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This paper presents a cooperative guidance law for ann-on-n engagement scenario that ensures target interception

and collision avoidance between the pursuers along with minimizing their team effort. The guidance law is derived

using linear quadratic optimal control theory for a linearized engagement model. The pursuers cooperate with each

other to accommodate differences in maneuver capabilities of different team members. A special case of 2-on-2

engagement is also analyzed, for which analytical closed-form formulas for the pursuer’s guidance law are obtained.

Various simulation results and experimental validation results, exemplifying the cooperation in different

engagements, are also presented.

I. Introduction

AUTONOMOUS vehicles are capable of sensing their
environment and traversing without a human operator. In

recent times, they have become increasingly popular due to their wide
applications in civilian as well as military domains. The automation
of these vehicles has several components such as environment
sensing and recognition, localization, and motion planning or
control. The focus of this paper lies on themotion control aspect. This
aspect aims at formulating a control strategy that steers a pursuer from
an initial point to a target point. The pursuer can be an unmanned
vehicle, a robot, or even a missile, whereas the target can be a
waypoint, a landmark, or an adversary that has to be intercepted. In
most real-world scenarios, the guidance of a pursuer to a given target
point is coupled with the task of avoiding collisions with obstacles
that can be stationary or moving.
Some of the current approaches for collision detection and

avoidance are guidance-based, such as velocity obstacle method [1],
collision cone approach [2,3], and the more recent avoidance
mapping technique [4]. In [1], Fiorini and Shiller have proposed a
collision avoidancemethod for circular-shaped obstaclesmoving at a
constant speed.A set of velocities leading to collision is calculated for
a given radius of the obstacle. To avoid the incoming obstacle, a
command is generated based on actuator constraints such that the
pursuer achieves a velocity that lies outside the set of collision
velocities. In [2], Chakravarthy and Ghose have derived the collision
conditions based on the components of the relative velocity along and
perpendicular to the line of sight. The region of collision velocities
can be avoided by applying maneuvers such as change of speed or
lateral acceleration. Based on the collision cone approach, a
proportional navigation (PN) based avoidance strategy is proposed in
[3] by Han et al. Here, a relative velocity vector joining the pursuer
and the safety boundary of the other pursuer in collision is selected,
and PN guidance is used to steer the pursuer out of collision. A more
recent approach based on avoidance map is proposed in [4] by Tony
et al. The avoidance map is a mapping that indicates whether a
particular maneuver can lead to a collision. It is represented in the
plane of lateral accelerations of the two pursuers and is partitioned

into sectors involving collision and sectors not involving collision.
Based on this information, amaneuver is selected to steer the pursuers
out of collision.
The aforementioned collision avoidance strategies suffer from

three major drawbacks.
1) They do not consider any kind of cooperation in scenarios with

multiple pursuers, which may lead to significant deviation of the
pursuers from the planned or nominal trajectory.
2) They are not optimal in terms of any of the parameters such as

energy requirement, length of the path, or deviation from the nominal
trajectory.
3) The collision avoidance is performed sequentially in two steps.

The first step is collision detection, followed by a second step that
generates collision avoidance maneuver. This leads to performance
degradation.
The problem of sequential detection and avoidance can be

overcome by an artificial potential field function. Here, the detection
and avoidance step is integrated in one step. Classically, this kind
of collision avoidance method was proposed in [5] for robotic
manipulators. In [6], Rimon and Koditschek have extended this
approach to the guidance of robots in the presence of obstacles. The
disadvantage of this approach is the possibility of the pursuer getting
trapped in local minima of the potential surface, and therefore it is
unable to reach the target point in caseswhere the target and obstacles
are placed close to each other. In [7], Ge andCui have proposed a new
repulsive potential function by taking the relative distance between
the obstacle and the target point into consideration. This ensures that
the target point is the global minimum of the total potential. Because
the relation between the potential field function and the vehicle
performance is not straightforward, it is difficult to optimize the
performance of such collision avoidance methods.
In scenarios where pursuers work as a team, the collision

avoidance strategies can be cooperative in nature. Based on the
velocity obstacle approach, a cooperative collision avoidance
strategy was developed in [8] by Snape et al., in which each pursuer
shares equal responsibility for avoiding the impending collision. The
control command is selected as close as possible to the current
maneuver of each pursuer to ensure minimum deviation. In [9],
Sunkara and Chakravarthy have proposed two kinds of cooperative
avoidance strategies based on collision conditions mentioned in [2].
The first strategy involves acceleration magnitudes of the two
pursuers as inputs, and the second involves the direction of
acceleration vectors as inputs. Using dynamic inversion techniques, a
control lawwas derived for pursuers to cooperatively drive each other
out of the collision region.
In [10], Zapotezny-Anderson and Ford have formulated collision

avoidance for a single aircraft as an optimal control problem that
ensures minimum deviation from the desired course while avoiding
other aircraft. The system here is nonlinear, and hence numerical
optimization techniques have been used to solve the problem.Menon
and Park [11] provide a comprehensive review of collision avoidance
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approaches in case of multiple aircraft using optimal control theory.
In [12], Menon et al. have developed collision avoidance algorithms
based on the assumption that the nominal trajectories of the aircraft
can be parameterized as a sequence of four-dimensional (three
position coordinates and a time coordinate) waypoints. These
waypoints are adjusted to generate optimal trajectories that satisfy the
collision avoidance constraints and minimize desired cost functions.
Škrjanc and Klančar have proposed an optimal cooperative collision
avoidance strategy for multiple pursuers in [13]. In this work, a
precomputed path for each pursuer is generated by minimizing the
sum of the length of paths for all pursuers and taking into account the
collision between them.To track these trajectories, amodel predictive
controller is designed. The offline generation of trajectory makes
the implementation cumbersome and computationally expensive.
The strategies proposed in [10,13] lack a closed-form expression for
the guidance, making the analysis difficult. In [14], Weiss and Shima
have proposed a closed-form solution of a guidance law for a pursuer
to intercept a target while avoiding a static obstacle. Extending this
approach, Kumar et al. have proposed a closed-form solution of a
guidance law for a single pursuer to avoid multiple obstacles along
with interception of a target at a certain impact angle in [15]. Both the
proposed guidance laws in [14,15] minimize the control effort of the
pursuer while minimizing the energy requirements. Along with this,
the collision detection and avoidance occur simultaneously. How-
ever, as mentioned before, this guidance law is only for the case of a
single pursuer and static obstacles.
In this paper, we develop a cooperative guidance law for multiple

