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The problem of optimally guiding an interceptor to a stationary target is studied in a nonlinear setting. First of all, it
is shown that a global solution does not exist for the typical free-time minimum-effort nonlinear optimal intercept
problem. This leads to consideration of the linear combination of the control effort and engagement duration as the
objective function. The necessary conditions for the optimal intercept problem with the new objective function are
found to be parameterized by a scalar, reducing the problem of deriving the optimal guidance law to the problem of
finding the zeros of a real-valued function. Moreover, a semianalytical form for the real-valued function is devised,
and the interval for its zeros is restricted, allowing the use of a brute-force search to efficiently find all the zeros. As a
result, the nonlinear optimal guidance law can be efficiently established. Finally, the characteristics of the guidance
law are exemplified and studied through simulations, showing that the nonlinear optimal guidance law performs
better than the conventional proportional navigation, especially for cases with large initial heading errors.

I. Introduction

HE problem of designing guidance laws for a pursuer to

intercept a stationary target has been extensively studied since
the 1960s. Such guidance laws are generally derived by linearizing
the engagement around a nominal collision course [1-5]. This
linearization allows us to use the linear-quadratic optimal control
method to establish optimal guidance laws. For instance,
proportional navigation (PN), which was initially derived from
physical intuition and is probably the most popular intercept
guidance law, was shown to be optimal in terms of control effort [6,7]
in the linearized setting. Nevertheless, once the deviations from the
collision triangle are relatively large, the linearization is not valid, and
hence PN does not preserve the optimality any more.

In the nonlinear setting, some quantitative analyses of the
nonlinear guidance problem were presented in Ref. [8] along with
some comparisons to PN. By introducing a time-varying weighting
factor into the control effort, the optimality of PN was studied in
Ref. [9] without any linearization. The analyses in Ref. [9] showed
that PN with any constant navigation gain can be equivalent to the
nonlinear optimal guidance if the cost function is not the control
effort itself but weighted by an appropriate time-varying weighting
function. It is worth mentioning that, in the nonlinear setting, the
optimal intercept guidance law is usually analyzed or derived by
minimizing the control effort of the pursuer with a free final time (see,
e.g., Ref. [8]).

In this paper, we shall show that the free-time nonlinear problem of
intercepting a stationary target with purely minimizing control effort,
which is the same as the one considered in Ref. [8], is not a well-posed
optimal control problem (cf. Theorem 1). This leads us to consider the
linear combination of the control effort and engagement duration as
the objective function. Because a global optimum exists for the
optimal intercept problem with the new objective function (cf.
Theorem 2), the corresponding necessary conditions for optimality
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are analyzed in this paper to derive the nonlinear optimal intercept
guidance.

In fact, the optimal intercept problem with the new objective
function was studied in Refs. [10,11]. It was shown in Ref. [10] that
the closed-form guidance law in the nonlinear setting was not
available and that the optimal guidance law could be obtained by
numerically solving a set of three nonlinear equations with three
unknown variables. It should be noted that a set of multiple nonlinear
equations may have more than one root, and a numerical solver
generally cannot find all the zeros. Therefore, the developments in
Ref. [10] could not guarantee the solution (found by a numerical
solver) to be the optimal guidance law unless all local solutions
corresponded to the same global minimum. In Ref. [11], the optimal
intercept problem with the new objective function was solved by
combining the genetic algorithm with the shooting method, and the
computed solution was used to analyze an all-aspect near-optimal
guidance law that was developed in Ref. [11]. By discretizing the
nonlinear optimal control problem to formulate a nonlinear
programming problem, a successive convex optimization approach
in arecent work [12] was employed to compute the optimal intercept
guidance law. However, the solution found either by the combined
genetic algorithm-shooting method in Ref. [11] or by the successive
convex optimization in Ref. [12] cannot be guaranteed to be the
global solution because both approaches converge to local solutions.

Unlike Refs. [10-12], this paper aims to synthesize the solution for
the optimal nonlinear intercept problem so that the nonlinear
guidance law can be efficiently established. To be specific, we show
that the necessary conditions from Pontryagin’s maximum principle
are parameterized by a scalar. As a result of the parameterization, it is
found that the optimal guidance law is an analytical function in terms
of the zeros of a real-valued function. This reduces the problem of
deriving the optimal guidance law to the problem of finding the zeros
of a real-valued function. In addition, some geometric properties for
the optimal solution are established. By using those properties, we are
able to devise a semianalytical form for the real-valued function and
to restrict the intervals of its zeros. To this end, a brute-force search
can be used to efficiently find all the zeros of the real-valued function,
which finally gives rise to the nonlinear optimal feedback
guidance law.

This paper is organized as follows. In Sec. II, the optimal nonlinear
intercept problem is formulated and the necessary conditions for
optimality are presented. In Sec. III, the necessary conditions are
parameterized and some geometric properties for the optimal solution
are established, showing that the optimal guidance law is determined
by the zeros of a real-valued function. In Sec. IV, a semianalytical
form is devised for the real-valued function and the intervals of its
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Fig. 1 Two-dimensional intercept geometry.

zeros are restricted so that a brute-force search can be used to find all
the zeros. Finally, some numerical simulations in Sec. V demonstrate
the viability of the approach presented in this paper.

II. Problem Formulation

In this section, the optimal control problem of intercepting a
stationary target is formulated, and its necessary conditions for
optimality are presented by applying Pontryagin’s maximum principle.

A. Optimal Intercept Problem

Consider the two-dimensional geometry of the stationary target
intercept problem, which is presented in Fig. 1. The origin of frame
Oxy is located at the target, the x axis points to the initial position of
the interceptor, and the y axis is defined by rotating the x axis 90 deg
counterclockwise. Throughout the paper, we denote by (x,y) € R?
the position of the interceptor in frame Oxy, and we denote by
0 € [—=, z] the angle between the x axis and the velocity vector V of
the interceptor. The angle € is usually called the heading angle of
the interceptor, and it is positive when measured counterclockwise.
The line of sight (LOS) from the interceptor to the target makes an
angle of 1 with the x axis, and this angle is positive if measured
counterclockwise. We will use 1 to denote the LOS rate. The angle ¢
between the LOS and the velocity vector V is called the look angle,
which is positive when measured clockwise. By normalizing the
magnitude of the velocity V of the interceptor to one, the nonlinear
kinematics of the interceptor is represented by

x(t) = cos (),
(2): { ¥(@) = sin0(2), (€]
(1) = u(r)

where ¢ > 0 is the time, the dot denotes the differentiation with
respect to time, and # € R is the control parameter that represents the
normal acceleration. Note that y(0) = 0 and x(0) > 0 because the x
axis is defined to point to the initial position of the interceptor.

In designing an optimal intercept guidance law, a common
objective is to minimize the control effort of the interceptor. Thus, the
free-time minimum-effort problem of the interceptor is usually
solved to derive optimal intercept guidance law (see, e.g., Ref. [8]).
We shall show by the following theorem that this problem is not a
well-posed optimal control problem.

