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Theproblemof optimally guiding an interceptor to a stationary target is studied in a nonlinear setting. First of all, it

is shown that a global solution does not exist for the typical free-time minimum-effort nonlinear optimal intercept

problem. This leads to consideration of the linear combination of the control effort and engagement duration as the

objective function. The necessary conditions for the optimal intercept problem with the new objective function are

found to be parameterized by a scalar, reducing the problem of deriving the optimal guidance law to the problem of

finding the zeros of a real-valued function. Moreover, a semianalytical form for the real-valued function is devised,

and the interval for its zeros is restricted, allowing the use of a brute-force search to efficiently find all the zeros. As a

result, the nonlinear optimal guidance law can be efficiently established. Finally, the characteristics of the guidance

law are exemplified and studied through simulations, showing that the nonlinear optimal guidance law performs

better than the conventional proportional navigation, especially for cases with large initial heading errors.

I. Introduction

T HE problem of designing guidance laws for a pursuer to

intercept a stationary target has been extensively studied since

the 1960s. Such guidance laws are generally derived by linearizing

the engagement around a nominal collision course [1–5]. This

linearization allows us to use the linear-quadratic optimal control

method to establish optimal guidance laws. For instance,

proportional navigation (PN), which was initially derived from

physical intuition and is probably the most popular intercept

guidance law, was shown to be optimal in terms of control effort [6,7]

in the linearized setting. Nevertheless, once the deviations from the

collision triangle are relatively large, the linearization is not valid, and

hence PN does not preserve the optimality any more.

In the nonlinear setting, some quantitative analyses of the

nonlinear guidance problem were presented in Ref. [8] along with

some comparisons to PN. By introducing a time-varying weighting

factor into the control effort, the optimality of PN was studied in

Ref. [9] without any linearization. The analyses in Ref. [9] showed

that PN with any constant navigation gain can be equivalent to the

nonlinear optimal guidance if the cost function is not the control

effort itself but weighted by an appropriate time-varying weighting

function. It is worth mentioning that, in the nonlinear setting, the

optimal intercept guidance law is usually analyzed or derived by

minimizing the control effort of the pursuerwith a free final time (see,

e.g., Ref. [8]).

In this paper, we shall show that the free-time nonlinear problem of

intercepting a stationary target with purely minimizing control effort,

which is the same as the one considered inRef. [8], is not awell-posed

optimal control problem (cf. Theorem1). This leads us to consider the

linear combination of the control effort and engagement duration as

the objective function. Because a global optimum exists for the

optimal intercept problem with the new objective function (cf.

Theorem 2), the corresponding necessary conditions for optimality

are analyzed in this paper to derive the nonlinear optimal intercept
guidance.
In fact, the optimal intercept problem with the new objective

function was studied in Refs. [10,11]. It was shown in Ref. [10] that
the closed-form guidance law in the nonlinear setting was not
available and that the optimal guidance law could be obtained by
numerically solving a set of three nonlinear equations with three
unknown variables. It should be noted that a set of multiple nonlinear
equations may have more than one root, and a numerical solver
generally cannot find all the zeros. Therefore, the developments in
Ref. [10] could not guarantee the solution (found by a numerical
solver) to be the optimal guidance law unless all local solutions
corresponded to the same global minimum. In Ref. [11], the optimal
intercept problem with the new objective function was solved by
combining the genetic algorithm with the shooting method, and the
computed solution was used to analyze an all-aspect near-optimal
guidance law that was developed in Ref. [11]. By discretizing the
nonlinear optimal control problem to formulate a nonlinear
programming problem, a successive convex optimization approach
in a recent work [12] was employed to compute the optimal intercept
guidance law. However, the solution found either by the combined
genetic algorithm-shooting method in Ref. [11] or by the successive
convex optimization in Ref. [12] cannot be guaranteed to be the
global solution because both approaches converge to local solutions.
Unlike Refs. [10–12], this paper aims to synthesize the solution for

the optimal nonlinear intercept problem so that the nonlinear
guidance law can be efficiently established. To be specific, we show
that the necessary conditions from Pontryagin’s maximum principle
are parameterized by a scalar. As a result of the parameterization, it is
found that the optimal guidance law is an analytical function in terms
of the zeros of a real-valued function. This reduces the problem of
deriving the optimal guidance law to the problem of finding the zeros
of a real-valued function. In addition, some geometric properties for
the optimal solution are established. By using those properties, we are
able to devise a semianalytical form for the real-valued function and
to restrict the intervals of its zeros. To this end, a brute-force search
can be used to efficiently find all the zeros of the real-valued function,
which finally gives rise to the nonlinear optimal feedback
guidance law.
This paper is organized as follows. In Sec. II, the optimal nonlinear

intercept problem is formulated and the necessary conditions for
optimality are presented. In Sec. III, the necessary conditions are
parameterized and somegeometric properties for the optimal solution
are established, showing that the optimal guidance law is determined
by the zeros of a real-valued function. In Sec. IV, a semianalytical
form is devised for the real-valued function and the intervals of its
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zeros are restricted so that a brute-force search can be used to find all
the zeros. Finally, some numerical simulations in Sec. V demonstrate
the viability of the approach presented in this paper.

II. Problem Formulation

In this section, the optimal control problem of intercepting a
stationary target is formulated, and its necessary conditions for
optimality are presentedbyapplyingPontryagin’smaximumprinciple.

A. Optimal Intercept Problem

Consider the two-dimensional geometry of the stationary target
intercept problem, which is presented in Fig. 1. The origin of frame
Oxy is located at the target, the x axis points to the initial position of
the interceptor, and the y axis is defined by rotating the x axis 90 deg
counterclockwise. Throughout the paper, we denote by �x; y� ∈ R2

the position of the interceptor in frame Oxy, and we denote by
θ ∈ �−π; π� the angle between the x axis and the velocity vector V of
the interceptor. The angle θ is usually called the heading angle of
the interceptor, and it is positive when measured counterclockwise.
The line of sight (LOS) from the interceptor to the target makes an
angle of λ with the x axis, and this angle is positive if measured
counterclockwise. We will use _λ to denote the LOS rate. The angle σ
between the LOS and the velocity vector V is called the look angle,
which is positive when measured clockwise. By normalizing the
magnitude of the velocity V of the interceptor to one, the nonlinear
kinematics of the interceptor is represented by

�Σ�:
8<
:

_x�t� � cos θ�t�;
_y�t� � sin θ�t�;
_θ�t� � u�t�

(1)

where t > 0 is the time, the dot denotes the differentiation with
respect to time, and u ∈ R is the control parameter that represents the
normal acceleration. Note that y�0� � 0 and x�0� > 0 because the x
axis is defined to point to the initial position of the interceptor.
In designing an optimal intercept guidance law, a common

objective is tominimize the control effort of the interceptor. Thus, the
free-time minimum-effort problem of the interceptor is usually
solved to derive optimal intercept guidance law (see, e.g., Ref. [8]).
We shall show by the following theorem that this problem is not a
well-posed optimal control problem.
Theorem 1: Let x0 > 0 and θ0 ∈ �−π; π�. Then, given any small

ε > 0, there exists a time tf > 0 and a control u�⋅�: �0; tf� → R that
steers �Σ� from �x0; 0� with the initial heading angle θ0 to the origin
(0, 0) such that Z

tf

0

1

2
u2�t� dt < ε

The proof of this theorem is given in Appendix A.