pursuers that steers them to their corresponding target points, along
with achieving collision avoidance between them. The developed
guidance law optimizes the total control effort of the team of pursuers
with different penalties on the control effort for each member. This
has two advantages. First, it reduces the fuel consumption of the
pursuers. Second, this enables teaming of pursuers with different
maneuver capabilities and therefore achieves our goals even when
some of the pursuers are not as maneuverable as the other ones.
The paper is organized in the followingway. In the next section, we

describe the engagement scenario and obtain the nonlinear and
linearized engagement kinematics. In Sec. III, the problem is
formulated as an optimal control problem. Based on this formulation,
a cooperative guidance law for n pursuers is derived in Sec. IV.
A special case of two pursuers is analyzed in Sec. V, in which a
closed-form optimal guidance law is presented. Results from
simulations and experimental validation are presented in Sec. VI.
This is followed by conclusions of the work in Sec. VII.

II. Engagement Geometry

A planar engagement of n pursuers pursuing n targets is
considered. Figure 1 shows the endgame engagement geometry in
X −O − Y Cartesian inertial reference frame. Here,Pi andPj denote
the ith and jth pursuers. Similarly, Ti and Tj denote the targets. For

the sake of simplicity, we enumerate the target with the same index as
that of its pursuer.VPi andVTi represent the velocity vectors of the ith
pursuer and target, respectively. Their heading angles are denoted by
γPi and γTi. ρi represents the range between the ith pursuer–target
pair. Similarly, their relative line of sight (LOS) angle is denoted by θi.
The relative separation between the ith and jth pursuer is denoted as
ρij, and the LOS angle between them is denoted by θij. aPi denotes
the acceleration of the pursuer, and aTi is the target acceleration. For
any ith pursuer–target pair, ui is the projection of pursuer’s
acceleration aPi on the line perpendicular to the LOS joining the
pursuer–target pair. ζijui is the component of acceleration aPi on the
line perpendicular to the LOS joining the ith and jth pursuers.
For a collision to happen between a given pair of pursuers, it is

assumed that the predicted point of collision between the pursuers is
around the collision triangle formed between each pursuer and its
respective target. In the case of n pursuers, the maximum number of

possible collisions between any pair of pursuers is

�
n
2

�
. To reduce

computational needs, we may assume that there exists a higher-order
collision detector that identifies pairs of pursuers that are “almost on
the collision course” and therefore eliminates some of the collisions.
In the absence of such collision detection mechanisms, we can
assume all possible collisions between the pursuers. Now, we
introduce some notations to denote the possible collisions. A
collision between the ith and jth pursuers is expressed as a 2-tuple
fi; jg, where i < j. Furthermore, all the possible collisions are
arranged in an ascending order of the first pursuer index followed by
the second pursuer index. This ordered set is denoted as Ω. The kth
element of the ordered set is denoted asΩk, and the cardinality of the
set (Ω) is denoted asK. The ordering of the setΩ is done to make the
definition of matrices concise in later sections. It is not necessarily
related to the sequence in which the collisions take place.
Twocollisions are called “related collisions” if they share a common

pursuer. For a given collision fi; jg, another collision (say fa; bg) is
called “I-related” to fi; jg if the first pursuer i is involved in the
collision (i.e., eithera � i orb � i). It is called “II-related” to fi; jg, if
the second pursuer j is involved in the collision (i.e., either a � j or
b � j). For every collisionΩk, we denote the set of I-related collisions

as SIΩk
. Similarly, SIIΩk

denotes the set of II-related collisions for Ωk.

A. Nonlinear Engagement Kinematics

The engagement kinematics of a pursuer–target pair is expressed
in a polar coordinate system �ρi; θi� attached to the ith pursuer and is
expressed by the following equations:

_ρi � VTi cos�γTi − θi� − VPi cos�γPi − θi� i ∈ f1; · · · ; ng (1)

ρi _θi � VTi sin�γTi − θi� − VPi sin�γPi − θi� i ∈ f1; · · · ; ng (2)

Without loss of generality, the engagement kinematics between the
ith and jth pursuers is also defined in a polar coordinate system
�ρij; θij�, which is attached to the ith pursuer, where i < j. It is
expressed by the following set of equations:

_ρij � VPj cos�γPj − θij� − VPi cos�γPi − θij� fi; jg ∈ Ω (3)

ρij _θij � VPj sin�γPj − θij� − VPi sin�γPi − θij� fi; jg ∈ Ω (4)

During the endgame, the target and the pursuer are assumed to
move at constant speeds. Therefore, once the collision triangle is
achieved, the interception time to the targets �tfi � can be expressed in
terms of initial range ρ0i and closing speed of the pursuer–target pair
(Vci ≜ −_ρi) as

tfi � ρ0i
Vci

i ∈ f1; · · · ; ng (5)

Similarly, when the ith and jth pursuers are on a collision
course, the final time for collision �tfij� is expressed in terms ofFig. 1 Engagement geometry.
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initial range ρ0ij and the closing speed between ith and jth pursuers
(Vcij ≜ −_ρij) as

tfij �
ρ0ij
Vcij

; fi; jg ∈ Ω (6)

The dynamics of the acceleration of all the pursuers and the targets
are assumed to be ideal. Therefore, the changes in heading angles
�γPi; γTi� due to accelerations of the pursuer �aPi� and the target �aTi�
appear as

_γPi �
aPi
VPi

i ∈ f1; · · · ; ng (7)

_γTi �
aTi
VTi

i ∈ f1; · · · ; ng (8)

B. Linearized Engagement Kinematics

It is assumed that the deviations of the pursuers and the targets
from their respective collision triangles are small. Therefore, a
linearization of the engagement kinematics around the collision
triangles is obtained. Based on this linearized model, a guidance law
for capturing the target while avoiding collision between the pursuers
is derived thereafter.
The relative displacement normal to the LOS between the ith

pursuer and its corresponding target is denoted as yi. Similarly, yij
denotes the relative displacement normal to the LOS between the ith
and jth pursuers. The state vector of the entire engagement can then
be expressed as

x �
h
yI1 _yI1 · · · yIn _yIn yC1

_yC1
· · · yCK

_yCK

i
T

(9)

where yI ∈ Rn and yC ∈ RK are the vectors comprising the
displacements perpendicular to the line of sights for interceptions and
collisions, respectively. They are defined as follows:

yIi � yi i ∈ f1; · · · ; ng (10)

yCk � yij;where fi; jg � Ωk k ∈ f1; · · · ; Kg (11)