Theorem 1: Let xq > 0 and 0, € [—x, z]. Then, given any small
€ > 0, there exists a time ¢, > 0 and a control u(-): [0, ;] — R that
steers (2) from (xy, 0) with the initial heading angle 6, to the origin
(0, 0) such that

te ]
/f—uz(t)dt<£
0 2

The proof of this theorem is given in Appendix A.

Due to Theorem 1, a global solution for the free-time minimum-
effort nonlinear optimal intercept problem does not exist. For this
reason, we consider the following optimal intercept problem (OIP)
for which the objective function is a linear combination of the control
effort and engagement duration (see, e.g., Ref. [10]).

Problem 1 (OIP): Given x, > 0 and 6, € [—, x], the OIP consists
of steering (X) by a measurable control u(-) on [0, t] from the initial
point (xy, 0) with the initial heading angle 6, to the final point (0, 0)
such that

1y 1
J :A |:K+§(l —K)uz(t)} dr )

is minimized where the final time ¢; > 0 is free and x € (0, 1) is a
weighting factor.

If k = 1, the OIP reduces to a minimum-time control problem, for
which the optimal trajectory is a straight line because the control is
not constrained; if « = 0, no solution exists for the OIP, as shown by
Theorem 1. By the following theorem, we shall show that, for every
k € (0, 1), the OIP has a global optimum.

Theorem 2: Given any xq > 0, 8, € [-x, ], and x € (0, 1), the
OIP has a global optimum.

The proof of this theorem is given in Appendix B.

Before proceeding, we remark on the symmetric property of the
solution of the OIP.

Remark 1: Given xy > 0and 8y € [—=, ], the optimal trajectory of
the OIP with [x(0), y(0), 8(0)] = [xg, 0, 6] and that of the OIP with
[x(0), y(0), 8(0)] = [xg, 0, —6,] are symmetric with respect to the x
axis of frame Oxy. This indicates that the optimal trajectory of the
OIP with the initial heading angle 6, € (—x,0) can be readily
obtained by rotating the solution of the OIP with the initial heading
angle —6,. In addition, for any x, > 0, if the initial velocity vector
points to the target [i.e., 0(0) = x], the optimal trajectory of the OIP is
a straight line, and hence the corresponding optimal control is zero.
As aresult, in the remainder of the paper, we will only consider that
the initial heading angle 6, of the OIP is in [0, x).

B. Necessary Conditions

Denote by p,, py, and py the costate variables of x, y, and 0,
respectively. Then, the Hamiltonian for the OIP is expressed as

1
H = p,cos@+ p,sin@ + pyu +p()|:/<+§(l —K)MZ]

where p° is a nonpositive scalar.
According to Pontryagin’s maximum principle [13], for ¢ € [0, #/],
it holds that

px(l) = _% = 07
Py =-5=0, 3

po(t) = =2 = p (1) sin6(1) — p, (1) cos O(1)
and

o0H
2 -0
ou

“

Remark 2: When p° = 0, the explicit formula of Eq. (4) implies
po =0, which indicates py = 0. According to the third equation of
Eq. (3), if pg =0, the optimal trajectory of the OIP is a straight line,
and hence the corresponding optimal control is null, which happens
only if the initial velocity vector points to the target (or the initial
heading angle 6, is 7). Because p° is nonpositive, and because we
consider the interval of §, to be [0, ) (see Remark 1), we have that p°
is negative. For any negative p°, the quadruple (p,. p,. pg. p°) can
be normalized so that p° = —1. Thus, we shall consider p® = —1 in
the remainder of the paper.
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As a result of this remark, explicitly rewriting Eq. (4) leads to

u) =11 pod.  1€0.4] )

Because the final angle is free, the transversality condition implies
polty) =0 6)
As the final time is free, along the optimal trajectory, it holds
H=0 @)

In view of Eq. (3), we have that p, and p, are constants. Then, taking
into account Eq. (6) and the final boundary condition
(x(tf), ¥(tr)) = (0,0), we can integrate the third equation of
Eq. (3) to yield

po(t) = py(t) — pyx(1), t €0, 1] ®)
Substituting Eq. (8) into Eq. (5), we obtain the optimal feedback
control law:

Pxy(1) = pyx(t)
1-«

u(t) = , t €0, 1] )

Note that the guidance law of PN [14] is expressed as
u(f) = NVA(®r) (10)

where V is the magnitude of the velocity V of the interceptor
(normalized to one in this paper), N is the constant navigation gain,
and 4 is the LOS rate. According to the definition of the angle 4 (see
Fig. 1), we have

tan[A(¢)] = y(®

x()

Differentiating this equation with respect to time leads to the LOS rate
as

o x()sin@(7) — y(7) cos O(2)
= e

tef0,1)

k/ sin(f — 6y),

properties for the solution of the OIP and then use those properties to
establish an efficient and robust method to compute p, and p,.

III. Characterizing the Solution of OIP

In this section, we first parameterize the aforementioned necessary
conditions and then establish some properties for the solution of
the OIP.

A. Parameterization
Define the constant & > 0 as the norm of the vector [p,, p,], i.e.,

and set
p=nx +tan~'(=p,/p,) (12)
where n is an integer. As a result, we have
py = asinp and p, = —acosf (13)
Then, we can rewrite Eq. (8) as
Po() = alx(t) cos f + y(1) sin f] (14)

Substituting Eqs. (5) and (13) into the Hamiltonian and taking into
account Eq. (7), we get

H(f) = asin[f — 0(1)] +

1 2 —
STl -k=0 (5

Evaluating Eq. (15) at t = 0 leads to

a2

asin(f —0y) + m(xo cosf)? =« (16)

Because a > 0 and « # 0, Eq. (16) implies a > 0. Then, solving
the quadratic equation in Eq. (16) indicates that a is a function
of p,i.e.,

if cosf = 0 and sin(f — 6,) # 0,

a(f) = {(l —9) = Sin(p=00) /S0 (=) + xC3g c0s /1) 10 cosf#0

(xg cos )’

It should be noted that the LOS rate at the final time cannot be defined
by this equation because )c(tf)2 + y(tf)2 = 0. If A # 0, combining
Eq. (9) with Eq. (10) leads to the optimal state-dependent navigation
gain

[Py(®) = pyx(Ix(1)* + y(1)°]
(1 = ©)[x(2) sin O(z) — y(¢) cos O(1)]’

N(t) = tef0,z;) (11)

It is apparent from Eq. (11) that, in the nonlinear setting, the optimal
navigation gain is not a constant any more.

The state variables x(7) and y(7) at each time ¢ € [0, /] can be
obtained by some sensors, e.g., inertial measurement unit (IMU). As
aresult, obtaining the optimal intercept guidance law of Eq. (9) or the
optimal navigation gain of Eq. (11) amounts to computing the costate
variables p, and p,. Generally, it is difficult to compute p, and p,
because they are the solution of a two-point boundary value problem.
In the subsequent sections, we shall present some geometric

As aresult, by substituting Eq. (13) into Eq. (9), we eventually obtain
that the optimal feedback control law is parameterized by the scalar

p,ie.,

utt.) = P 1ty cos p+ y(0) sin

—K

tef0,t] (A7)

Thanks to Theorem 2, there exists at least one specific parameter
f* such that u(z, #*) for t € [0, t/] is the optimal feedback control of
the OIP. To this end, as the state variables x(7) and y(¢) at each time
can be obtained by some sensors (e.g., IMU), finding f* is sufficient
for deriving the optimal feedback control law in Eq. (17). In the next
sections, we shall characterize the solution of the OIP so that the
specific parameter * can be computed efficiently.