Due to Theorem 1, a global solution for the free-time minimum-

effort nonlinear optimal intercept problem does not exist. For this

reason, we consider the following optimal intercept problem (OIP)

for which the objective function is a linear combination of the control

effort and engagement duration (see, e.g., Ref. [10]).
Problem 1 (OIP):Given x0 > 0 and θ0 ∈ �−π; π�, the OIP consists

of steering �Σ� by a measurable control u�⋅� on �0; tf� from the initial

point �x0; 0� with the initial heading angle θ0 to the final point (0, 0)
such that

J �
Z

tf

0

�
κ � 1

2
�1 − κ�u2�t�

�
dt (2)

is minimized where the final time tf > 0 is free and κ ∈ �0; 1� is a
weighting factor.
If κ � 1, the OIP reduces to a minimum-time control problem, for

which the optimal trajectory is a straight line because the control is

not constrained; if κ � 0, no solution exists for the OIP, as shown by
Theorem 1. By the following theorem, we shall show that, for every

κ ∈ �0; 1�, the OIP has a global optimum.
Theorem 2: Given any x0 > 0, θ0 ∈ �−π; π�, and κ ∈ �0; 1�, the

OIP has a global optimum.
The proof of this theorem is given in Appendix B.
Before proceeding, we remark on the symmetric property of the

solution of the OIP.
Remark 1:Given x0 > 0 and θ0 ∈ �−π; π�, the optimal trajectory of

the OIP with �x�0�; y�0�; θ�0�� � �x0; 0; θ0� and that of the OIP with

�x�0�; y�0�; θ�0�� � �x0; 0;−θ0� are symmetric with respect to the x
axis of frame Oxy. This indicates that the optimal trajectory of the

OIP with the initial heading angle θ0 ∈ �−π; 0� can be readily

obtained by rotating the solution of the OIP with the initial heading

angle −θ0. In addition, for any x0 > 0, if the initial velocity vector

points to the target [i.e., θ�0� � π], the optimal trajectory of theOIP is

a straight line, and hence the corresponding optimal control is zero.

As a result, in the remainder of the paper, we will only consider that

the initial heading angle θ0 of the OIP is in �0; π�.

B. Necessary Conditions

Denote by px, py, and pθ the costate variables of x, y, and θ,
respectively. Then, the Hamiltonian for the OIP is expressed as

H � px cos θ� py sin θ� pθu� p0

�
κ � 1

2
�1 − κ�u2

�

where p0 is a nonpositive scalar.
According to Pontryagin’s maximum principle [13], for t ∈ �0; tf�,

it holds that

8<
:

_px�t� � − ∂H
∂x � 0;

_py�t� � − ∂H
∂y � 0;

_pθ�t� � − ∂H
∂θ � px�t� sin θ�t� − py�t� cos θ�t�

(3)

and

∂H
∂u

� 0 (4)

Remark 2: When p0 � 0, the explicit formula of Eq. (4) implies

pθ ≡ 0, which indicates _pθ ≡ 0. According to the third equation of

Eq. (3), if _pθ ≡ 0, the optimal trajectory of the OIP is a straight line,

and hence the corresponding optimal control is null, which happens

only if the initial velocity vector points to the target (or the initial

heading angle θ0 is π). Because p
0 is nonpositive, and because we

consider the interval of θ0 to be �0; π� (see Remark 1), we have thatp0

is negative. For any negative p0, the quadruple �px; py; pθ; p
0� can

be normalized so that p0 � −1. Thus, we shall consider p0 � −1 in
the remainder of the paper.

Fig. 1 Two-dimensional intercept geometry.

CHEN AND SHIMA 2419

D
ow

nl
oa

de
d 

by
 T

E
C

H
N

IO
N

 -
 I

SR
A

E
L

 I
N

ST
 O

F 
T

E
C

H
 o

n 
Ja

nu
ar

y 
3,

 2
02

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
43

41
 



As a result of this remark, explicitly rewriting Eq. (4) leads to

u�t� � 1

1 − κ
pθ�t�; t ∈ �0; tf� (5)

Because the final angle is free, the transversality condition implies

pθ�tf� � 0 (6)

As the final time is free, along the optimal trajectory, it holds

H ≡ 0 (7)

In view of Eq. (3), we have thatpx and py are constants. Then, taking

into account Eq. (6) and the final boundary condition

�x�tf�; y�tf�� � �0; 0�, we can integrate the third equation of

Eq. (3) to yield

pθ�t� � pxy�t� − pyx�t�; t ∈ �0; tf� (8)

Substituting Eq. (8) into Eq. (5), we obtain the optimal feedback

control law:

u�t� � pxy�t� − pyx�t�
1 − κ

; t ∈ �0; tf� (9)

Note that the guidance law of PN [14] is expressed as

u�t� � NV _λ�t� (10)

where V is the magnitude of the velocity V of the interceptor

(normalized to one in this paper), N is the constant navigation gain,

and _λ is the LOS rate. According to the definition of the angle λ (see
Fig. 1), we have

tan�λ�t�� � y�t�
x�t�

Differentiating this equationwith respect to time leads to theLOS rate

as

_λ�t� � x�t� sin θ�t� − y�t� cos θ�t�
x�t�2 � y�t�2 ; t ∈ �0; tf�

It should be noted that the LOS rate at the final time cannot be defined

by this equation because x�tf�2 � y�tf�2 � 0. If _λ ≠ 0, combining

Eq. (9) with Eq. (10) leads to the optimal state-dependent navigation

gain

N�t� � �pxy�t� − pyx�t���x�t�2 � y�t�2�
�1 − κ��x�t� sin θ�t� − y�t� cos θ�t�� ; t ∈ �0; tf� (11)

It is apparent from Eq. (11) that, in the nonlinear setting, the optimal

navigation gain is not a constant any more.
The state variables x�t� and y�t� at each time t ∈ �0; tf� can be

obtained by some sensors, e.g., inertial measurement unit (IMU). As

a result, obtaining the optimal intercept guidance law of Eq. (9) or the

optimal navigation gain of Eq. (11) amounts to computing the costate

variables px and py. Generally, it is difficult to compute px and py

because they are the solution of a two-point boundary value problem.

In the subsequent sections, we shall present some geometric

properties for the solution of the OIP and then use those properties to

establish an efficient and robust method to compute px and py.

III. Characterizing the Solution of OIP

In this section, we first parameterize the aforementioned necessary

conditions and then establish some properties for the solution of

the OIP.

A. Parameterization

Define the constant α ≥ 0 as the norm of the vector �px; py�, i.e.,

α ≔
�����������������
p2
x � p2

y

q

and set

β ≔ nπ � tan−1�−px∕py� (12)

where n is an integer. As a result, we have

px � α sin β and py � −α cos β (13)

Then, we can rewrite Eq. (8) as

pθ�t� � α�x�t� cos β� y�t� sin β� (14)

Substituting Eqs. (5) and (13) into the Hamiltonian and taking into

account Eq. (7), we get

H�t� � α sin�β − θ�t�� � 1

2�1 − κ�p
2
θ�t� − κ � 0 (15)

Evaluating Eq. (15) at t � 0 leads to

α sin�β − θ0� �
α2

2�1 − κ� �x0 cos β�
2 � κ (16)

Because α ≥ 0 and κ ≠ 0, Eq. (16) implies α > 0. Then, solving
the quadratic equation in Eq. (16) indicates that α is a function

of β, i.e.,

α�β� �
� κ∕ sin�β − θ0�; if cos β � 0 and sin�β − θ0� ≠ 0;

�1 − κ� − sin�β−θ0��
������������������������������������������������
sin2�β−θ0���2κ�x0 cos β�2∕1−κ�

p
�x0 cos β�2 if cos β ≠ 0

As a result, by substituting Eq. (13) into Eq. (9), we eventually obtain

that the optimal feedback control law is parameterized by the scalar

β, i.e.,

u�t; β� � α�β�
1 − κ

�x�t� cos β� y�t� sin β�; t ∈ �0; tf� (17)

Thanks to Theorem 2, there exists at least one specific parameter

β� such that u�t; β�� for t ∈ �0; tf� is the optimal feedback control of

the OIP. To this end, as the state variables x�t� and y�t� at each time

can be obtained by some sensors (e.g., IMU), finding β� is sufficient
for deriving the optimal feedback control law in Eq. (17). In the next

sections, we shall characterize the solution of the OIP so that the

specific parameter β� can be computed efficiently.
For notational simplicity, we denote hereafter by the triple

�x�t; β�; y�t; β�; θ�t; β�� the integration of the differential equation �Σ�
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from the initial condition �x0; 0; θ0� with the β-parameterized
feedback control u�t; β� in Eq. (17), i.e.,

2
4 x�t; β�
y�t; β�
θ�t; β�

3
5 ≔

" x0
0

θ0

#
�

Z
t

0

"
cos θ�τ�
sin θ�τ�
u�τ; β�

#
dτ; t ≥ 0

By the definition of β�, it is clear that the triple
�x�t; β��; y�t; β��; θ�t; β��� for t ∈ �0; tf� is the optimal trajectory of
the OIP.