The linearized equations of motion are obtained as follows:

_x2m−1 � x2m m ∈ f1; · · · ; ng (12)

_x2m � anTm − um; m ∈ f1; · · · ; ng (13)

_x2k�1 � x2k�2 k ∈ fn; · · · ; n� Kg (14)

_x2k�2 � ζjiuj − ζijui; k ∈ fn; · · · ; n� Kg and fi; jg � Ωk

(15)

Here, xi, i ∈ f1; · · · ; 2�n� K�g represents ith coordinate of the state
vector x, and K denotes the cardinality of set Ω. The displacement
between a given pair of pursuers is affected by the component of their
accelerations that is normal to the LOS joining them. Therefore, in
Eq. (15), the terms ζij and ζji are introduced as shown in Fig. 1. The
target and pursuers remain close to the collision course, and in such
scenarios, it can be assumed that ζij and ζji are dependent only on the
initial values of the LOS angles (θ0i , θ

0
j , θ

0
ij) and the initial heading

angles of the pursuers (γ0Pi, γ0Pj). For each pair fi; jg ∈ Ω, the

expressions of ζij and ζji are

ζij �
cos�γ0Pi − θ0ij�
cos�γ0Pi − θ0i �

(16)

ζji �
cos�γ0Pj − θ0ij�
cos�γ0Pj − θ0j �

(17)

anTi and ui are the components of the accelerations normal to LOS
between the ith pursuer–target pair for the target and pursuer,
respectively. Hence, the relation between these components of
acceleration and the acceleration of the ith target and ith pursuer pair is
given by

anTi � aTi cos�γ0Ti − θ0i � i ∈ f1; · · · ; ng (18)

ui � aPi cos�γ0Pi − θ0i � i ∈ f1; · · · ; ng (19)

Using Eqs. (12–19), the linearized system of equations can also be
written in the form of matrices as

_x � Ax� Bu� Cv (20)

where u � � u1 · · · un �T and v � � anT1 · · · anTn �T . The
matricesA, B, and C are given by

A � I2�n�K� ⊗ AI; B �
�
In ⊗ BI

�Bc�K×n

�
; C �

�
In ⊗ CI

�0�K×n

�
(21)

where⊗ denotes theKronecker product of twomatrices, In ∈ Rn is an

identity matrix, and �0� ∈ RK×n is a zero matrix. The matricesAI ,BI ,
and CI are given as

AI �
�
0 1

0 0

�
; BI �

�
0

−1

�
; CI �

�
0

1

�
(22)

The matrix Bc ∈ RK×n is obtained as

Bckj �

8><
>:
−ζjx; if Ωk � fj; xg
ζjx; if Ωk � fx; jg
0; otherwise

; x ∈ f1; · · · ; ng (23)

III. Optimization Problem Formulation

Thegoal here is to derive aminimumeffort guidance law for a team
of n pursuers intercepting n maneuvering targets while avoiding
collision between themselves. To achieve this, the relative distance
between the ith pursuer–target pairs (yi) should be zero at the
intercept time tfi . Along with this, the relative distance between any
ith and jth pursuers should be greater than a safe limit Rij at the
predicted time of collision tfij. We impose these constraints as hard
constraints in the problem formulation and express them as follows:

yi�tfi � � 0 i ∈ f1; · · · ; ng (24)

yij�tfij� ≥ Rij fi; jg ∈ Ω (25)

For minimizing the total control effort of the team of pursuers, the
cost function is defined as

J �
Xn
i�1

αi
2

Z
tfi

t0

u2i dt (26)

where α0 is the penalty on the control effort of the ith pursuer. The
lower the maneuvering capability of the ith pursuer is, the higher the
corresponding weight αi should be.

A. Order Reduction Using Zero-Effort-Miss Transformation

The order of system (20) can be reduced from 2�n� K� to
�n� K� using the zero-effort-miss transformation [16]. Another
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advantage of using this transformation is that the transformed states

become a function of the control inputs only, and therefore it

simplifies the calculation of Lagrange multipliers, as we will see in

the next section. The transformation of the variables associated with

the ith pursuer is given by [17]

zi�t� � DΦ�tfi ; t�x�t� �D

Z
tfi

t
Φ�tfi ; τ�Cv dτ i ∈ f1; · · · ; ng

(27)

where Φ�tfi ; t� is the transition matrix associated with matrix A in

Eq. (20), zi is the zero-effort-miss distance between the ith pursuer–
target pair, and D ∈ R�n�K� is a constant row vector that selects the

appropriate element of the state vector. For example, to obtain the

zero-effort-miss for the ith pursuer–target pair, the vector D is

defined as

Dk �
�
1; if k � i
0; otherwise

(28)

At any given instance, the ZEM distance for a pursuer–target pair

is defined as the distance by which a pursuer will miss the target,

if the pursuer applies no further acceleration and the target performs

the expected maneuver. Using the preceding transformation, the

expression for ZEM distance �zi� is obtained, under the assumption a

of constant target maneuver, as

zi�t� � yi�t� � _yi�tfi − t� � anTi�tfi − t�2
2

(29)

Similarly, for the pursuer–pursuer pair, the ZEM distance �zij� is
defined as the achieved separation distance between them at the time

of closest approach, if both of them apply no further acceleration.