For notational simplicity, we denote hereafter by the triple
[x(z, B), y(¢, B), 6(t, B)] the integration of the differential equation (X)
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from the initial condition (xy,0,6,) with the pg-parameterized
feedback control u(t, §) in Eq. (17), i.e.,

x(t, B) X [ cos O(z)
y(t, B) ==|:0:|+/|:Sin9(r)i|dr, t>0
o(t, B) 0y u(z, )

By the definition of p*, it is clear that the triple
[x(2, %), y(t. p*). 0(z, p*)] for t € [0, t/] is the optimal trajectory of
the OIP.

B. Properties of the OIP’s Solution

In this subsection, some geometric properties for the solution of the
OIP will be established by the following lemmas. For the simplicity
of presentation, the proofs of all the lemmas are postponed to
Appendix C.

Note that the space of  can be projected to any interval of length
27 [see the definition of #in Eq. (12)]. For later analyses, we consider
that $ lies in [-z/2, 37/2]. By the following lemma, the interval of
can be further restricted.

Lemma 1: Given xy > 0, 8y € [0, z] and « € (0, 1), define the set

S:={p € [-n/2,3n/2]: k(xy cos f)> — 2(1 — k)[sin(8, — B) + 1]
<0}
(18)

Then, we have f* € S.

In the next lemma, we present an important property for py, which
will be used in the later analyses.

Lemma 2. Let t; > 0 be the optimal final time of the OIP. For any
p* € S, such that a(f*) # k, the following two statements hold:

DIf

presSn(-x/2,n/2)
we have
po(t) = a(p*)[x(t, p*) cos f* + y(t, p*) sin p*] > 0

fort € (0, t5).
2) If

presSn(x/2,3x/2)
we have

po(t) = a(p*)[x(z, f*) cos f* + y(t, f*) sin f*] < 0

fort € (0, /).

This lemma indicates that py does not change its sign along the
solution of the OIP. Combining this result with Eqs. (1) and (5)
immediately leads to the following corollary:

Corollary I: Let t; > 0 be the optimal final time of the OIP. Then,
the heading angle (¢, #*) for ¢ € [0, t;] monotonically increases
(respectively, decreases) if p* e (-xn/2,z/2)nS [respec-
tively, p* € (n/2,37/2) N S].

In the endgame stage of an engagement, it is common to keep the
interceptor locked on to the target, which can be guaranteed by
constraining the look angle ¢ (defined in Fig. 1) within (-7 /2, z/2).
The following lemma presents some restriction of f* for the
fulfillment of ¢ € (—x/2,7/2) along the optimal trajectory of
the OIP.

Lemma 3: Given any x;, > 0 and any « € (0, 1), if the look angle &
along the solution of the OIP is in (—z/2, z/2), then 8, € (z/2, n)
and p* € (-z/2,7/2) N S.

Let 0(f) be a function of p € S such that Eq. (15) at r = ¢, is
satisfied, i.e.,

H(ty) = a(p)sin[f - 0,(f)] -k =0 (19)

Notice that 6,(f*) is the optimal final heading angle of the OIP, i.e.,
O(ty, f*) = 04(p*). In view of Eq. (15), we have

po(t) = £/2(1 = k) y/k — a(B) sin(p — 6(1))

According to Lemma 2, this equation indicates

()= { V2(=x)/k—a(B)sin(B—0(1)), ifpe(-n/2,x/2)nS
Pe —V2(0=0) k= aB)sin(F—00)). if pe (z/2.32/2)nS
(20
Combining Eq. (§) with 0=u yields
do
dt=(1-x)— (21)
Po
Let #(p) be the integration of Eq. (21) from 6 to 0,(f), i.e.,
® 1
1) = (1 - K)/ g d9 22)
Substituting Eqs. (20) and (22), we eventually have
S5 jjf(/’) 40, if pe (-n/2.2/2)n S
_ 0 K— a(/}) sm(ﬁ 0)
0= SO sl do it 2.37/2)n S
K— a(/}) qm(/f A/ x—a(p) sin(f—0) if f € (z/2.32/2) N
(23)

By the definition of #*, we have that ¢ /(8*) is the optimal final time
of the OIP. Because the target is located at the origin of frame Oxy, we
have

(x(1,(B*), ), y(t:(B*), f*)) = (0,0)

To this end, one can find #* by searching the common zeros of the two
functions x(#;(f),) and y(t;(f),p) over the interval S. By the
following lemma, we show that any zero of y(#,(f), ) is a zero
of x(t7(). ).

Lemma 4: Given any pe€S8, if y(t(f),p) =0, then
x(t(B). ) = 0.
As aresult of this lemma, computing the common zeros of x (¢ (8), B)
and y(t7(f), p) is reduced to finding the zeros of the real-valued
function y(t;(f),f) over the interval S. In the next section, a
semianalytical form for y(¢7(f), ) will be derived so that a brute-
force search method can be used to find its zero f*.

IV. Semianalytical Solution
Combining Egs. (1), (3), and (20) leads to

sin @ if pe(-n/2,n/2)NS

2 dy _ | rrapsin@—p)’
_ - —sinf :
Vi—xao . e /232/)0 S

(24)

Taking into account y(0) = 0, we can integrate Eq. (24) to yield

07 (P) sind

i (Z(ﬁ) ﬁ)_ fe‘) m
1= TPPIZN 0 e gg
. d0, if pe(x/2.31/2)nS

0 A/ k+a(p)sin(6+p)

40, if pe(-n/2,1/2)NS

(25)

Rewriting Eq. (25) leads to
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Wy _—sinficosy

Yo A/ k+a(p) sin u/

). ) =

where y = 6 — B, wo = 6y — B, and y, = 6,(p) — p. Note that we
have

cos(y/) siny ¢

vo VK + d(ﬂ) s1n(1// sinyg /K + C{(/))) sm(x//
= i\/K—i—ot(ﬂ)sim//

a(ﬁ) Yo
0¢(p)
=- (ﬂ) k—a(p)sin(f —0) .
a(/i) k—a(f)sin(f—6,) (27)

where the final equality holds because of Eqgs. (6) and (20). We also
have

/ 17 sin(y) dy

wo VK + a(p)sin(y)
vr /K 4+ a(P) sin(y) dy + /w —k/a(p) dy
70 a(p) vo vk + a(f)sin(y)