B. Properties of the OIP’s Solution

In this subsection, somegeometric properties for the solution of the
OIP will be established by the following lemmas. For the simplicity
of presentation, the proofs of all the lemmas are postponed to
Appendix C.
Note that the space of β can be projected to any interval of length

2π [see the definition of β in Eq. (12)]. For later analyses, we consider
that β lies in �−π∕2; 3π∕2�. By the following lemma, the interval of β
can be further restricted.
Lemma 1: Given x0 > 0, θ0 ∈ �0; π� and κ ∈ �0; 1�, define the set

S ≔ fβ ∈ �−π∕2; 3π∕2�: κ�x0 cos β�2 − 2�1 − κ��sin�θ0 − β� � 1�
≤ 0g

(18)

Then, we have β� ∈ S.
In the next lemma, we present an important property for pθ, which

will be used in the later analyses.
Lemma 2. Let tf > 0 be the optimal final time of the OIP. For any

β� ∈ S, such that α�β�� ≠ κ, the following two statements hold:
1) If

β� ∈ S ∩ �−π∕2; π∕2�

we have

pθ�t� � α�β���x�t; β�� cos β� � y�t; β�� sin β�� > 0

for t ∈ �0; tf�.
2) If

β� ∈ S ∩ �π∕2; 3π∕2�

we have

pθ�t� � α�β���x�t; β�� cos β� � y�t; β�� sin β�� < 0

for t ∈ �0; tf�.
This lemma indicates that pθ does not change its sign along the
solution of the OIP. Combining this result with Eqs. (1) and (5)
immediately leads to the following corollary:
Corollary 1: Let tf > 0 be the optimal final time of the OIP. Then,

the heading angle θ�t; β�� for t ∈ �0; tf� monotonically increases
(respectively, decreases) if β� ∈ �−π∕2; π∕2� ∩ S [respec-
tively, β� ∈ �π∕2; 3π∕2� ∩ S].
In the endgame stage of an engagement, it is common to keep the

interceptor locked on to the target, which can be guaranteed by
constraining the look angle σ (defined in Fig. 1) within �−π∕2; π∕2�.
The following lemma presents some restriction of β� for the
fulfillment of σ ∈ �−π∕2; π∕2� along the optimal trajectory of
the OIP.
Lemma 3:Given any x0 > 0 and any κ ∈ �0; 1�, if the look angle σ

along the solution of the OIP is in �−π∕2; π∕2�, then θ0 ∈ �π∕2; π�
and β� ∈ �−π∕2; π∕2� ∩ S.
Let θf�β� be a function of β ∈ S such that Eq. (15) at t � tf is

satisfied, i.e.,

H�tf� � α�β� sin�β − θf�β�� − κ � 0 (19)

Notice that θf�β�� is the optimal final heading angle of the OIP, i.e.,

θ�tf; β�� � θf�β��. In view of Eq. (15), we have

pθ�t� � 	
�����������������
2�1 − κ�

p ��������������������������������������������
κ − α�β� sin�β − θ�t��

p
According to Lemma 2, this equation indicates

pθ�t��
� ����������������

2�1−κ�p �����������������������������������������
κ−α�β�sin�β−θ�t��p

; if β∈�−π∕2;π∕2�∩S
−

����������������
2�1−κ�p �����������������������������������������

κ−α�β�sin�β−θ�t��p
; if β∈�π∕2;3π∕2�∩S

(20)

Combining Eq. (5) with _θ � u yields

dt � �1 − κ� dθ
pθ

(21)

Let tf�β� be the integration of Eq. (21) from θ0 to θf�β�, i.e.,

tf�β� ≔ �1 − κ�
Z

θf�β�

θ0

1

pθ
dθ (22)

Substituting Eqs. (20) and (22), we eventually have

tf�β� �

8>><
>>:

������
1−κ
2

q R θf�β�
θ0

1������������������������
κ−α�β� sin�β−θ�

p dθ; if β ∈ �−π∕2; π∕2� ∩ S������
1−κ
2

q R θf�β�
θ0

−1������������������������
κ−α�β� sin�β−θ�

p dθ if β ∈ �π∕2; 3π∕2� ∩ S

(23)

By the definition of β�, we have that tf�β�� is the optimal final time

of theOIP. Because the target is located at the origin of frameOxy, we
have

�x�tf�β��; β��; y�tf�β��; β��� � �0; 0�

To this end, one can findβ� by searching the common zeros of the two

functions x�tf�β�; β� and y�tf�β�; β� over the interval S. By the

following lemma, we show that any zero of y�tf�β�; β� is a zero

of x�tf�β�; β�.
Lemma 4: Given any β ∈ S, if y�tf�β�; β� � 0, then

x�tf�β�; β� � 0.
As a result of this lemma, computing the common zeros of x�tf�β�; β�
and y�tf�β�; β� is reduced to finding the zeros of the real-valued

function y�tf�β�; β� over the interval S. In the next section, a

semianalytical form for y�tf�β�; β� will be derived so that a brute-

force search method can be used to find its zero β�.

IV. Semianalytical Solution

Combining Eqs. (1), (5), and (20) leads to

�����������
2

1 − κ

r
dy

dθ
�

8<
:

sin θ�������������������������
κ�α�β� sin�θ−β�

p ; if β ∈ �−π∕2; π∕2� ∩ S
− sin θ�������������������������

κ�α�β� sin�θ−β�
p ; if β ∈ �π∕2; 3π∕2� ∩ S

(24)

Taking into account y�0� � 0, we can integrate Eq. (24) to yield

����������
2

1−κ

r
y�tf�β�;β��

8<
:
R θf�β�
θ0

sinθ�������������������������
κ�α�β�sin�θ�β�

p dθ; if β∈�−π∕2;π∕2�∩SR θf�β�
θ0

−sinθ�������������������������
κ�α�β�sin�θ�β�

p dθ; if β∈�π∕2;3π∕2�∩S
(25)

Rewriting Eq. (25) leads to
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�����������
2