Using the ZEM transformation as before, the ZEMdistances between

two pursuers can be expressed as

zij�t� � yij�t� � _yij�tfij − t� (30)

The evolution of these ZEM distances with time can be expressed

by the following state equations:

_zi�t� � −�tfi − t�ui1�tfi � i ∈ f1; · · · ; ng (31)

_zij�t� � −�tfij − t��ζijui − ζjiuj�1�tfij� fi; jg ∈ Ω (32)

Here, the step function is defined as

1�τ� �
�
1 t < τ
0 t ≥ τ

It should be noted that the ZEM distance is not defined once the

pursuer reaches the target and achieves its objective. Also, the ZEM

distance for a pursuer–pursuer pair also remains the same as zij�tfij�,
beyond the time of closest approach. Therefore, we have introduced a

unit step function 1�τ� in the transformed state equations in Eqs. (31)

and (32). The transformed state equations can also be expressed in

matrix form as follows:

_z � Bzu (33)

Here,

z � � zI zC �T and; zI � � z1 · · · zn �T; zCk
� zij;

where fi; jg � Ωk k ∈ f1; · · · ; Kg (34)

The matrix Bz ∈ R�n�K�×n is defined as

Bz �
� �BzI �n×n
�BzC�K×n

�

where

BzIij �
(
−�tfi − t�1�tfi �; if i � j

0; otherwise

BzCkj �

8>>><
>>>:
−ζjx�tfjx − t�1�tfjx�; if Ωk � fj; xg
ζjx�tfxj − t�1�tfxj�; if Ωk � fx; jg

0; otherwise

; x ∈ f1; · · · ; ng

(35)

FromEqs. (29) and (30) and the constraints mentioned in Eqs. (24)
and (25), we obtain the constraints for the transformed states as

Ni�zi�tfi �; tfi � ≜ zi�tfi � � 0; i ∈ f1; · · · ; ng (36)

Nij�zij�tfij�; tfij� ≜ zij�tfij� − zdij � 0; fi; jg ∈ Ω (37)

where zdij is an arbitrary variable whose absolute value is greater than

the safe distance (jzdijj ≥ Rij). The final time for the entire

engagement is defined as the time when the last interception takes
place. Thus, we define the final time of the entire engagement as

tf � max�tf1 ; · · · ; tfn�. Also, we can assume that tfij ≤ min�tfi ; tfj �,
which signifies that the possible collision between a pair of pursuers
takes place before or at the time when any one of the pursuers
intercepts its corresponding target. Because of these assumptions,
in Eqs. (36) and (37), the constraint corresponding to the last
interception is the terminal constraint of our problem. Other
constraints that occur before the final interception are the interior
point constraints.

B. Reduced Order Optimal Control Problem

Using the transformed states and constraints, the optimal control
problem is formulated as

_zi�t��−�tfi − t�ui1�tfi � Ni�zi�tfi �;tfi ��0 i∈ f1; · ··;ng (38)

_zij�t��−�tfij− t��ζijui−ζjiuj�1�tfij� Nij�zij�tfij�;tfij��0 fi;jg∈Ω

(39)

The cost function in Eq. (26) can be rewritten as the sum of the
control effort of each pursuer over the entire engagement as

J � 1

2

Z
tf

t0

uTPu dt �
Xn
i�1

αi
2

Z
tf

t0

u2i dt (40)

where P is a positive-definite weight matrix defined as

Pij �
�
αi; if i � j
0; otherwise

IV. Guidance Law Derivation

In the previous section, the problem was formulated as a linear
quadratic optimal control problem in which a set of terminal and
interior point constraints have to be satisfied and the state equations are
discontinuous at those interior points. The solution of this class of
problems is discussed in detail in [16,18]. We will use the necessary
conditions for optimalitymentioned in [16] to derive the guidance law.
The Hamiltonian H of the optimization problem formulated in

Sec. III.A can be written as
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H � 1

2
uTPu� λTBzu

�
Xn
i�1

�
αiu

2
i

2
− λi�tfi − t�ui1�tfi �

�

−
X

fi;jg∈Ω
λij�tfij − t��ζijui − ζjiuj�1�tfij� (41)

where λi, i ∈ f1; · · · ; ng is the Lagrange multiplier associated with

the states corresponding to the ith target interception, and λij, fi; jg ∈
Ω is the Lagrange multiplier associated with the states corresponding

to the collision between the ith and jth pursuers. The Lagrange

multiplier vector λ is defined as

λ��λI λC �T
λI��λ1 · ·· λn �T; λCk

�λij; where fi;jg�Ωk k∈ f1; · ··;Kg (42)

Proposition 1: In the proposed linear quadratic optimal control

formulation with interior and terminal point constraints, where the

cost function and the dynamics of the transformed system are

independent of the state variables, the control input of each pursuer is

a piecewise linear function of time.
Proof: The Lagrange multipliers must satisfy the following

condition along the optimal trajectory:

_λ � −Hz (43)

The dynamics of the transformed system [Eqs. (38) and (39)] are

independent of the state variables; therefore, we have

_λ � 0 (44)

In addition to the condition mentioned in Eq. (43), at the time of

each target interception (tfi ), the Lagrange multipliers λI should

satisfy the following necessary conditions (Sec. 3.7 in [16]):

λi�tfi �� � ∂J
∂zi

i ∈ f1; · · · ; ng (45)

λi�tfi −� � λi�tfi �� � νi
∂Ni

∂zi

����
t�ti

i ∈ f1; · · · ; ng (46)

where νi is a nonzero coefficient, and �tfi −� and �tfi �� signify time

just before and after tfi , respectively. Obtaining the derivative of the

constraints and the cost function with respect to zi, we get

∂J
∂zi

� 0;
∂Ni

∂zi

����
t�ti

� 1 i ∈ f1 · · · ng (47)

From Eqs. (45–47), we have

λi�tfi −� � νi; λi�tfi �� � 0 i ∈ f1; · · · ; ng (48)

Similar conditions as in Eqs. (45–47) will also hold at the interior

point constraints corresponding to all the times of collisions (tfij).
Thus, we have

λij�tfij−� � νij; λij�tfij�� � 0 fi; jg ∈ Ω (49)

where νij is a nonzero coefficient, and �tfij−� and �tfij�� signify time

just before and after tfij, respectively. From Eqs. (44), (48), and (49),

we conclude that the Lagrange multipliers are piecewise constants.
Along the optimal trajectory, the Hamiltonian is minimized by the

control input. Therefore, we have the following condition:

Hu � 0 (50)

From this condition, we obtain the control inputs as

u � −P−1BT
z λ

that is,

ui �
1

αi

�
λi�tfi − t�1�tfi � −

Xi−1
j�1

fj;ig∈Ω

λji�tfji − t�ζij1�tfji�

�
Xn
j�i�1
fi;jg∈Ω

λij�tfij − t�ζij1�tfij�
�
; i ∈ f1; · · · ; ng (51)