_ Jr+ap) [vs 2a(p) . ,

" sin’(y /2 — n/4) dy

BT fy \/ o (ﬂ)
2 K+(l(ﬁ)E|:ﬂ' W 2a(ﬁ):|

a(p) 4 27x+ap)
2k Ty 2a(p)
- a(ﬂ) vV K+ a(ﬁ) F|:4 2 K+ a(ﬁ)i| wo (28)

where F(-,-) and E(-, -) are the incomplete elliptic integrals of the
first and second kinds, respectively (see, e.g., Ref. [15] for details of
the two elliptic integrals). Substituting Egs. (27) and (28) into
Eq. (26) eventually yields

Yt (B).p) = {291 ﬂ\/K-i-(X(ﬂ) siny

_ZCosﬁ,/K—f—a(ﬂ[ (E_@ 2a(ﬂ)) E(E—ﬂ 2a(p) )]
a(p)

4 2 k+a(p) 4 2 °k+a(p)

4 2Kkcosf [F(E—ﬂ Za(ﬂ)) F(E—ﬂ 2a(p) )]}
a(f)/k+a(p) 4 2 k+a(p) 4 2 k+a(p)

x,/%, ifpe(-n/2,2/2)nS (29)

N {251n/} Jxta(B)sing
_2cospy/x+a(p) [E(E—ﬂ 2a(f) )—E(” v 2a(p) ):|

a(p) 4 2 °k+a(p) 4 2 °k+a(p)
+ 2Kkcosf [F(E—@ 2a(ﬂ)) F(Z—ﬁ 2a(p) )i|}
a(f)/k+a(p) 4 2 k+a(p) 4 2 k+a(p)
x,/%, ifpe(r/2,32/2)nS (30)

V¢ sinfcosy
j‘/’n /‘“’*’*”"K+a B) siny V/ .[0

__cosfsiny d i c (- ) 5 nS
W v, if pe(-n/2,n/2) ”
—cos fisiny .
W Jerepyias W € @/238/DNS

Given any f € S, the value of y(¢,(p), p) in either Eq. (29) or
Eq. (30) can be immediately obtained because the elliptic integrals
E(-,-) and F (-, -) have series representations like the simple sine and
cosine functions.

As aresult, a brute-force search method can be used to find the zero
p* of y(t;(),p) over the two intervals (-z/2,7z/2) NS and
(z/2,37/2) n'S if the boundaries of S are available. By the
following lemma, the boundaries of the set S will be presented.

Lemma 5: Given x; > 0 and 6, € [0, x), let

{ 2[sin(0y — B) + 1] }
(31
L x3cos? B+ 2[sin(Gy — B) + 1]

We have that M > 0, and the following statements hold:

1) If « < M, wehave (—z/2,z/2) NS = (—-xn/2,n/2).

2) If k > M, there exists f, and f, in (—z /2, z/2) with | <,
such that

(=7/2,7/2) N S = (=7/2, 1)) U (b2, 7/2)

and tan(f, /2) and tan(f, /2) are two different zeros of the following
fourth-degree polynomial in terms of x:

0 = [kxd — 2(1 = x)(1 — sin Gg)]x* + 4(1 — k) cos Gpx*
= 2fx? +2(1 = 0)]x2 + 4(1 — k) cos Opx + kx2 — 2(1 — k)
(32)

3) In any case, there exist #; and g, in (z/2,37/2) with 5 < f,
such that

(#/2,32/2) NS = (7/2,3) U (B4, 37/2)

and tan(f;/2) and tan(f,/2) are two different zeros of the
polynomial in Eq. (32).

The proof of this lemma is postponed to Appendix C. Lemma 5
indicates that the zero #* of y(t;(f3), ) must lie in three or four shorter
intervals, depending on the relationship between « and M in Eq. (31).
Note that a fourth-degree polynomial can be solved either in an
analytical way or by using a standard polynomial solver. Thus, the
boundaries f, ..., f, (if they exist) of the three or four shorter
intervals can be readily computed by solving the fourth-degree
polynomial in Eq. (32). Also notice that the function y(t;(f), §) is
continuous on the three or four shorter intervals. As a result, a brute-
force search method can be used to find the zero 5 of y(¢4(5). §) on
each interval if it exists, as shown by Algorithm 1.

Let us gather a few words to explain the brute-force search method
in Algorithm 1. If the discretization level / € N is large enough, the
method can find all the zeros of y(¢7(f), ) within the three or four
intervals established in Lemma 5. Note that we have devised a
semianalytical form for y(¢,(5), §) so that its value can be efficiently
computed for every f € S [cf. Egs. (29) and (30)]. Therefore, the
brute-force search method is in fact not time consuming, as
demonstrated by the numerical simulations in the next section.

V. Numerical Simulations

In the following three subsections, we present three numerical
cases (A, B, and C) to demonstrate the developments of the paper and
to examine the viability of the developed nonlinear optimal
guidance law.
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Algorithm 1  Brute-force search for finding f*

Given xy > 0, 8, € [0, 7), and k € (0, 1), the brute-force search method is performed as follows:

Step 1: Let / € N be a positive integer.

Step 2: Let (b, b,) be one of the three or four continuous intervals established in Lemma 5.
Step 3 Letp(j) = by + jx(by—by)/lforj=0,...,landseti = 1.

Step 4: If i <1, go to step 4.1; otherwise, go to end;

Step 4.1:  If y(t,(B(i — 1)), (i — 1)) X y(t£(B(?)), B(i)) < 0, use a bisection method to find #* between (i — 1) and S(i);

Step 4.2: Seti =i+ 1 and go back to step 4.
Step 5: End.

Table1l CaseA: valuesof f* and # s ($*) of the two
local solutions for x = 1071, ...,10710

Data associated with Data associated with
pi I3

K Iin 1 (B i3 1(p3)
107" 47166 1.0018x 10®° 4.7082 1.0102 x 10°
1072 47266 1.0058x 10° 4.6984 1.0340x 10°
1073 47581 1.0185x 10®° 4.6687 1.1079 x 10°
107*  4.8647 1.0582x10° 4.5802 1.3417 x 10°
107 53000 1.1685x10° 4.3462 2.0876 x 10°
1076 0.4608 1.3238x 10° 3.9612 4.5731 x 10*
1077 0.8744 1.3942x10° 3.8882 1.2799 x 10°
1078 0.9184 1.4056x10° 3.9536 3.8566 x 10*
107 0.9229 1.4069 x 10®° 3.9855 1.1969 x 10°
10710 0.9233 1.4070x 10®° 3.9966 3.7605 x 10°

A. Selection of the Value of x in (0,1)

For case A, we will demonstrate the solutions of the OIP (Problem
1) for different x € [1071°,107!] but with fixed initial conditions:
Xo = 1000 m and 6, = x/2. Notice that y, = 0 as the x axis points
to the initial position of the interceptor, and that the magnitude of
velocity has been normalized to one, i.e., | V|| = 1 m/s. Using the

brute-force search method in Algorithm 1, two zeros of y(t;(8), )
are found for each «, indicating that, for each OIP, there exist two
candidate solutions satisfying all the necessary conditions given in
Sec. II. In fact, for each k € [1071°, 107!], one zero of y(1,(B), p) lies
in (—z/2, z/2) and another zero lies in (z/2, 37 /2). For notational
simplicity, we denote by f} and B the zeros of y(t/(f),p) in
(—z/2,7/2) and (z/2,3x/2), respectively. Table 1 presents the
values of #* and t,(f*) for the two local solutions of case A with
k= 107", ...,1071°, and Fig. 2 shows the local optimal trajectories
corresponding to the data in Table 1. It is interesting to notice from
Table 1 and Fig. 2 that, although the candidate trajectories with
p* € (—xn/2,n/2) are almost identical for x < 1078, the trajectories
associated with * € (x/2,3%/2) become longer and longer as «
decreases.