1 − κ

r
y�tf�β�; β� �

8<
:
R ψf
ψ0

sin β cosψ�������������������
κ�α�β� sinψ

p dψ � R ψf
ψ0

cos β sinψ�������������������
κ�α�β� sinψ

p dψ ; if β ∈ �−π∕2; π∕2� ∩ SR ψf
ψ0

− sin β cosψ�������������������
κ�α�β� sinψ

p dψ � R ψf
ψ0

− cos β sinψ�������������������
κ�α�β� sinψ

p dψ ; if β ∈ �π∕2; 3π∕2� ∩ S
(26)

where ψ � θ − β, ψ0 � θ0 − β, and ψf � θf�β� − β. Note that we
have

Z
ψf

ψ0

cos�ψ��������������������������������
κ�α�β� sin�ψ�p dψ �

Z
sinψf

sinψ0

1�������������������������������
κ�α�β�sin�ψ�p dsinψ

� 2

α�β�
����������������������������
κ�α�β�sinψ

p ����ψf

ψ0

� 2

α�β�
�������������������������������������
κ−α�β� sin�β− θ�

p ����θf�β�
θ0

�−
2

α�β�
���������������������������������������
κ−α�β�sin�β− θ0�

p
(27)

where the final equality holds because of Eqs. (6) and (20). We also

have

Z
ψf

ψ0

sin�ψ���������������������������������
κ � α�β� sin�ψ�p dψ

�
Z

ψf

ψ0

��������������������������������
κ � α�β� sin�ψ�p

α�β� dψ �
Z

ψf

ψ0

−κ∕α�β���������������������������������
κ � α�β� sin�ψ�p dψ

�
������������������
κ � α�β�p
α�β�

Z
ψf

ψ0

�������������������������������������������������������������
1 −

2α�β�
κ � α�β� sin

2�ψ∕2 − π∕4�
s

dψ

−
κ

α�β� ������������������
κ � α�β�p Z

ψf

ψ0

1∕

�������������������������������������������������������������
1 −

2α�β�
κ � α�β� sin

2�ψ∕2 − π∕4�
s

dψ

� −
2

������������������
κ � α�β�p
α�β� E

�
π

4
−
ψ

2
;

2α�β�
κ � α�β�

�����ψf

ψ0

� 2κ

α�β� ������������������
κ � α�β�p F

�
π

4
−
ψ

2
;

2α�β�
κ � α�β�

�����ψf

ψ0

(28)

where F�⋅; ⋅� and E�⋅; ⋅� are the incomplete elliptic integrals of the

first and second kinds, respectively (see, e.g., Ref. [15] for details of

the two elliptic integrals). Substituting Eqs. (27) and (28) into

Eq. (26) eventually yields

y�tf�β�;β��
�
2sinβ

α�β�
�����������������������������
κ�α�β�sinψ0

p

−
2cosβ

�����������������
κ�α�β�p

α�β�
�
E

�
π

4
−
ψ0

2
;
2α�β�
κ�α�β�

�
−E

�
π

4
−
ψf

2
;
2α�β�
κ�α�β�

��

� 2κcosβ

α�β� �����������������
κ�α�β�p �

F

�
π

4
−
ψ0

2
;
2α�β�
κ�α�β�

�
−F

�
π

4
−
ψf

2
;
2α�β�
κ�α�β�

��	

×

����������
1−κ

2

r
; if β∈ �−π∕2;π∕2�∩S (29)

y�tf�β�;β��−
�
2sinβ

α�β�
�����������������������������
κ�α�β�sinψ0

p

−
2cosβ

�����������������
κ�α�β�p

α�β�
�
E

�
π

4
−
ψ0

2
;
2α�β�
κ�α�β�

�
−E

�
π

4
−
ψf

2
;
2α�β�
κ�α�β�

��

� 2κcosβ

α�β� �����������������
κ�α�β�p �

F

�
π

4
−
ψ0

2
;
2α�β�
κ�α�β�

�
−F

�
π

4
−
ψf

2
;
2α�β�

κ�α�β�
��	

×

����������
1−κ

2

r
; if β∈ �π∕2;3π∕2�∩S (30)

Given any β ∈ S, the value of y�tf�β�; β� in either Eq. (29) or

Eq. (30) can be immediately obtained because the elliptic integrals

E�⋅; ⋅� and F�⋅; ⋅� have series representations like the simple sine and

cosine functions.
As a result, a brute-force searchmethod can be used to find the zero

β� of y�tf�β�; β� over the two intervals �−π∕2; π∕2� ∩ S and

�π∕2; 3π∕2� ∩ S if the boundaries of S are available. By the

following lemma, the boundaries of the set S will be presented.
Lemma 5: Given x0 > 0 and θ0 ∈ �0; π�, let

M � min
β∈�−π∕2;π∕2�

�
2�sin�θ0 − β� � 1�

x20cos
2 β� 2�sin�θ0 − β� � 1�

	
(31)

We have that M > 0, and the following statements hold:
1) If κ ≤ M, we have �−π∕2; π∕2� ∩ S � �−π∕2; π∕2�.
2) If κ > M, there exists β1 and β2 in �−π∕2; π∕2� with β1 < β2

such that

�−π∕2; π∕2� ∩ S � �−π∕2; β1� ∪ �β2; π∕2�

and tan�β1∕2� and tan�β2∕2� are two different zeros of the following
fourth-degree polynomial in terms of x:

0 � �κx20 − 2�1 − κ��1 − sin θ0��x4 � 4�1 − κ� cos θ0x3
− 2�κx20 � 2�1 − κ��x2 � 4�1 − κ� cos θ0x� κx20 − 2�1 − κ�

(32)

3) In any case, there exist β3 and β4 in �π∕2; 3π∕2� with β3 < β4
such that

�π∕2; 3π∕2� ∩ S � �π∕2; β3� ∪ �β4; 3π∕2�

and tan�β3∕2� and tan�β4∕2� are two different zeros of the
polynomial in Eq. (32).
The proof of this lemma is postponed to Appendix C. Lemma 5

indicates that the zero β� of y�tf�β�; β�must lie in three or four shorter

intervals, depending on the relationship between κ andM in Eq. (31).

Note that a fourth-degree polynomial can be solved either in an

analytical way or by using a standard polynomial solver. Thus, the

boundaries β1; : : : ; β4 (if they exist) of the three or four shorter

intervals can be readily computed by solving the fourth-degree

polynomial in Eq. (32). Also notice that the function y�tf�β�; β� is
continuous on the three or four shorter intervals. As a result, a brute-

force search method can be used to find the zero β� of y�tf�β�; β� on
each interval if it exists, as shown by Algorithm 1.
Let us gather a fewwords to explain the brute-force search method

in Algorithm 1. If the discretization level l ∈ N is large enough, the

method can find all the zeros of y�tf�β�; β� within the three or four

intervals established in Lemma 5. Note that we have devised a

semianalytical form for y�tf�β�; β� so that its value can be efficiently
computed for every β ∈ S [cf. Eqs. (29) and (30)]. Therefore, the

brute-force search method is in fact not time consuming, as

demonstrated by the numerical simulations in the next section.

V. Numerical Simulations

In the following three subsections, we present three numerical

cases (A, B, and C) to demonstrate the developments of the paper and

to examine the viability of the developed nonlinear optimal

guidance law.
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A. Selection of the Value of κ in (0,1)

For case A, wewill demonstrate the solutions of the OIP (Problem
1) for different κ ∈ �10−10; 10−1� but with fixed initial conditions:
x0 � 1000 m and θ0 � π∕2. Notice that y0 � 0 as the x axis points
to the initial position of the interceptor, and that the magnitude of
velocity has been normalized to one, i.e., kVk � 1 m∕s. Using the

brute-force search method in Algorithm 1, two zeros of y�tf�β�; β�
are found for each κ, indicating that, for each OIP, there exist two

candidate solutions satisfying all the necessary conditions given in

Sec. II. In fact, for each κ ∈ �10−10; 10−1�, one zero of y�tf�β�; β� lies
in �−π∕2; π∕2� and another zero lies in �π∕2; 3π∕2�. For notational
simplicity, we denote by β�1 and β�2 the zeros of y�tf�β�; β� in

�−π∕2; π∕2� and �π∕2; 3π∕2�, respectively. Table 1 presents the

values of β� and tf�β�� for the two local solutions of case A with

κ � 10−1; : : : ; 10−10, and Fig. 2 shows the local optimal trajectories

corresponding to the data in Table 1. It is interesting to notice from

Table 1 and Fig. 2 that, although the candidate trajectories with

β� ∈ �−π∕2; π∕2� are almost identical for κ ≤ 10−8, the trajectories
associated with β� ∈ �π∕2; 3π∕2� become longer and longer as κ
decreases.