Because the Lagrange multipliers are piecewise constant with

discontinuities at the interior points [Eqs. (48) and (49)], from

Eq. (51) we conclude that the control input for each pursuer will be a

piecewise linear function of time. □

The �n� K� constants for the value of Lagrange multipliers

[Eqs. (48) and (49)] can be obtained by satisfying the constraints on

ZEM distances as defined in Eqs. (31) and (32). Integrating these

equations, we get

Z
tfi

t0

�tfi − t�ui dt � zi�t0� i ∈ f1; · · · ; ng (52)

Z
tfij

t0

�tfij − t��ζijui − ζjiuj� dt � zij�t0� − zdij fi; jg ∈ Ω (53)

The difference between the final interception (or predicted

collision) time and the current time is expressed as the time-to-go

parameters. They are defined as

tgi ≜ tfi − t; tgij ≜ tfij − t (54)

The variables tgi and tgij are the time-to-go for the interception of

target and time-to-go for collision of the pursuers, respectively. For

each pair of pursuers �i; j� heading toward possible collision

(fi; jg ∈ Ω), the difference between the time of interception of their

targets (tfi , t
f
j ) and their corresponding time of collision (tfij) is

denoted as

Δij ≜ tfi − tfij (55)

Δji ≜ tfj − tfij (56)

Substituting the preceding variables in Eqs. (52) and (53) and

integrating them after plugging the value of control inputs from

Eq. (51), we obtain the following:

λi
αi

�tgi �3
3

�
Xn
j�i�1
fi;jg∈Ω

λijζij
αi

�tgij�2
6

�Δij � 2tgi �

−
Xi−1
j�1

fj;ig∈Ω

λjiζij
αi

�tgji�2
6

�Δij � 2tgi � � zi�t0�

i ∈ f1; · · · ; ng (57)
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λij

�
ζ2ij
αi

�ζ2ji
αj

��tgij�3
3

�λiζij
αi

�tgij�2
6

�Δij�2tgi �

−
λjζji
αj

�tgij�2
6

�Δji�2tgj �−
Xi−1
p�1

fp;ig∈S−Ωk

λpi
6αi

ζijζip�tgpi�2�3tgij−tgpi�

−
Xi−1
p�1

fp;ig∈S�Ωk

λpi
6αi

ζijζip�tgij�2�3tgpi−tgij��
Xn
p�i�1

fp;ig∈S−Ωk

λip
6αi

ζijζip�tgip�2�3tgij−tgip�

�
Xn
p�i�1

fp;ig∈S�Ωk

λip
6αi

ζijζip�tgij�2�3tgip−tgij��
Xj−1
p�1

fp;jg∈S−Ωk

λpj
6αj

ζjiζjp�tgpj�2�3tgij−tgpj�

�
Xj−1
p�1

fp;jg∈S�Ωk

λjp
6αj

ζjiζjp�tgij�2�3tgpj−tgij�−
Xn
p�j�1

fp;jg∈S−Ωk

λjp
6αi

ζjiζjp�tgjp�2�3tgij−tgjp�

−
Xn
p�j�1

fp;jg∈S�Ωk

λjp
6αj

ζjiζjp�tgij�2�3tgjp−tgij��zij�t0�−zdij

fi;jg∈Ω (58)

where Ωk � fi; jg. The sets S�Ωk
and S−Ωk

are the sets of related

collisions that take place before and after the collision fi; jg,
respectively. They are defined as follows:

S�Ωk
�

n
fa; bg ∈ SIΩk

∪ SIIΩk
jtfa;b > tfi;j

o
(59)

S−Ωk
�

n
fa; bg ∈ SIΩk

∪ SIIΩk
jtfa;b < tfi;j

o
(60)

Expressing Eqs. (57) and (58) as a system of linear equations in

matrix form, we obtain

G

�
λI
λC

�
�

�
zI

zC − zdC

�
; where G ≜

�
GI GIC

GT
IC GC

�
(61)

λI , λC, zI , and zC are defined as in Eqs. (34) and (42), and

zdCk ≜ zdij; where fi; jg � Ωk k ∈ f1; · · · ; Kg (62)

The vector zdC ∈ RK is composed of the desired miss distances to

be achieved between each pair of pursuers at their corresponding

times of collision. ThematrixG ∈ R�n�K�×�n�K� is the systemmatrix

for the linear system of equations in Eqs. (57) and (58). This matrix is

expressed as a partition of four block matrices in Eq. (61). Among

these block matrices, the matrix GI ∈ Rn×n and GC ∈ RK×K are the

matrices associated with terms involving interception and collision,

respectively. They are defined as follows:

GIkl �

8><
>:
�tgk�3
3αk

; if k � l

0; otherwise

(63)

For any two collisionsΩk � fi; jg andΩl � fa; bg, the matrixGC

is defined as

GCkl
�

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

�
ζ2ij
αi
� ζ2ji

αj

	 �tgij�3
3

; if k � l

− ζij
6αi

ζba�tgab�2�3tgij − tgab�; if k < l andΩl ∈ S−Ωk
∩ SIΩk

− ζij
6αi

ζba�tgij�2�3tgab − tgij�; if k < l andΩl ∈ S�Ωk
∩ SIΩk

ζij
6αi

ζab�tgab�2�3tgij − tgab�; if k > l andΩl ∈ S−Ωk
∩ SIΩk

ζij
6αi

ζab�tgij�2�3tgab − tgij�; if k > l andΩl ∈ S�Ωk
∩ SIΩk

ζji
6αj

ζba�tgij�2�3tgab − tgij�; if k < l andΩl ∈ S−Ωk
∩ SIIΩk

ζji
6αj

ζba�tgij�2�3tgab − tgij�; if k < l andΩl ∈ S�Ωk
∩ SIIΩk

− ζji
6αj

ζab�tgij�2�3tgab − tgij�; if k > l andΩl ∈ S−Ωk
∩ SIIΩk

− ζji
6αj

ζab�tgij�2�3tgab − tgij�; if k > l andΩl ∈ S�Ωk
∩ SIIΩk

0; otherwise

(64)

The matrix GIC ∈ �n × K� is given by

GICkl
�

8>>><
>>>:

ζkx
6αk

�tgkx�2�Δkx � 2tgk�; if Ωl � kx

− ζkx
6αk

�tgxk�2�Δkx � 2tgk�; if Ωl � xk

0; otherwise

; x ∈ f1; · · · ; ng

(65)

From Eq. (61) the Lagrange multipliers λI and λC can be obtained

as

�
λI
λC

�
� G−1

�
zI

zC − zdC

�
; where G−1 ≜

�
Gi1 Gi2

GT
i2 Gi3

�
(66)

The matrixG is symmetric. Therefore,G−1 is also symmetric. The

blocks of matrix G−1 can be computed in terms of the blocks of

matrix G by the following expression [19]:

"
Gi1 Gi2

GT
i2 Gi3

#

�
" �GI−GICG

−1
C GT

IC�−1 −G−1
I GIC�GC−GT

ICG
−1
I GIC�−1

−�GC−GT
ICG

−1
I GIC�−1GT

ICG
−1
C �GC−GT

ICG
−1
I GIC�−1

#

(67)

The matrix G−1 exists, provided that G−1
I . G−1

C .