The profiles of control as a function of time along the candidate
solutions of the OIP for k = 10719, ..., 10! are plotted in Fig. 3,
where the engagement durations are normalized to one for
comparison purposes. It is seen from Fig. 3 that, the smaller « is, the
smaller the absolute value of control tends to be.

Once the solution of the OIP is computed fork € (0, 1), we are able
to compute the cost in Eq. (2), the control effort, and the engagement
duration, as shown in Fig. 4 for different x € [1071°, 107!] with a
log scale.

8% € (r/2,3m/2)

500

400

500 1000 1500 2000

Ip=9 =10

B e (—m/2,m/2)
450 : . 14 210
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400 -
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250 -
E 200t E 6l
> >
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Fig. 2 Case A: Candidate trajectories forx = 1077 with p =1, ...,10.
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Fig.3 Case A: The profiles of control along the optimal trajectories of the OIP for x = 1077 with p = 1, ..., 10.
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Fig.4 Case A: The cost J = [{*"x + (1/2)(1 - ©)u2(¢) dt, the control effort /i " u?(t) dt, and the final time ¢ ,(8*) against x on [10~1, 1071°].

We can see from Fig. 4 that the costin Eq. (2) and the control effort of
the two local solutions are monotonically decreasing with the decrease
of k. From the top graph of Fig. 4, itis seen that, for k larger than around
1077, the performances of the shorter candidates associated with

p* € (—n/2,x/2) are better than those of the longer candidates;
whereas the longer candidates associated with #* € (z/2, 37/2) have
better performances for x smaller than around 10~7. We can see from
the middle graph of Fig. 4 that the final time is monotonically
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nondecreasing with the decrease of x from 10~! to 10719, Actually, the
trends of the two solid curves of the final time and the control effort in
Fig. 4 coincide with Theorem 1. We can also see from Fig. 4 that, if k is
in between 10~ and around 107°, the control efforts of the shorter
candidates associated with f* € (—x /2, z/2) are smaller than those of
the longer candidates associated with f* € (z/2, 37 /2); in addition,
the control efforts and final times for the shorter candidates associated
with * € (=z/2, #/2) almost do not change for x larger than 107°.
Therefore, in order to apply the nonlinear optimal guidance law, one
should appropriately select x € (0,1) to balance between the
engagement duration and the control effort.

B. Solution of the OIP with a Fixed x

In this subsection, we shall present an example (case B) with a
fixed x to demonstrate the properties established in Sec. III. We set
k = 107 and choose x, = 10 m and §, = z/2. By employing the
brute-force search method in Algorithm 1 again, two zeros (i.e.,

T = 0.9229 and g5 = 3.9855) of y(t/(p), B) are found, indicating
that there are two candidate trajectories satisfying all the necessary
conditions given in Sec. II. The final times for the two candidates are
tr(F7) = 14.07 s and 1,(f5) = 1196.86 s.

By coding the brute-force search method in MATLAB, finding
each zero of y(¢,(p), ) for case B takes about 0.215 s on a desktop
with an Intel® Core™ i7-3615QM CPU with 2.30 GHz. It is worth
mentioning that the successive optimization method in Ref. [12] can
converge to a local solution in the same scale of computer time.
However, there may exist multiple local solutions for an OIP (for case
B, there indeed exist two local solutions). In this case, the method in
Ref. [12] is not able to guarantee the found solution to be the global
optimal one. Thanks to the developments in the paper, all local
solutions can be found efficiently, and we can choose one local
solution according to mission requirements.

The two candidate trajectories are plotted in Fig. 5. Because ] and
p; liein (—x/2, x/2) and (x/2, 37 /2), respectively, it follows from
Corollary 1 that the heading angle 6 is monotonically increasing and
decreasing along the shorter and longer trajectories, respectively, as
shown in Fig. 6.

The profiles of control along the two candidate trajectories
are plotted in Fig. 7, from which it is seen that the control is positive

400 T T T
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100F==—= : : ; .
5 Of T 1
() ~
e TS
Q:_-IOO_ \\\\ 4
_200 1 1 1 1 1 —
0 200 400 600 800 1000 1200

Time (s)
Fig. 6 Case B: Profiles of the heading angle 6 along the shorter and the
longer candidate trajectories.

along the shorter candidate but it is negative along the longer
candidate.

The look angles o along the two candidate trajectories are
presented in Fig. 8. It is seen from Fig. 8 that the look angle along the
shorter candidate trajectory associated with ] is no more than
90 deg, as predicted by Lemma 3. If having the look angle in
[-7/2,x/2] is a primary constraint, one should choose the control
law along the shorter candidate trajectory.

The profiles of the optimal state-dependent navigation gain N () in
Eq. (11) along the two candidate trajectories are plotted in Fig. 9.
Note that, in each subfigure of Fig. 9, the navigation gain N(¢) is
plotted to a time slightly earlier than the final time because the
navigation gain is not defined at the final time [see Eq. (11)]. From
Fig. 9, we can see that the optimal navigation gain along the longer
candidate trajectory is negative until it goes to infinity around ¢ =
133.26 s; after which, the optimal navigation gain is positive and it
converges to three. In fact, the occurrence of negative navigation gain
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Fig. 5 Case B: The two candidate trajectories of the OIP (the subplot is scaled for the shorter path).
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Fig. 7 Case B: The profiles of the control along the shorter and the
longer candidate trajectories.
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Fig. 8 Case B: Profiles of the look angles ¢ along the shorter and the
longer candidate trajectories.

is due to the fact that the interceptor moves away from the target
initially (see the longer candidate in Fig. 5). We can see from Fig. 9
that the optimal navigation gain N(f) along the shorter candidate
trajectory takes values between two and three, and it converges to
three finally. Notice that, along both candidate trajectories, as the
interceptor approaches the target, its trajectory converges to a straight
line (see Fig. 5). In this part of the trajectory, there are small
deviations around this line making linearization valid, and thus the
gain converges to three, which is identical to the gain of the classical
PN derived from the linearized case.

For comparison, the candidate trajectory associated with ] as well
as the trajectories generated by PN with N = 2, ..., 5 are plotted in
Fig. 10. Itis seen from Fig. 10 that the candidate trajectory associated
with 7 is not the same as the trajectory generated by PN with N = 3,
although PN with N = 3 is considered to be the optimal guidance law
[6,7] (derived, as discussed earlier, under linearization assumptions).
The control efforts along the trajectories generated by PN with
N =2, ...,5 and along the optimal trajectories for #] and f; are
numerically computed and presented in Table 2.

