (10)

and squaring the resulting equation lead to Eq. (19). Eq. (20)
can be obtained by considering the fact that the vector (cµ2 +
ρ(cos(φ2+Iµπ/2), sin(φ2+Iµπ/2))T−z3) is perpendicular
with (cos(φ2 + Iµπ/2), sin(φ2 + Iµπ/2))T , completing the
proof.

Lemma 4 (CSCC): Given any R3PDP, if its solution path
is of a type C1S2C3C4 such that none of its subarcs vanishes,
we have

0 = [cosφ1 cos θ2 + sinφ1 sin θ2]
2

− 8ρ2
[(cos θ2, sin θ2)(cµ3 − cµ2 )]2

‖cµ3 − cµ2 )‖2(9ρ2 − ‖cµ3 − cµ2 )‖2)
, (21)

0 = ρ(Iµ − Iν)Iµ − (cµ2 − cν1)
T

(
cos(φ1 + Iµπ/2)
sin(φ1 + Iµπ/2)

)
,

(22)

0 = ‖cω3 − cµ2‖2 − 4ρ2, (23)

where µ = r (resp. l) if C3 = R (resp. L), ν = r (resp. l) if
C1 = R (resp. L), and ω = r (resp. l) if C3 = R (resp. L).

Proof: Eq. (21) can be obtained by substituting Eq. (17)
and Eq. (18) into Eq. (10). Eq. (22) is a direct result of the
fact that (cos(φ1 + Iµπ/2), sin(φ1 + Iµπ/2))T is perpen-
dicular with (cµ2 + ρ(Iµ − Iν)Iµ(cos(φ1 + Iµπ/2), sin(φ1 +
Iµπ/2))T − cν1). Eq. (23) can be obtained by the geometry
in Fig. 3.

Fig. 3. The geometry of type LRLR for the path of relaxed 3PDP.

Lemma 5 (CSCS): Given any R3PDP, if its solution path
is of type C1S2C3S4 such that none of its subarcs vanishes,
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and if α ∈ [0, 2π) is half of the radian of C3, we then have{
0 = (cµ2 − cν1)Teµ1 + ρ(Iµ − Iν)Iµ,

0 = (cµ2 − z3)Teµ2 + ρ,
(24)

where µ = r (resp. l) if C3 = R (resp. L), ν = r (resp. l) if
C1 = R (resp. L), and

Iµ =

{
1 if µ = r,

−1 if µ = l,
eµ1 = Iµ

(
− sin(θ2 + Iµα)
cos(θ2 + Iµα)

)
,

eµ2 = Iµ

(
− sin(θ2 − Iµα)
cos(θ2 − Iµα)

)
. (25)

The basic idea for proof of this lemma is similar to that of
Lemma 4.

IV. ALGORITHMS FOR THE SOLUTION OF R3PDP

In this section, we present efficient algorithms to compute
the optimal HOA θ2 at z2.

A. Discretization-Based Method

A straightforward way to find the optimal HOA θ2 is
to employ a Discretization-Based Method (DBM) (see [4],
[5], [9]), which discretizes the HOA θ2 at z2 over [0, 2π)
and selects one among the discretized values so that the
path is the shortest. Hereafter, we call this method the
Straightforward DBM (SDBM) and we use SDBM(l) to
denote such a method with a discretization level of l ∈ N.
The details of the SDBM is presented by Algorithm 1.

Algorithm 1 (SDBM): Let l ∈ N be the discretization
level and set i = 0 and L = ∞. Then, the SDBM(l) for
the R3PDP is performed as follows:
1. If i < l, let θ = i×2π/l and go to step 2; otherwise, skip
to step 3.
2. Let L1 ∈ R be the length of shortest Dubins path between
(z1, θ1) and (z2, θ) and L2 ∈ R be the length of the shortest
Dubins path between (z1, θ) and z3;

if L > L1 + L2

set L = L1 + L2, θ2 = θ, and i = i + 1,
and go to step 1;

else
set i = i+ 1 and go to step 1.

3. End
The value of θ2 generated by this algorithm is the best HOA
among the discretized angles. Note that the SDBM involves
checking the length of Dubins problem for each discretized
angle. Next, we shall present a more efficient algorithm by
combining the idea of the DBM and the result of Lemmas
2–5.

According to Lemmas 2–5, the variables φ1, φ2, α1, and
α2 in Eq. (10) are functions of θ2 and known parameters:
(z1, θ1), z2, z3, and ρ. Therefore, the optimal HOA θ2 at
z2 is a zero of the following function

F (θ2) =
cos[φ1(θ2)− θ2]

cos[α1(θ2)/2]
− cos[φ2(θ2)− θ2]

cos[α2(θ2)/2]
. (26)

To this end, it is enough to solve this nonlinear equation
in order to find the optimal HOA θ2 at z2. However, the

nonlinear equation may have multiple zeros and numerical
methods may not find all the zeros so that the desired zero
may not be found. Below, we present a DBM approximating
the zeros of the nonlinear equation in Eq. (26), and we
call this method the Nonlinear DBM (NDBM) as shown by
Algorithm 2.

Algorithm 2 (NDBM): Let l ∈ N be the discretization
level and set i = 1 and j = 0. Then, the NDBM(l) is
performed as follows:
1. If i < l, let θ = i× 2π/l and go to step 2; otherwise, go
to step 3.
2. Set F1 = F ((i− 1)× 2π/l) and F2 = F (i× 2π/l);

if F1 × F2 < 0

set j = j+1, θj2 = i×2π/l, and i = i+1,
and go to step 1;

else
set i = i+ 1 and go to step 1.