�GC −GT
ICG

−1
I GIC�−1 and �GI −GICG

−1
C GT

IC�−1 exist.
The total team effort can be expressed as follows by substituting

the value of control inputs from Eq. (51) in the cost function:

Xn
i�1

Z
tf

t0

αi
2
u2i dt�

�
zI

zC−zdC

�
T
�
Gi1 Gi2

GT
i2 Gi3

��
zI

zC−zdC

�
(68)

� zTI Gi1zI � �zC − zdC�TGT
i2zI � zTI Gi2�zC − zdC�

� �zC − zdC�TGi3�zC − zdC� (69)

�
h
zTI Gi1zI�zTCG

T
i2zI�zTI Gi2zC�zTCGi3zC

−
�
Gi3zC�GT

i2zI

	
G−1

i3

�
Gi3zC�GT

i2zI

	
T
i

�
h�
zdC−zC−G−1

i3 G
T
i2zI

	
Gi3

�
zdC−zC−G−1

i3 G
T
i2zI

	i
(70)
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The value of zdC ∈ RK was considered to be arbitrary while

formulating the optimal control problem [Eq. (37)]. Hence, to find the

minimum of the total team effort, the desired zero-effort-miss

distances corresponding to the collision are determined under the

constraints of collision avoidance for each pair; that is jzdijj ≥ Rij,

fi; jg ∈ Ω. From Eq. (70), it can be noticed that the cost function is

quadratic in zdC. Therefore, the total control effort can be minimized

by choosing appropriate value of zdC. The minimum total control

effort can be attained at the optimal value zd�C , which is given by

zd�C � argmin
zdC∈S

�
zdC − zC −G−1

i3 G
T
i2zI

	
T
Gi3

�
zdC − zC −G−1

i3 G
T
i2zI

	
(71)

where

S �
n
zdC ∈ RK

���jzdijj ≥ Rij; fi; jg ∈ Ω
o

(72)

Let us define

zcol ≜ zC �G−1
i3 G

T
i2zI (73)

and let ΨS;Gi3
�⋅� be the generalized dead-zone function [15,20]

associated with Gi3 and the set S (see Appendix A for the general

definition). Its value at zcol is

ΨS;Gi3
�zcol� � Gi3

�
zd�C − zcol

	
(74)

The following proposition expresses the optimal guidance

command fromEq. (51) in terms of the value of the generalized dead-

zone function at zcol.
Proposition 2: The optimal guidance command is

u � −P−1
�
BT

zIG
−1
I zI �

�
BT

zIG
−1
I GIC −BT

zC

	
ΨS;Gi3

�zcol�
	

Proof: In the rest of the text, for the sake of brevity, we denote

Ψc � ΨS;Gi3
�zcol�. From Eq. (74), we have

zd�C � G−1
i3 Ψc � zcol (75)

Doing some algebraic manipulation, we obtain

zC − zd�C � zC −G−1
i3 Ψc − zcol � −G−1

i3 Ψc −G−1
i3 G

T
i2zI (76)

Substituting this value into Eq. (66) and using Eq. (67) to express

the blocks ofG−1 in terms of the blocks of the matrixG, the value of

Lagrange multipliers is obtained as

�
λI
λC

�
�

�
Gi1zI −Gi2G

−1
i3 �Ψc �GT

i2zI�
−Ψc

�

�
�
G−1

I �zI �GICΨcv�
−Ψc

�
(77)

Substituting the values of the Lagrange multiplier in Eq. (51), we

obtain the control input vector as

u � −P−1
h
BT

zI BT
zC

i" λI

λC

#

� −P−1
�
BT

zIG
−1
I

�
zI �GICΨc

	
−BT

zCΨc

	
� −P−1

�
BT

zIG
−1
I zI �

�
BT

zIG
−1
I GIC −BT

zC

	
Ψc

	
(78)

This completes the proof. □

ThematrixGI is a diagonal matrix, and therefore its inverse can be

calculated by taking the reciprocal of the diagonal terms. Hence,G−1
I

is obtained as the following:

G−1
Iij

�
(

3αi
�tgi �3

; if i � j

0; otherwise
(79)

We denote Ψk as the kth element of the vector Ψc. If a collision

fa; bg is the kth element of the ordered set Ω, we denote Ψab ≜ Ψk.

Using this notation and Eq. (79), we simplify the optimal command

obtained in Eq. (78) and express it for each pursuer as

ui �
3zi
�tgi �2

�
Xi−1
j�1

fj;ig∈Ω

ζijt
g
jiΔij�tgi � Δij�Ψji

2αi�tgi �2

−
Xn
j�i�1
fi;jg∈Ω

ζijt
g
ijΔij�tgi � Δij�Ψij

2αi�tgi �2
(80)

The proposed guidance law requires the estimate of zero-effort-

miss distances and time-to-go between various entities of the

engagement scenario. The time-to-go information can be

approximated using range information as shown in Eqs. (5), (6),

and (54). The ZEM distances can be obtained by the following

approximate relations:

zi ≈ �tgi �2VCi
_θi �

1

2
anTi�tgi �2 (81)

zij ≈ �tgij�2VCij
_θij (82)

Remark 1: The proposed guidance law can be seen as augmented

proportional navigation (APN) guidance with a bias term. The first

term in Eq. (80) corresponds to APN guidance, and the rest of the

terms correspond to the collision avoidance maneuver. Therefore,

when the pursuer is not required to perform the collision avoidance

maneuvers, the guidance law degenerates to APN.