It is clear that the control effort along the longer candidate
trajectory associated with f; is the smallest. However, the longer
candidate trajectory cannot be generated by the classical PN with a
positive navigation gain because the navigation gain along the longer
candidate trajectory can be negative (see Fig. 9). Notice from Table 2
that the shorter candidate has a control effort close to that obtained for
PN with N = 3, indicating that, for case B, if we wish to minimize
only the control effort, then PN with N = 3 serves almost as the
optimal guidance law. In the next subsection, an example with a
relatively large initial heading error will be presented to compare the
nonlinear optimal guidance law with PN.

C. The Solution of OIP with ||c, || Greater Than z/2

For case C, we consider that x, = 10 and 8y = z/4. This initial
heading angle 6, indicates that the initial look angle is 6q = 37/4.
Even if the initial look angle o is not in [—-z/2, z/2], we can still
employ PN to guide the pursuer of Eq. (1) from the given initial
condition to the target (the origin of frame Oxy in Fig. 1), as shown by
the trajectories generated by PN with feasible navigation gains
in Fig. 11.

Table 3 presents the engagement duration and control effort of
every trajectory in Fig. 11. It is clear from Table 3 that, for case C, if
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Case B: Profiles of the optimal state-dependent navigation gain in Eq. (11) against time along the shorter and the longer candidate trajectories.



Downloaded by TECHNION - ISRAEL INST OF TECH on January 3, 2024 | http://arc.aiaa.org | DOI: 10.2514/1.G004341

CHEN AND SHIMA 2427

0 2 4

6 8 10

z (m)

Fig. 10 Case B: Candidate trajectory with #; and the trajectories generated by PN with N = 2,...,5.

we wish to minimize only the control effort, then the best navigation
gain for PN is around two instead of being three.

To compare the nonlinear optimal guidance law with PN, the
solution of case C is computed for different « € (0, 1) by the brute-
force search using Algorithm 1, and the optimal trajectories for some
selected k are plotted in Fig. 12. The engagement duration and control
effort for every trajectory in Fig. 12 are listed in Table 4. Although the
engagement duration of the shorter candidate trajectory with x =
0.005 is close to the engagement duration of PN with the best
navigation gain of N = 2 (compare Tables 3 and 4), the control effort
of the shorter candidate is just 0.2725, which is around 80% of the
control effort (0.3332) using PN with N = 2. We can see from Table 3
that the control effort of using PN is not monotonically decreasing
with the increase of the engagement duration. However, the control
effort of the optimal guidance law is monotonically decreasing with
the increase of engagement duration according to Table 4. Therefore,
in order to apply the nonlinear optimal guidance law of the paper, we
should appropriately select x € (0, 1) to balance the engagement
duration and the control effort.

It is interesting to notice that all the numerical examples presented
have two candidate solutions [the function y(z,(f), ) has two zeros
for all of the aforementioned examples). In fact, a large number of
additional simulations with different values of x,, 6,, and x were
carried out, showing that the function y(t,(f), #) always has two
zeros for each example, and that the two zeros always lie in two
different subintervals (—z/2,7z/2) and (x/2,37z/2). Although we
are not able to provide rigorous proof for this interesting numerical
result in this paper, the brute-force search method in Algorithm 1 can
find all of them if the discretization level [ is large enough.

VI. Conclusions

In this paper, it was first shown that a global solution does not exist
for the typical free-time minimum-effort nonlinear optimal control
problem of intercepting a stationary target. Thus, an optimal intercept
problem, for which the objective function is a linear combination of
control effort and engagement duration, was studied instead. By

5L

25 -20 -15 -10 -5 0 5 10 15
X

Fig. 11 Case C: Profiles of the trajectories generated by PN with
different navigation gains.

parameterizing the necessary conditions for optimality, it was found
that the optimal guidance law is determined by the zeros of a real-
valued function. As a semianalytical form for the real-valued function
was devised, a simple brute-force search could be used to find all the
zeros. Numerical simulations showed that, for each example, the
corresponding real-valued function had two zeros, indicating that
each example had two candidate trajectories. Between the two
candidate trajectories, the heading angle monotonically increased
along the shorter candidate, but it monotonically decreased along the
longer candidate. If the weighting factor on engagement duration was
relatively large, the shorter candidate consumed less control effort
than the longer candidate; whereas, if it was relatively small, the
longer candidate would consume less control effort. Thus, in order to
apply the nonlinear optimal guidance law, « € (0, 1) should be
appropriately selected to balance between the engagement duration
and the control effort; and for realistic engagements with tight timing

Table 2 Case B: control effort of trajectories generated by PN and two local optimal
trajectories

Parameter

N B

Performance 2

4 B) Ik I

Engagement durration, S
Control effort [ (1/2)u?(r)dt  0.3142

15.7080 13.1103 12.1433 11.6359 14.0686 1196.86
0.2697  0.2989 0.3396  0.2646 0.0119




Downloaded by TECHNION - ISRAEL INST OF TECH on January 3, 2024 | http://arc.aiaa.org | DOI: 10.2514/1.G004341

2428 CHEN AND SHIMA

Table3 Case C: engagement duration and control effort of the trajectories generated by PN
with different navigation gains

N 14 1.5 1.6

1.8 2 3 4 5

ty 92.0081 68.2842 54.9906 40.7584 33.3216 20.5314 16.7999 15.0213

U(1/2uP(t)dr 1007859 1.9369  0.5371

0.3592 0.3332  0.3675 0.4399  0.5191

Table4 Case C: engagement duration and control effort of the optimal
trajectories with various x

Data associated with 7}

Data associated with f3

K B [I0eepnde @ [0 /262 ) di
1x1072 22.0973 0.3492 40.0366 0.3658
8x 1073 24.4196 0.3283 44.0946 0.3292
5x 1073 33.3705 0.2725 54.5506 0.2627
4x1073 39.8225 0.2435 60.5668 0.2356
3x 1073 49.5712 0.2096 69.4870 0.2046
2x 1073 65.7617 0.1699 84.6234 0.1675
1x1073 101.4470 0.1193 119.1560 0.1186

_20 1 1 1 i 1 1
-10 0 10 20 30 40 50 60
x (m)
Fig. 12 Case C: Profiles of the optimal trajectories with different x.

constraints, it is expected that the shorter candidate optimal solution
will be used.

Appendix A: Proof of Theorem 1

Given any points z, and z in R?, let 6, and 0y in [0, 27] be the
heading angles at z, and z , respectively. Then, there always exists a
path concatenating by a circular arc and two straight lines so that the
initial point z, with the heading angle 6, and the final point z, with
the heading angle 6 are connected by the path, as shown in Fig. Al.
Let u. > 0 be the control along the circular arc. It is clear that
u. = 1/pis a constant where p > 0 is the radius of the circular arc.
Note that we have df = u.dt along the circular arc, and the control
along straight lines is zero. As a result, we have that the total control
effort along the path is

s Oy
J= / u(f)?de = / u.d0 = u.|0; — 6|
b :

0

=10y —0l/p < 2x/p

This equation indicates that, for any small & > 0, there exists p > 0
such that

13
/‘f u()?dt<e

0

completing the proof.