The profiles of control as a function of time along the candidate

solutions of the OIP for κ � 10−10; : : : ; 10−1 are plotted in Fig. 3,

where the engagement durations are normalized to one for

comparison purposes. It is seen from Fig. 3 that, the smaller κ is, the
smaller the absolute value of control tends to be.

Once the solution of theOIP is computed for κ ∈ �0; 1�, we are able
to compute the cost in Eq. (2), the control effort, and the engagement

duration, as shown in Fig. 4 for different κ ∈ �10−10; 10−1� with a

log scale.

Fig. 2 Case A: Candidate trajectories for κ � 10−p with p � 1; : : : ; 10.

Algorithm 1 Brute-force search for finding β�

Given x0 > 0, θ0 ∈ �0; π�, and κ ∈ �0; 1�, the brute-force search method is performed as follows:
Step 1: Let l ∈ N be a positive integer.
Step 2: Let �b1; b2� be one of the three or four continuous intervals established in Lemma 5.
Step 3 Let β�j� � b1 � j × �b2 − b1�∕l for j � 0; : : : ; l and set i � 1.
Step 4: If i ≤ l, go to step 4.1; otherwise, go to end;

Step 4.1: If y�tf�β�i − 1��; β�i − 1�� × y�tf�β�i��; β�i�� < 0, use a bisection method to find β� between β�i − 1� and β�i�;
Step 4.2: Set i � i� 1 and go back to step 4.

Step 5: End.

Table 1 CaseA: values of β� and tf �β�� of the two
local solutions for κ � 10−1; : : : ;10−10

Data associated with
β�1

Data associated with
β�2

κ β�1 tf�β�1� β�2 tf�β�2�
10−1 4.7166 1.0018 × 103 4.7082 1.0102 × 103

10−2 4.7266 1.0058 × 103 4.6984 1.0340 × 103

10−3 4.7581 1.0185 × 103 4.6687 1.1079 × 103

10−4 4.8647 1.0582 × 103 4.5802 1.3417 × 103

10−5 5.3000 1.1685 × 103 4.3462 2.0876 × 103

10−6 0.4608 1.3238 × 103 3.9612 4.5731 × 104

10−7 0.8744 1.3942 × 103 3.8882 1.2799 × 103

10−8 0.9184 1.4056 × 103 3.9536 3.8566 × 104

10−9 0.9229 1.4069 × 103 3.9855 1.1969 × 105

10−10 0.9233 1.4070 × 103 3.9966 3.7605 × 105
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Wecan see fromFig. 4 that the cost inEq. (2) and the control effort of

the two local solutions aremonotonically decreasingwith the decrease

of κ. From the top graphof Fig. 4, it is seen that, for κ larger than around
10−7, the performances of the shorter candidates associated with

β� ∈ �−π∕2; π∕2� are better than those of the longer candidates;

whereas the longer candidates associatedwith β� ∈ �π∕2; 3π∕2� have
better performances for κ smaller than around 10−7. We can see from

the middle graph of Fig. 4 that the final time is monotonically

Fig. 3 Case A: The profiles of control along the optimal trajectories of the OIP for κ � 10−p with p � 1; : : : ; 10.

Fig. 4 Case A: The cost J � ∫ tf �β��
0 κ� �1∕2��1 − κ�u2�t�dt, the control effort ∫ tf �β��

0 u2�t�dt, and the final time tf �β�� against κ on �10−1; 10−10�.
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nondecreasing with the decrease of κ from 10−1 to 10−10. Actually, the
trends of the two solid curves of the final time and the control effort in
Fig. 4 coincidewith Theorem 1.We can also see fromFig. 4 that, if κ is
in between 10−1 and around 10−6, the control efforts of the shorter

candidates associatedwithβ� ∈ �−π∕2; π∕2� are smaller than those of
the longer candidates associated with β� ∈ �π∕2; 3π∕2�; in addition,

the control efforts and final times for the shorter candidates associated

with β� ∈ �−π∕2; π∕2� almost do not change for κ larger than 10−6.
Therefore, in order to apply the nonlinear optimal guidance law, one

should appropriately select κ ∈ �0; 1� to balance between the

engagement duration and the control effort.

B. Solution of the OIP with a Fixed κ

In this subsection, we shall present an example (case B) with a

fixed κ to demonstrate the properties established in Sec. III. We set

κ � 10−5 and choose x0 � 10 m and θ0 � π∕2. By employing the
brute-force search method in Algorithm 1 again, two zeros (i.e.,

β�1 � 0.9229 and β�2 � 3.9855) of y�tf�β�; β� are found, indicating
that there are two candidate trajectories satisfying all the necessary
conditions given in Sec. II. The final times for the two candidates are

tf�β�1� � 14.07 s and tf�β�2� � 1196.86 s.
By coding the brute-force search method in MATLAB, finding

each zero of y�tf�β�; β� for case B takes about 0.215 s on a desktop

with an Intel® Core™ i7-3615QM CPU with 2.30 GHz. It is worth

mentioning that the successive optimization method in Ref. [12] can
converge to a local solution in the same scale of computer time.

However, theremay existmultiple local solutions for anOIP (for case

B, there indeed exist two local solutions). In this case, the method in
Ref. [12] is not able to guarantee the found solution to be the global

optimal one. Thanks to the developments in the paper, all local

solutions can be found efficiently, and we can choose one local
solution according to mission requirements.
The two candidate trajectories are plotted in Fig. 5. Because β�1 and

β�2 lie in �−π∕2; π∕2� and �π∕2; 3π∕2�, respectively, it follows from
Corollary 1 that the heading angle θ is monotonically increasing and

decreasing along the shorter and longer trajectories, respectively, as

shown in Fig. 6.
The profiles of control along the two candidate trajectories

are plotted in Fig. 7, from which it is seen that the control is positive

along the shorter candidate but it is negative along the longer

candidate.
The look angles σ along the two candidate trajectories are

presented in Fig. 8. It is seen from Fig. 8 that the look angle along the

shorter candidate trajectory associated with β�1 is no more than
90 deg, as predicted by Lemma 3. If having the look angle in

�−π∕2; π∕2� is a primary constraint, one should choose the control

law along the shorter candidate trajectory.
The profiles of the optimal state-dependent navigation gainN�t� in

Eq. (11) along the two candidate trajectories are plotted in Fig. 9.

Note that, in each subfigure of Fig. 9, the navigation gain N�t� is
plotted to a time slightly earlier than the final time because the

navigation gain is not defined at the final time [see Eq. (11)]. From
Fig. 9, we can see that the optimal navigation gain along the longer

candidate trajectory is negative until it goes to infinity around t �
133.26 s; after which, the optimal navigation gain is positive and it
converges to three. In fact, the occurrence of negative navigation gain

Fig. 5 Case B: The two candidate trajectories of the OIP (the subplot is scaled for the shorter path).

Fig. 6 Case B: Profiles of the heading angle θ along the shorter and the
longer candidate trajectories.
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is due to the fact that the interceptor moves away from the target

initially (see the longer candidate in Fig. 5). We can see from Fig. 9

that the optimal navigation gain N�t� along the shorter candidate

trajectory takes values between two and three, and it converges to

three finally. Notice that, along both candidate trajectories, as the

interceptor approaches the target, its trajectory converges to a straight

line (see Fig. 5). In this part of the trajectory, there are small

deviations around this line making linearization valid, and thus the

gain converges to three, which is identical to the gain of the classical

PN derived from the linearized case.

For comparison, the candidate trajectory associatedwith β�1 aswell
as the trajectories generated by PN with N � 2; : : : ; 5 are plotted in
Fig. 10. It is seen from Fig. 10 that the candidate trajectory associated

with β�1 is not the same as the trajectory generated by PNwithN � 3,
although PNwithN � 3 is considered to be the optimal guidance law

[6,7] (derived, as discussed earlier, under linearization assumptions).