V. Case of Two Pursuers

In this section, we will investigate a special case of two pursuers

and provide a closed-form analytical solution of the proposed

guidance law.

A. Analytic Solution of Guidance Law

In this case, there are two pursuers heading for interception of two

targets while avoiding collision between them. Both the pursuers

have similar maneuvering capabilities. Hence, the weights on their

individual control effort are comparable. From Eqs. (63–65), the

matrix G ∈ R3×3 for this case is given by

Using Eqs. (67) and (73), we obtain

zcol � zC �G−1
i3 G

T
i2zI � zC −GT

ICG
−1
I zI (84)

Incorporating the values of GIC and G−1
I from Eqs. (65) and (79),

we have

1512 JHA ETAL.

D
ow

nl
oa

de
d 

by
 T

E
C

H
N

IO
N

 -
 I

SR
A

E
L

 I
N

ST
 O

F 
T

E
C

H
 o

n 
Ja

nu
ar

y 
3,

 2
02

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
41

39
 



zcol � z12 −
�

ζ12t
g2

12

6α1
�Δ12 � 2tg1� −ζ21t

g2

12

6α2
�Δ21 � 2tg2�

�

×

2
664

3α1

tg
3

1

0

0 3α2

tg
3

2

3
775
"
z1

z2

#
(85)

� z12 −
ζ12t

g2

12�Δ12 � 2tg1�z1
2tg

3

1

� ζ21t
g2

12�Δ21 � 2tg2�z2
2tg

3

2

(86)

In this case, zcol is a scalar because there is only one possible

collision. From Eq. (67), the matrix Gi3 ∈ R1×1 is obtained as

Gi3 �
��

ζ212
α1

� ζ221
α2

� �tg12�3
3

−
3α1
�tg1�3

�
ζ12
6α1

�tg12�2�Δ12 � 2tg1�
�
2

−
3α2
�tg2�3

�
ζ21
6α2

�tg12�2�Δ21 � 2tg2�
�
2
�−1

(87)

� 12α1α2�tg1�3�tg2�3
α2�tg2�3ζ212�tg12�3Δ2

12�3tg1�Δ12��α1�tg1�3ζ221�tg12�3Δ2
21�3tg1�Δ21�

(88)

Here, the dead-zone function ΨS;Gi3
�⋅�:R1 → R1 is one-dimen-

sional and is associated with the set

S �
n
zd12 ∈ Rjjzd12j > R

o
(89)

whereR is the desired safe distance between the two pursuers, and zd12
is defined as in Eq. (32). The optimal value zd�12 is obtained from

Eq. (71) as

zd�12 � argmin
zdc∈S

�
zd12 − zcol

	
2
Gi3 (90)

Therefore,

zd�12 �
(

zd12 jzd12j ≥ R

R sign�zd12� jzd12j < R
(91)

FromEqs. (74) and (91), the dead-zone function can be expressed as

ΨS;Gi3
�zcol� � Gi3

�
zd�12 − zcol

	
� −Gi3ΨR�zcol� (92)

where the function ΨR�x� is given as

ΨR�x� �
8<
:

0; jxj > R
x − R; 0 < x ≤ R
x� R; −R < x ≤ 0

(93)

Using the deriveddead-zone function andEq. (80), theguidance law

for both the pursuers is given as

u1�
3z1
�tg1�2

−
6α2t

g
1ζ12t

g
12Δ12�tg1�Δ12��tg2�3ΨR�zcol�

α2�tg2�3ζ212�tg12�3Δ2
12�3tg1�Δ12��α1�tg1�3ζ221�tg12�3Δ2

21�3tg1�Δ21�
(94)

u2�
3z2
�tg2�2

� 6α1t
g
2ζ21t

g
12Δ21�tg2�Δ21��tg1�3ΨR�zcol�

α2�tg2�3ζ212�tg12�3Δ2
12�3tg1�Δ12��α1�tg1�3ζ221�tg12�3Δ2

21�3tg1�Δ21�
(95)

B. Case of One Pursuer with Severely Limited Maneuver Capability

Now, we present the guidance law for the case, where one of the
pursuers (say, second pursuer) has a severely limited maneuver
capability. Thus, the penalty on the control effort for this pursuer can
be set to a very large value (α2 → ∞). Equations (94) and (95) then
reduce to the following:

lim
α1
α2
→0
u1 �

3z1
�tg1�2

−
6tg1�tg1 � Δ12�ΨR�zcol�
ζ12�tg12�2Δ12�3tg1 � Δ12�

(96)

lim
α1
α2
→0
u2 �

3z2
�tg2�2

(97)

From the preceding control inputs, it can be seen that the second
pursuer doesAPNwith a gain of 3, whereas the first pursuer performs
APN along with the collision avoidance maneuver.

VI. Simulations and Experimental Validation

In this section, we will present the results for simulations and
experimental validation that were conducted to investigate the
performance of the proposed guidance law for the case of two
pursuers. Before the commencement of the engagement, we assume
that the pursuer–target pairing has already been carried out based on
various factors that can include distances to the targets, functional
capabilities of the pursuers, etc. Once the engagement begins, the
pursuers are locked on to their respective targets. For all the cases, the
P1 − T1 and P2 − T2 pursuer–target pairing is assumed.

A. Simulation Results

In all the simulations, the speeds of the pursuers (P1, P2) and the
targets (T1, T2) are assumed to be constant. The minimum safe
distance between the pursuers is R � 300 m.

1. Linear Simulations

Here, we present the simulation results of the linearized
engagement kinematics, given by Eqs. (12–15), for the case of
stationary targets. All the initial separations perpendicular to the
corresponding line of sights are zero and the final times are

tf1 � 10.2 s, tf2 � 10.1 s, tf12 � 3.8 s.
Figure 2 shows the cooperative collision avoidance between the

pursuers where both the pursuers have the same penalty on their
control effort α1 � 1 and α2 � 1. From Fig. 2a, it can be seen that
both the pursuers cooperate equally and avoid collision by achieving
the safe separation of 300mat the time of collision (3.8 s). Alongwith
this, their separation from their corresponding targets goes to zero
at their respective interception times. In Fig. 2b, the acceleration
profile for the pursuer is linear, as can be justified from Proposition 1.
A switch in acceleration occurs at the time of collision, after which
both the pursuers perform APN for intercepting the target.
Figure 3 shows the case when one of the pursuers has severely

limited acceleration capability. In this case, we choose a very high
penalty on the control effort for this pursuer (α2 � 1000). Because of
this, only the first pursuer maneuvers to avoid collision between
them, whereas the second pursuer only performs APN to reach its
corresponding target. It can be seen from Fig. 3a that they
successfully avoid collision by achieving the safe separation of 300m
at time of collision (3.8 s). In addition to this, the miss distance for
each pursuer at the time of its respective interception is also zero. The
acceleration profile in Fig. 3b shows that there is only one switch for
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the second pursuer, whereas there is no switch in the acceleration

profile for the first pursuer.