(z0, 00)

(Zf. ()f)

Fig. A1 Paths concatenated by circular arcs and straight lines.

Appendix B: Proof of Theorem 2

It is apparent that there exists at least one admissible trajectory of
(Z) from the initial condition (x, 0, 6;) to the origin of Oxy such that
the corresponding cost in Eq. (2) is finite; without loss of generality,
let us assume that the finite cost is J > 0. Note that we have

t 1
J:/(;fk+(1—K)§M2(l)dlZKff

Given a fixed x € (0, 1), this equation indicates that there exists
T > J/x such that every admissible controlled trajectory of (Z) from
(x9, 0, 6) to the origin of Oxy will have a higher cost than J if the
duration of the trajectory is greater than 7. Therefore, in order to
prove this theorem, we just need to prove that the OIP with its final
time less than 7 has a solution.

Solving the OIP is equivalent to finding the elastica of a plane
elastic curve (see Ref. [16]). According to Ref. [16] (Lemma 3), the
curvature along the solution of the OIP has a global maximum,
indicating that there exists «,, > 0 such that every measurable control
u(-) on [0, #/] is not an optimal control of the OIP if there exists
7 € [0, t7] such that u(z) > u,,. Therefore, we can consider that the
set of admissible control is [—u,,, u,,].

According to the preceding analyses, we just need to prove that a
solution exists for the OIP where the final time is smaller than 7', i.e.,
t; <T and the control lies in [-u,,, u,]. Let us consider an
augmented system of (X) as

x = f(x,u) B1)

where x = [x,y, 0, z]7, and
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cos @
sin 6
u
k+ (1 —K)%u2

Sl u) =

It is clear that the problem of minimizing z(z;) subject to Eq. (B1)
from x(0) = [x),0,6,,0] to [x(7),y(t;)] = [0,0] has the same
solution as the OIP. Hence, it amounts to proving that the new
augmented optimal control problem has an optimum.

Let x; be the initial condition of the augmented optimal control
problem, i.e., xy = (x(.0,6,0). Let us denote by A, (¢) the
attainable set of Eq. (B1) for time ¢ > 0 from x, with measurable
locally bounded controls, i.e.,

A, (1) = {x(t) =X + Atf (x(2), u(1)dr]x(0) = xo,
ue Loo([o’ t], [—Mm, Mm])}

With the definition of this attainable set, we denote by AXTO the
attainable sets for time not greater than 7', i.e.,

Al = 4,0

0<t<T

Because f(x, u) is bounded, the control set [—u,,, u,,] is compact, and
the set

{f(xv M)|ld € [_umv Mm]}

is convex, it follows from Filippov’s theorem (Ref. [17] corollary
10.6) that the attainable set A,{U is compact. The compactness implies
that there exists a time 7 < T and a point (x(7), ¥(?), 9(7), z(?)) with
(x(2), y(2)) = (0, 0) such that z(7) is the minimum as compared with
any other point (x(¢),y(2),8(2),z(t)) € .AIO with (x(7),y(?)) =
(0,0) [see Ref. [17] proposition 10.2, in which (x(7), (7), 8(7), z(7))
lies on the boundary of A{O]. By the definition of the attainable set
AL, there exists an admissible control u(-):[0,7] = [—u,,, u,,]
steering the system in Eq. (B1) from x, to (x(7), ¥(?), 0(7), 2(7)),
which completes the proof of Theorem 2.

Appendix C: Proofs for Lemmas

In this appendix, we present the proofs of all the lemmas
established in the preceding text.
Proof of Lemma 1: Combining Eq. (16) with H(t;) = 0 to eliminate
a, we obtain
(xgcosf)> =0

sin2(8 — 0,) — sin(B — 0) sin(B — 0,) — ﬁ

Considering sin(f — 6;) = x/a(f) > 0, because of H(t;) = 0, we
have

sin(f — 0y)

_sin(B — 6p) + +/sin?(B — ) + 2k(x, cos B)*/(1 — k)
o 2

Considering also sin(f — 6) < 1, we have

sin(@y — f) + +/sin2(0y — ) + 2x(xo cos $)2/ (1 — k) <1
3 <

which is rewritten as

Sin(0y — £) +2 2 \/sin? (0 — §) + 2(xo cos f)*/(1 = x)

Squaring both sides of this equation yields
kxgcos? f—2(1 —x)[sin(@y — ) + 1] <0 (C1)

which completes the proof for Lemma 1.

Proof of Lemma 2: By contradiction, let us assume that there exists an
interval [t,,1,] C[0,#7] (with 7, # ;) such that py(r) =0 for
t € [ty, t,]. Then, the trajectory (x(r),y(z)) for t € [, 1,] and the
origin (0, 0) lie on the same straight line because py(f) =
py(t) — pyx(t) = 0 along the trajectory (x(), y(¢)) for ¢ € [t1, 1]
and at the origin (0, 0). In this case, the velocity or its opposite vector
points to the origin, indicating

|6 -0 = =/2 (€2)

for t € [t1, t,]. According to Eq. (15), we have

po(t) = £/2(1 — k) 'k — asin(p — 6(1)) (C3)

for ¢ € [0, t;]. Combining this equation with Eq. (C2) and taking into
account py(t) = Ofort € [¢, t,] indicate k = a. This contradicts the
hypothesis a(f*) # « of this lemma. Hence, it is impossible to have
Py = 0 on a nonzero interval by contraposition.

Again by contradiction, let us assume that there exists an isolated
instant 7 € (0, 7;) on the optimal trajectory of the OIP such that
po(r) = 0. If py does not change its sign at z, we have that the
trajectory (x(¢),y(f)) at 7 is tangent to the straight line of
Po = pyy — pyx = 0, indicating that the velocity or its opposite
vector points to the origin. In this case, we also have
|p—0(z)| = /2, implying x = a@ according to Eq. (C3) and
po(t) = 0. This contradicts the hypothesis of k # a(f*) once again.
Hence, by contraposition, along an optimal trajectory of the OIP, it is
impossible to have an isolated instant 7 € (0, ;) such that py(r)
equals zero but py does not change its sign at 7. Next, we shall prove
that it is also impossible if p, changes its sign at 7.

) If pe(-n/2,7/2) NS, we have py(0) > 0 according to
Eq. (14). As py changes its sign at 7 by assumption, the heading angle
6 is monotonically nondecreasing before z and monotonically
nonincreasing after 7 [recall the third equation of Eq. (1) and Eq. (5)].
Hence, the graph of (x, y) changes its sign of curvature at 7. For this
scenario, there are two cases: either y(z) > 0 or y(z) <0.

If y(7) < 0, there must exist a point before 7 so that the velocity at
the point points to the origin, as illustrated by point A in Fig. C1. In
this case, the dashed straight line is shorter and has less control effort
than the solid trajectory after point A. So, the total solid trajectory
cannot be optimal if y(z) < 0.