The control efforts along the trajectories generated by PN with

N � 2; : : : ; 5 and along the optimal trajectories for β�1 and β�2 are

numerically computed and presented in Table 2.

It is clear that the control effort along the longer candidate

trajectory associated with β�2 is the smallest. However, the longer

candidate trajectory cannot be generated by the classical PN with a

positive navigation gain because the navigation gain along the longer

candidate trajectory can be negative (see Fig. 9). Notice from Table 2

that the shorter candidate has a control effort close to that obtained for

PN with N � 3, indicating that, for case B, if we wish to minimize

only the control effort, then PN with N � 3 serves almost as the

optimal guidance law. In the next subsection, an example with a

relatively large initial heading error will be presented to compare the

nonlinear optimal guidance law with PN.

C. The Solution of OIP with kσ0k Greater Than π∕2
For case C, we consider that x0 � 10 and θ0 � π∕4. This initial

heading angle θ0 indicates that the initial look angle is σ0 � 3π∕4.
Even if the initial look angle σ0 is not in �−π∕2; π∕2�, we can still

employ PN to guide the pursuer of Eq. (1) from the given initial

condition to the target (the origin of frameOxy in Fig. 1), as shown by
the trajectories generated by PN with feasible navigation gains

in Fig. 11.

Table 3 presents the engagement duration and control effort of

every trajectory in Fig. 11. It is clear from Table 3 that, for case C, if
Fig. 8 Case B: Profiles of the look angles σ along the shorter and the
longer candidate trajectories.

Fig. 9 Case B: Profiles of the optimal state-dependent navigation gain in Eq. (11) against time along the shorter and the longer candidate trajectories.

Fig. 7 Case B: The profiles of the control along the shorter and the
longer candidate trajectories.
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wewish to minimize only the control effort, then the best navigation
gain for PN is around two instead of being three.
To compare the nonlinear optimal guidance law with PN, the

solution of case C is computed for different κ ∈ �0; 1� by the brute-
force search using Algorithm 1, and the optimal trajectories for some
selected κ are plotted in Fig. 12. The engagement duration and control
effort for every trajectory in Fig. 12 are listed in Table 4. Although the
engagement duration of the shorter candidate trajectory with κ �
0.005 is close to the engagement duration of PN with the best
navigation gain ofN � 2 (compare Tables 3 and 4), the control effort
of the shorter candidate is just 0.2725, which is around 80% of the
control effort (0.3332) using PNwithN � 2.We can see fromTable 3
that the control effort of using PN is not monotonically decreasing
with the increase of the engagement duration. However, the control
effort of the optimal guidance law is monotonically decreasing with
the increase of engagement duration according to Table 4. Therefore,
in order to apply the nonlinear optimal guidance law of the paper, we
should appropriately select κ ∈ �0; 1� to balance the engagement
duration and the control effort.
It is interesting to notice that all the numerical examples presented

have two candidate solutions [the function y�tf�β�; β� has two zeros
for all of the aforementioned examples). In fact, a large number of
additional simulations with different values of x0, θ0, and κ were
carried out, showing that the function y�tf�β�; β� always has two
zeros for each example, and that the two zeros always lie in two
different subintervals �−π∕2; π∕2� and �π∕2; 3π∕2�. Although we
are not able to provide rigorous proof for this interesting numerical
result in this paper, the brute-force search method in Algorithm 1 can
find all of them if the discretization level l is large enough.

VI. Conclusions

In this paper, it was first shown that a global solution does not exist
for the typical free-time minimum-effort nonlinear optimal control
problem of intercepting a stationary target. Thus, an optimal intercept
problem, for which the objective function is a linear combination of
control effort and engagement duration, was studied instead. By

parameterizing the necessary conditions for optimality, it was found

that the optimal guidance law is determined by the zeros of a real-
valued function.As a semianalytical form for the real-valued function

was devised, a simple brute-force search could be used to find all the
zeros. Numerical simulations showed that, for each example, the

corresponding real-valued function had two zeros, indicating that

each example had two candidate trajectories. Between the two
candidate trajectories, the heading angle monotonically increased

along the shorter candidate, but it monotonically decreased along the

longer candidate. If theweighting factor on engagement durationwas
relatively large, the shorter candidate consumed less control effort

than the longer candidate; whereas, if it was relatively small, the

longer candidate would consume less control effort. Thus, in order to
apply the nonlinear optimal guidance law, κ ∈ �0; 1� should be

appropriately selected to balance between the engagement duration

and the control effort; and for realistic engagements with tight timing

Fig. 10 Case B: Candidate trajectory with β�1 and the trajectories generated by PN withN � 2; : : : ; 5.

Fig. 11 Case C: Profiles of the trajectories generated by PN with
different navigation gains.

Table 2 Case B: control effort of trajectories generated by PN and two local optimal
trajectories

Parameter

N β�

Performance 2 3 4 5 β�1 β�2
Engagement duration, s 15.7080 13.1103 12.1433 11.6359 14.0686 1196.86
Control effort ∫ tf

0 �1∕2�u2�t� dt 0.3142 0.2697 0.2989 0.3396 0.2646 0.0119
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constraints, it is expected that the shorter candidate optimal solution

will be used.

Appendix A: Proof of Theorem 1

Given any points z0 and zf in R2, let θ0 and θf in �0; 2π� be the
heading angles at z0 and zf, respectively. Then, there always exists a
path concatenating by a circular arc and two straight lines so that the

initial point z0 with the heading angle θ0 and the final point zf with
the heading angle θf are connected by the path, as shown in Fig. A1.
Let uc > 0 be the control along the circular arc. It is clear that

uc � 1∕ρ is a constant where ρ > 0 is the radius of the circular arc.

Note that we have dθ � ucdt along the circular arc, and the control

along straight lines is zero. As a result, we have that the total control

effort along the path is

J �
Z

tf

0

u�t�2 dt �
Z

θf

θ0

uc dθ � ucjθf − θ0j

� jθf − θ0j∕ρ ≤ 2π∕ρ

This equation indicates that, for any small ε > 0, there exists ρ > 0
such that

Z
tf

0

u�t�2 dt < ε

completing the proof.

Appendix B: Proof of Theorem 2

It is apparent that there exists at least one admissible trajectory of

�Σ� from the initial condition �x0; 0; θ0� to the origin ofOxy such that
the corresponding cost in Eq. (2) is finite; without loss of generality,

let us assume that the finite cost is �J > 0. Note that we have

J �
Z

tf

0

κ � �1 − κ� 1
2
u2�t� dt ≥ κtf

Given a fixed κ ∈ �0; 1�, this equation indicates that there exists

T > �J∕κ such that every admissible controlled trajectory of �Σ� from
�x0; 0; θ0� to the origin of Oxy will have a higher cost than �J if the

duration of the trajectory is greater than T. Therefore, in order to

prove this theorem, we just need to prove that the OIP with its final

time less than T has a solution.
Solving the OIP is equivalent to finding the elastica of a plane

elastic curve (see Ref. [16]). According to Ref. [16] (Lemma 3), the

curvature along the solution of the OIP has a global maximum,

indicating that there existsum > 0 such that everymeasurable control

u�⋅� on �0; tf� is not an optimal control of the OIP if there exists

τ ∈ �0; tf� such that u�τ� > um. Therefore, we can consider that the

set of admissible control is �−um; um�.
According to the preceding analyses, we just need to prove that a

solution exists for the OIP where the final time is smaller than T, i.e.,
tf ≤ T and the control lies in �−um; um�. Let us consider an

augmented system of �Σ� as

_x � f�x; u� (B1)

where x � �x; y; θ; z�T , and

50

40

30

20

0

10

-10

-20
50 604030200 10-10

y 
(m

)

x (m)
Fig. 12 Case C: Profiles of the optimal trajectories with different κ.