3. Select a value among θj2’s so that the path of R3PDP is
the shortest.
Note that the NDBM(l) checks l times the value of the func-
tion in Eq. (26) and only checks a smaller number (depending
on the number of zeros of Eq. (26)) of concatenated Dubins
paths in order to select the shortest one for the R3PDP.
Whereas, the SDBM(l) checks l times concatenated Dubins
paths, which is more time consuming than the NDBM(l), as
shown by the numerical simulations in Section V.

B. Polynomial-Based Method for CSCS

Observe that the formulas in Lemmas 2–5 are functions of
sin θ2 and cos θ2 if we eliminate other unknown variables,
such as φ1, φ2, and θ3. By considering the half-angle
formulas

sin θ2 =
2 tan(θ2/2)

1 + tan2(θ2/2)
, cos θ2 =

1− tan2(θ2/2)

1 + tan2(θ2/2)
, (27)

one can transform those formulas into a polynomial in terms
of tan(θ2/2) and the coefficients of the resulting polynomial
are some combinations of known variables: (z1, θ1), z2, z3,
and ρ. (The core idea was presented in [3].) However, the
transformation of formulas in Lemmas 2–4 is too complex
and the degree of the resulting polynomial is too high to
solve by a standard polynomial solver.

In this section, we shall only consider Eq. (24) which can
be converted into an 8-degree polynomial, as shown by [3,
Lemma 3]. As a consequence, if the solution path is of type
CSCS, one obtains the value of tan(θ2/2) by finding the
zeros of the 8-degree polynomial. (A standard polynomial
solver can be employed to efficiently find all the zeros of
the polynomial, as shown by the numerical simulations in
Section V.) We present below the details of the Polynomial-
Based Method (PBM) to compute the HOA θ2 at z2.

Algorithm 3 (PBM): If the solution path of R3PDP is of
type CSCS, we perform the PBM by the following steps:
1. Find all the roots ri ∈ C (i = 1, · · · , 8) of the 8-
degree polynomial by a standard polynomial solver, e.g., the
subroutine of “roots” in MATLAB.
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2. Let k > 0 be the number of real roots and denote by
r̂j ∈ R (j = 1, · · · , k) the real roots among ri’s.
3. Set θ̂j = 2 arctan(r̂j) for j = 1, · · · , k.
4. Select a value among θ̂j’s so that the path of type CSCS
is the shortest.
With this procedure, the optimal HOA θ2 at z2 can be
efficiently computed if the path is of type CSCS. In the next
section, we shall present some numerical simulations to show
the performance of the PBM.

V. NUMERICAL SIMULATIONS

A. Performance of NDBM

Set (z1, θ1) = (0, 0, π/2) and ρ = 1. Let z2 and z3 be
generated randomly by uniform distribution. Then, both the
NDBM(360) and SDBM(360) are tested on 10000 randomly
generated R3PDPs. The average improvement factors of the
NDBM(360) in terms of time consumption compared with
the SDBM(360) are presented in Tab. I.

According to Algorithms 1 and 2, while the SDBM(360)
checks 360 times Dubins paths to select the shortest path for
the R3PDP, the NDBM(360) just needs to check 360 times
the value of the function in Eq. (26) and to check smaller
times the Dubins paths depending on the number of zeros of
the nonlinear equations in Lemmas 2–5. (Numerical results
show that the average number of zeros for the nonlinear
equations for each type in F is around 8.) As checking
the value of a nonlinear function in Eq. (26) is less time
consuming than checking the length of a Dubins path,
it is reasonable to see that the NDBM(360) is less time
consuming, as shown by the improvement factors in Tab.
I.

TABLE I
THE AVERAGE IMPROVEMENT FACTORS OF THE NDBM(360) IN TERMS

OF TIME CONSUMPTION COMPARED WITH THE SDBM(360).

Path Types CCCC CCCS CSCC CSCS
Improvement Factor 3.392 4.818 4.753 4.935

B. Performance of PBM for CSCS

Set (z1, θ1) = (0, 0, π/2) and ρ = 1. Let the two points
z2 and z3 be generated randomly by uniform distribution.
Both the SDBM(360) and the PBM are tested on 10000
randomly generated R3PDPs. Note that performing the PBM
requires solving an 8-degree polynomial. Thanks to the
development of QR algorithm for finding matrix eigenvalues,
each polynomial can be solved efficiently in general [8, p.
94]. In this simulation, the subroutine of “roots” in MATLAB
is employed to finding the zeros of the polynomial.

The numerical result shows that the improvement factor
of the PBM is up to 39.63 in comparison with SDBM(360).
Such a large improvement factor is reasonable because the
PBM only involves solving an 8-degree polynomial and
checking at most 8 HOAs (an 8-degree polynomial has at
most 8 real roots). However, the SDBM(360) checks 360
HOAs for each type of CSCS.

VI. CONCLUSIONS

The shortest path of the R3PDP is synthesized. It is shown
that the shortest path of the R3PDP must be among 12
types or their substrings. So, at most 12 possibilities are
needed to check in order to solve each R3PDP. A formula
for all the 12 types is established, revealing that the optimal
HOA at the mid point of the R3PDP is a zero of some
nonlinear equations. In order to find the optimal HOA at
the mid point, we propose a discretization-based method to
approximate the zeros of nonlinear equations, as shown by
the simulations in Sect. V this method is more efficient than
the straightforward discretization-based method used in the
literature. Furthermore, if the solution path is of type CSCS,
the optimal HOA at the mid point of the R3PDP can be more
efficiently obtained by finding the zeros of an eight-degree
polynomial.
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