Now, let us consider y(r) > 0. According to Egs. (20) and (6), we
have sin(f — 6(z)) = sin(f — 0(t;)), which indicates that the angle
between the velocity at 7 and the vector from (x(z), y(z)) to (0, 0) is
the same as that between the velocity at ; and the vector from
(x(7), y(7)) to (0, 0). As aresult, the trajectory after z must intersect,
as illustrated by the curve in Fig. C2. In this case, there exist two
points so that the straight line between the two points is tangent to the
solid curve, as shown by points A and B in Fig. C2. In addition, there
exists a point such that the line from the point to the origin is tangent
to the solid curve, as shown by point C in Fig. C2. Then, the path from

Fig. C1 Schematic path of (x,y) with py(0) > 0 and y(z) < 0 for the
proof of Lemma 2.
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Fig. C2 Schematic path of (x,y) with p,(0) > 0 and y(7) > 0 for the
proof of Lemma 2.

A
). (1)

/

Fig. C3 Schematic path of (x,y) with py(0) < 0 and y(z) < 0 for the
proof of Lemma 2.

initial point, passing points A, B, and C in order (and finally reaching
to the origin), is shorter and has less control effort than the total solid
curve. Therefore, the solid curve cannot be optimal if y(z) > 0. By
contraposition, the first statement of this lemma is proved.

2) If pe(n/2,37/2) NS, we have py(0) <0 according to
Eq. (14). In this case, 8 is monotonically nonincreasing before 7 and
monotonically nondecreasing after z. Analogously, we have that
either y(z) < 0 or y(7) > 0.

Analogous to proving the second case of the first statement, if
y(7) < 0, the trajectory after  must intersect, as shown by the solid
line in Fig. C3. In this case, there exist two points so that the straight
line between the two points tangent to the solid line, as shown by
points A and B in Fig. C3. In addition, there exists a point so that the
straight line from the point to the origin is tangent to the solid curve,
as shown by point C in Fig. C3. Then, the path from the initial point,
passing through points A, B, and C in order, and finally reaching to
the origin, is shorter and has less control effort. So, the total solid
trajectory is not optimal if y(z) < 0.

Now, let us consider the rest case y(r) > 0. Because the heading
angle is monotonically nonincreasing for ¢ € [0, 7] and monotoni-
cally nondecreasing after 7, the shape of the trajectory is like the solid
curve shown in Fig. C4. For such a trajectory, there exists a shorter
smooth path from (x,, 0) with initial heading angle being 6, to a point
A tangent to the solid curve, as shown by the dashed curve in Fig. C4.
So, the solid curve is not the optimal path. Therefore, by
contraposition, the second statement of this lemma is proved, which
completes the whole proof of this lemma.

A (@)

=l

Fig. C4 Schematic path of (x,y) with py(0) < 0 and y(z) > 0 for the
proof of Lemma 2.

fi(B)
a4l

£®)
‘ .. 6. 1

-1 U 2 3 4 3n/2

Fig. C5 Curves of f{(f) and f,(p) for f € (-x/2,3x/2), k = 0.05,
xo = 10, and 0, = 2.

Proof of Lemma 3. First of all, it is clear that 8, € (x/2, ). In frame
Oxy in Fig. 1, we have

xcosé + ysind
[+

Hence, in order to guarantee |6| < 7/2, it requires us to keep

COSo = —

x(t) cos O() + y(t) sin€(r) <0 (C4)

along the solution of the OIP.

By contradiction, assume f € (z/2,37/2) N S. According to
Corollary 1, we have that 6(¢) is monotonically decreasing. Then,
before reaching the target, there must exista time 7 € (0, #) such that
6(r) = 0 and x(7) > 0, indicating x(z) cos 8(z) + y(r) sin6(z) > 0.
This contradicts with Eq. (C4). Therefore, by contraposition, the
proof is completed.

Proof of Lemma 4. According to Egs. (6) and (14), and by the
definition of #4(f3), we have

po(tr(B)) = a(P)lx(t;(B). ) cos fp + y(t,(h). p) sin f] = 0 (C5)

Note that a(f) > 0. For any g € S, if y(t/(f),p) = 0, Eq. (CJ)
implies x(¢;(pB), #) cos f = 0. By the assumption of Lemma 4 that
|B| # m/2, we finally have x(¢/(f), ) = 0, completing the proof.
Proof of Lemma 5. Because 8 # |z /2|, it is clear that M is strictly
positive according to Eq. (31). Next, we prove the three statements of
Lemma 5, one by one.

1) If « < M, we must have

2[sin(0) - p) + 1]
K< —5—— -
xgcos® B+ 2[sin(6y — ) + 1]

forany € (—x/2, z/2). Then, by the definition of S in Eq. (18), the
first statement holds.

2) Let f1(f) =«x3cos’ f and f,(F) = 2(1 —x)[sin(y—
) + 1]. Then, we have

S={peS:fi1(B) < L)}

According to Eq. (31), if « > M, there exists § € (—x/2, x/2) such
that f(p) > f,(B), ie., p€S. For any 6, € (0,7), we have
fo(=n/2) > 0and f,(x/2) > 0. However, f1(—x/2) = f,(x/2) =
0. As a result, in view of the mean value theorem, there exists
P € (=xn/2,p) and p, € (B, 7/2) such that f1(f) < f,(p) for p €
(=/2,p1) U (B, m/2) and fi(B) > f2(P) for B € (B, ), as
demonstrated by the plot in Fig. C5.

In fact, as 3, and 3, are the boundary of S, they must be two zeros of

f1(B) = f2(p), indicating

kx3cos? B —2(1 — x)[sin(@y — B) + 1] =0 (C6)

To solve this equation, let us consider
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1 —tan?(3/2)
1 + tan?(5/2)

2 tan(f3/2)

cosp = T+ an(5/2)

and sinf =

Substituting the two equations into Eq. (C6) leads to a fourth-degree
polynomial in terms of tan($/2):

0 = [kx3 — 2(1 = x)(1 — sin §)]tan* (g)
+ 4(1 — k) cos fytan’ 4 — 2[kx? - 2(8
otan”| 3 [kxg + 2(1 — x)]tan >

+ 4(1 — k) cos B tan (‘g) +xx3 —2(1 —x) (C7)

This indicates that tan(f, /2) and tan(f, /2) are two different zeros of
the fourth-degree polynomial in Eq. (C7), completing the proof of the
second statement of Lemma 5.

3) Note that f,(z/2) > 0 and f,(37/2) > 0. However, for any
6y € (0, z), there exists § € (x/2,3x/2) such that f,(f) = 0. Also,
note that f,(z/2) = f1(37/2) = 0. Therefore, according to the
mean value theorem, there exists f; € (z/2, ) and f, € (8,3%/2)
such that f(f) < f>(p) for p € (x/2, p3) U (B4.37/2) and f,(p) >
f2(p) for B € (B3, f4), as demonstrated by Fig. C.5. According to the
derivation procedure of Eq. (C7), we have that tan(f3/2) and
tan(f,/2) are two zeros of Eq. (C7). Therefore, #; and 4 can be
obtained by solving the fourth-degree polynomial in Eq. (C7),
completing the proof of the third statement of Lemma 5.
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