Fig. A1 Paths concatenated by circular arcs and straight lines.

Table 4 Case C: engagement duration and control effort of the optimal
trajectories with various κ

Data associated with β�1 Data associated with β�2
κ tf�β�1� ∫ tf�β�1 �

0 �1∕2�u2�t; β�1� dt tf�β�2� ∫ tf�β�2 �
0 �1∕2�u2�t; β�2� dt

1 × 10−2 22.0973 0.3492 40.0366 0.3658
8 × 10−3 24.4196 0.3283 44.0946 0.3292
5 × 10−3 33.3705 0.2725 54.5506 0.2627
4 × 10−3 39.8225 0.2435 60.5668 0.2356
3 × 10−3 49.5712 0.2096 69.4870 0.2046
2 × 10−3 65.7617 0.1699 84.6234 0.1675
1 × 10−3 101.4470 0.1193 119.1560 0.1186

Table 3 Case C: engagement duration and control effort of the trajectories generated by PN
with different navigation gains

N 1.4 1.5 1.6 1.8 2 3 4 5

tf 92.0081 68.2842 54.9906 40.7584 33.3216 20.5314 16.7999 15.0213

∫ tf
0 �1∕2�u2�t� dt 100.7859 1.9369 0.5371 0.3592 0.3332 0.3675 0.4399 0.5191

2428 CHEN AND SHIMA

D
ow

nl
oa

de
d 

by
 T

E
C

H
N

IO
N

 -
 I

SR
A

E
L

 I
N

ST
 O

F 
T

E
C

H
 o

n 
Ja

nu
ar

y 
3,

 2
02

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
43

41
 



f�x; u� �

2
664

cos θ
sin θ
u

κ � �1 − κ� 1
2
u2

3
775

It is clear that the problem of minimizing z�tf� subject to Eq. (B1)
from x�0� � �x0; 0; θ0; 0� to �x�tf�; y�tf�� � �0; 0� has the same
solution as the OIP. Hence, it amounts to proving that the new
augmented optimal control problem has an optimum.
Let x0 be the initial condition of the augmented optimal control

problem, i.e., x0 � �x0; 0; θ0; 0�. Let us denote by Ax0�t� the
attainable set of Eq. (B1) for time t ≥ 0 from x0 with measurable
locally bounded controls, i.e.,

Ax0�t� �
n
x�t� � x0 �

Z
t

0

f�x�t�; u�t��dtjx�0� � x0;

u ∈ L∞��0; t�; �−um; um��
o

With the definition of this attainable set, we denote by AT
x0 the

attainable sets for time not greater than T, i.e.,

AT
x0 �

[
0≤t≤T

Ax0�t�

Because f�x; u� is bounded, the control set �−um; um� is compact, and
the set

ff�x; u�ju ∈ �−um; um�g

is convex, it follows from Filippov’s theorem (Ref. [17] corollary
10.6) that the attainable setAT

x0 is compact. The compactness implies
that there exists a time �t ≤ T and a point � �x��t�; �y��t�; �θ��t�; �z��t�� with
� �x��t�; �y��t�� � �0; 0� such that �z��t� is the minimum as compared with
any other point �x�t�; y�t�; θ�t�; z�t�� ∈ AT

x0 with �x�t�; y�t�� �
�0; 0� [see Ref. [17] proposition 10.2, in which � �x��t�; �y��t�; �θ��t�; �z��t��
lies on the boundary of AT

x0 ]. By the definition of the attainable set
AT

x0 , there exists an admissible control u�⋅�: �0; �t� → �−um; um�
steering the system in Eq. (B1) from x0 to � �x��t�; �y��t�; �θ��t�; �z��t��,
which completes the proof of Theorem 2.

Appendix C: Proofs for Lemmas

In this appendix, we present the proofs of all the lemmas
established in the preceding text.
Proof of Lemma 1: Combining Eq. (16) withH�tf� � 0 to eliminate
α, we obtain

sin2�β − θf� − sin�β − θ0� sin�β − θf� −
κ

2�1 − κ� �x0 cos β�
2 � 0

Considering sin�β − θf� � κ∕α�β� > 0, because of H�tf� � 0, we
have

sin�β − θf�

� sin�β − θ0� �
���������������������������������������������������������������������������
sin2�β − θ0� � 2κ�x0 cos β�2∕�1 − κ�

p
2

Considering also sin�β − θf� ≤ 1, we have

sin�θ0 − β� �
���������������������������������������������������������������������������
sin2�θ0 − β� � 2κ�x0 cos β�2∕�1 − κ�

p
2

≤ 1

which is rewritten as

sin�θ0 − β� � 2 ≥
���������������������������������������������������������������������������
sin2�θ0 − β� � 2κ�x0 cos β�2∕�1 − κ�

q

Squaring both sides of this equation yields

κx20cos
2 β − 2�1 − κ��sin�θ0 − β� � 1� ≤ 0 (C1)

which completes the proof for Lemma 1.
Proof of Lemma 2:By contradiction, let us assume that there exists an
interval �t1; t2� ⊂ �0; tf� (with t2 ≠ t1) such that pθ�t� � 0 for
t ∈ �t1; t2�. Then, the trajectory �x�t�; y�t�� for t ∈ �t1; t2� and the
origin (0, 0) lie on the same straight line because pθ�t� �
pxy�t� − pyx�t� � 0 along the trajectory �x�t�; y�t�� for t ∈ �t1; t2�
and at the origin (0, 0). In this case, the velocity or its opposite vector
points to the origin, indicating

jβ − θ�t�j � π∕2 (C2)

for t ∈ �t1; t2�. According to Eq. (15), we have

pθ�t� � 	
�����������������
2�1 − κ�

p ��������������������������������������
κ − α sin�β − θ�t��

p
(C3)

for t ∈ �0; tf�. Combining this equation with Eq. (C2) and taking into
account pθ�t� � 0 for t ∈ �t1; t2� indicate κ � α. This contradicts the
hypothesis α�β�� ≠ κ of this lemma. Hence, it is impossible to have
pθ � 0 on a nonzero interval by contraposition.
Again by contradiction, let us assume that there exists an isolated

instant τ ∈ �0; tf� on the optimal trajectory of the OIP such that
pθ�τ� � 0. If pθ does not change its sign at τ, we have that the
trajectory �x�t�; y�t�� at τ is tangent to the straight line of
pθ � pxy − pyx � 0, indicating that the velocity or its opposite
vector points to the origin. In this case, we also have
jβ − θ�τ�j � π∕2, implying κ � α according to Eq. (C3) and
pθ�τ� � 0. This contradicts the hypothesis of κ ≠ α�β�� once again.
Hence, by contraposition, along an optimal trajectory of the OIP, it is
impossible to have an isolated instant τ ∈ �0; tf� such that pθ�τ�
equals zero but pθ does not change its sign at τ. Next, we shall prove
that it is also impossible if pθ changes its sign at τ.
1) If β ∈ �−π∕2; π∕2� ∩ S, we have pθ�0� > 0 according to

Eq. (14). Aspθ changes its sign at τ by assumption, the heading angle
θ is monotonically nondecreasing before τ and monotonically
nonincreasing after τ [recall the third equation of Eq. (1) and Eq. (5)].
Hence, the graph of �x; y� changes its sign of curvature at τ. For this
scenario, there are two cases: either y�τ� > 0 or y�τ� < 0.

If y�τ� < 0, there must exist a point before τ so that the velocity at
the point points to the origin, as illustrated by point A in Fig. C1. In
this case, the dashed straight line is shorter and has less control effort
than the solid trajectory after point A. So, the total solid trajectory
cannot be optimal if y�τ� < 0.

Now, let us consider y�τ� > 0. According to Eqs. (20) and (6), we
have sin�β − θ�τ�� � sin�β − θ�tf��, which indicates that the angle
between the velocity at τ and the vector from �x�τ�; y�τ�� to �0; 0� is
the same as that between the velocity at tf and the vector from
�x�τ�; y�τ�� to �0; 0�. As a result, the trajectory after τ must intersect,
as illustrated by the curve in Fig. C2. In this case, there exist two
points so that the straight line between the two points is tangent to the
solid curve, as shown by points A andB in Fig. C2. In addition, there
exists a point such that the line from the point to the origin is tangent
to the solid curve, as shown by pointC in Fig. C2. Then, the path from

Fig. C1 Schematic path of �x;y� with pθ�0� > 0 and y�τ� < 0 for the
proof of Lemma 2.
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initial point, passing points A,B, andC in order (and finally reaching
to the origin), is shorter and has less control effort than the total solid
curve. Therefore, the solid curve cannot be optimal if y�τ� > 0. By
contraposition, the first statement of this lemma is proved.
2) If β ∈ �π∕2; 3π∕2� ∩ S, we have pθ�0� < 0 according to

Eq. (14). In this case, θ is monotonically nonincreasing before τ and
monotonically nondecreasing after τ. Analogously, we have that
either y�τ� < 0 or y�τ� > 0.
Analogous to proving the second case of the first statement, if

y�τ� < 0, the trajectory after τ must intersect, as shown by the solid

line in Fig. C3. In this case, there exist two points so that the straight

line between the two points tangent to the solid line, as shown by

points A and B in Fig. C3. In addition, there exists a point so that the

straight line from the point to the origin is tangent to the solid curve,

as shown by point C in Fig. C3. Then, the path from the initial point,

passing through points A, B, and C in order, and finally reaching to

the origin, is shorter and has less control effort. So, the total solid

trajectory is not optimal if y�τ� < 0.
Now, let us consider the rest case y�τ� > 0. Because the heading

angle is monotonically nonincreasing for t ∈ �0; τ� and monotoni-

cally nondecreasing after τ, the shape of the trajectory is like the solid
curve shown in Fig. C4. For such a trajectory, there exists a shorter

smooth path from �x0; 0�with initial heading angle being θ0 to a point
A tangent to the solid curve, as shown by the dashed curve in Fig. C4.

So, the solid curve is not the optimal path. Therefore, by

contraposition, the second statement of this lemma is proved, which

completes the whole proof of this lemma.

Proof of Lemma 3. First of all, it is clear that θ0 ∈ �π∕2; π�. In frame

Oxy in Fig. 1, we have

cos σ � −
x cos θ� y sin θ����������������

x2 � y2
p

Hence, in order to guarantee jσj < π∕2, it requires us to keep

x�t� cos θ�t� � y�t� sin θ�t� < 0 (C4)

along the solution of the OIP.
By contradiction, assume β ∈ �π∕2; 3π∕2� ∩ S. According to

Corollary 1, we have that θ�t� is monotonically decreasing. Then,

before reaching the target, theremust exist a time τ ∈ �0; tf� such that
θ�τ� � 0 and x�τ� > 0, indicating x�τ� cos θ�τ� � y�τ� sin θ�τ� > 0.
This contradicts with Eq. (C4). Therefore, by contraposition, the

proof is completed.

Proof of Lemma 4. According to Eqs. (6) and (14), and by the

definition of tf�β�, we have
pθ�tf�β�� � α�β��x�tf�β�; β� cos β� y�tf�β�; β� sin β� � 0 (C5)

Note that α�β� > 0. For any β ∈ S, if y�tf�β�; β� � 0, Eq. (C5)
implies x�tf�β�; β� cos β � 0. By the assumption of Lemma 4 that

jβj ≠ π∕2, we finally have x�tf�β�; β� � 0, completing the proof.

Proof of Lemma 5. Because β ≠ jπ∕2j, it is clear that M is strictly

positive according to Eq. (31). Next, we prove the three statements of

Lemma 5, one by one.
1) If κ ≤ M, we must have

κ ≤
2�sin�θ0 − β� � 1�

x20 cos
2 β� 2�sin�θ0 − β� � 1�

for any β ∈ �−π∕2; π∕2�. Then, by the definition of S in Eq. (18), the
first statement holds.
2) Let f1�β� � κx20 cos

2 β and f2�β� � 2�1 − κ��sin�θ0−
β� � 1�. Then, we have

S � fβ ∈ S: f1�β� ≤ f2�β�g
According to Eq. (31), if κ > M, there exists �β ∈ �−π∕2; π∕2� such
that f1��β� > f2��β�, i.e., �β ∈ S. For any θ0 ∈ �0; π�, we have
f2�−π∕2� > 0 and f2�π∕2� > 0. However, f1�−π∕2� � f2�π∕2� �
0. As a result, in view of the mean value theorem, there exists
β1 ∈ �−π∕2; �β� and β2 ∈ ��β; π∕2� such that f1�β� ≤ f2�β� for β ∈
�−π∕2; β1� ∪ �β2; π∕2� and f1�β� > f2�β� for β ∈ �β1; β2�, as
demonstrated by the plot in Fig. C5.
In fact, as β1 and β2 are the boundary of S, they must be two zeros of
f1�β� � f2�β�, indicating

κx20cos
2 β − 2�1 − κ��sin�θ0 − β� � 1� � 0 (C6)

To solve this equation, let us consider

Fig. C2 Schematic path of �x;y� with pθ�0� > 0 and y�τ� > 0 for the
proof of Lemma 2.

Fig. C3 Schematic path of �x;y� with pθ�0� < 0 and y�τ� < 0 for the
proof of Lemma 2.

Fig. C4 Schematic path of �x;y� with pθ�0� < 0 and y�τ� > 0 for the
proof of Lemma 2.

Fig. C5 Curves of f1�β� and f2�β� for β ∈ �−π∕2;3π∕2�, κ � 0.05,
x0 � 10, and θ0 � 2.
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cos β � 1 − tan2�β∕2�
1� tan2�β∕2� and sin β � 2 tan�β∕2�

1� tan2�β∕2�

Substituting the two equations into Eq. (C6) leads to a fourth-degree
polynomial in terms of tan�β∕2�:

0 � �κx20 − 2�1 − κ��1 − sin θ0��tan4
�
β

2

�

� 4�1 − κ� cos θ0tan3
�
β

2

�
− 2�κx20 � 2�1 − κ��tan2

�
β

2

�

� 4�1 − κ� cos θ0 tan

�
β

2

�
� κx20 − 2�1 − κ� (C7)

This indicates that tan�β1∕2� and tan�β2∕2� are two different zeros of
the fourth-degree polynomial in Eq. (C7), completing the proof of the
second statement of Lemma 5.
3) Note that f2�π∕2� > 0 and f2�3π∕2� > 0. However, for any

θ0 ∈ �0; π�, there exists �β ∈ �π∕2; 3π∕2� such that f2��β� � 0. Also,
note that f1�π∕2� � f1�3π∕2� � 0. Therefore, according to the
mean value theorem, there exists β3 ∈ �π∕2; �β� and β4 ∈ ��β; 3π∕2�
such that f1�β� ≤ f2�β� for β ∈ �π∕2; β3� ∪ �β4; 3π∕2� and f1�β� >
f2�β� for β ∈ �β3; β4�, as demonstrated by Fig. C.5. According to the
derivation procedure of Eq. (C7), we have that tan�β3∕2� and
tan�β4∕2� are two zeros of Eq. (C7). Therefore, β3 and β4 can be
obtained by solving the fourth-degree polynomial in Eq. (C7),
completing the proof of the third statement of Lemma 5.
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