2. Nonlinear Simulations

The guidance law was derived assuming a linearized engagement

model. Therefore, to evaluate the applicability of guidance law in

nonlinear engagement scenario, we performed the simulation using

nonlinear state equations as described in Sec. II.A. This section

presents the performance of the guidance law in nonlinear

engagement scenarios for both stationary targets (scenario 1) and

targets maneuvering (scenario 2) with constant acceleration. The

parameters for the simulation are summarized in Table 1.

Figure 4a shows the trajectories for the case when the targets are

stationary and the pursuers have identical maneuver capabilities. The

dotted line shows the initial LOS between each pursuer–target pair.

Because both pursuers are cooperating equally, both deviate

symmetrically from the initial LOS to avoid collision. The

acceleration profile for each pursuer is also symmetric, as can be seen

in Fig. 4c. For the same engagement scenario, Fig. 5a shows the case

when the pursuers have different maneuvering capability. Here,

the second pursuer has 10 times higher penalty on the control effort
than the first pursuer. Because of this, it can be noticed that the second
pursuer deviates less than the first pursuer. Also, the acceleration
requirement from the second pursuer is much less than that from the
first pursuer (see Fig. 5c).
In Fig. 6, the second pursuer has severely limited maneuver

capability, and therefore the penalty on its control effort is very high.
The trajectories in Fig. 6a show that only the first pursuer deviates
from the collision course to avoid collision. In the addition to this,
from Fig. 6c it can be noticed that the second pursuer maneuvers
negligibly. In all these cases, it can be seen from Figs. 4b, 5b, and 6b
that the relative separation between the targets is more than the
desired safe limit. Also, the similarity of the acceleration profiles in
the nonlinear case (Figs. 4c, 5c, and 6c) to that of the linear case
(Figs. 2b and 3b) backs the fact that the near-collision course
approximations are valid during the entire engagement.
Now, we will present the case of constantly maneuvering targets.

Figure 7a shows an engagement scenario inwhich the pursuers do not
avoid each other while intercepting their corresponding targets. As
shown in this figure, the pursuers collide with each other and
therefore do not intercept the target. Figure 7b shows the trajectories
of the pursuers when they use the proposed guidance laws to avoid
collision and intercept the maneuvering targets. The relative
separation achieved in this case is 386 m, which is more than the
safe limit.

B. Experimental Validation

We conducted experimental validation of the proposed guidance
law to test its applicability in a small indoor environment. The
experiments were conducted in the Cooperative Autonomous
Systems (CASY) Laboratory at Technion, which serves as a testbed
for research in cooperative guidance and control of aerial and ground
vehicles. The description of the testbed is presented in Ref. [21]. The
ground area for the experiment was 3 × 3 m, and two Kobuki robotic
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Fig. 3 Collision avoidance when one of the pursuers has a limited maneuver capability �α1 � 1;α2 � 1000�.

Table 1 Nonlinear simulation parameters

Parameter
Value

(scenario 1)
Value

(scenario 2)

Initial position of P1, m (0, 0) (0, 0)
Initial position of P2, m (0, 5000) (0, 5000)
Initial position of T1, m (5000, 5000) (0, 7000)
Initial position of T2, m (0, 5000) (0, −2000)
Speed of pursuers �VP1

; VP2
�, m/s (700, 700) (700, 700)

Speed of targets �VT1
; VT2

�, m/s (0, 0) (100, 100)
Target accelerations �acT1

; acT2
�, m∕s2 (0, 0) (−10, 10)

Minimum safe distance R, m 300 300

a) Relative separation b) Acceleration profile
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platforms (see Fig. 8) with diameters of 0.35 m each were used as
pursuers. The position information for each robot is obtained using
Optitrack motion capture system, and their speed is estimated from
the position data using a Savitzky–Golay digital filter [22]. The
software platform used is an experimental framework developed at

CASY, which integrates Optitrack motion capture system and other
robotic platforms with Simulink and Robot Operating System. The
commands from the controller are computed off-board at an update
rate of 30 Hz on a host computer and then sent to Kobuki base using
2.4 GHz standard WiFi protocol.
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Fig. 4 Scenario 1: cooperative collision avoidance between identical pursuers �α1 � 1;α2 � 1�.
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For all the experiments, the speeds of the robots were maintained
constant using a linear-quadratic tracking controller described in
[23]. The safe distance between the robots is measured between their
geometrical centers and is considered to be 0.40m. The parameters of
the experiments are summarized in Table 2.

Figure 9 shows the results when both robots have similar
maneuvering capabilities and cooperate with each other equally to
avoid collision. Trajectories of both the robots are shown in Fig. 9a.
The LOS joining the robots and their respective target points are
shown in dotted lines. Similarly, for the case when one robot has
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Fig. 6 Scenario 1: collision avoidance when one of the pursuers has severely limited maneuver capability �α1 � 1;α2 → ∞�.
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limited maneuvering capability, the trajectories and relative

separation between the robots are shown in Figs. 10a and 10b,

respectively. For both the preceding described cases, the nature of the

trajectories, although not identical, is similar to the one shown in
simulations in Figs. 4a and 6a. In all cases, the robots successfully
reach their target points, and fromFigs. 9b and 10b, it can be seen that
they maintain the minimum separation greater than 0.4 m at the time
of closest approach. It is suggested to follow a conservative approach
while choosing the value for the minimum separation because the
delays in the system and nonideal dynamics of the robots might drive
the robots closer than the safe limit.
By running various numerical and experimental validations, it was

found that, as expected, the performance of the guidance law in
nonlinear engagement scenarios is consistent whenever the near
collision course approximations hold. In cases where the paths of
the pursuers deviate significantly from the collision course, the
estimations of time-to-go measurements in Eq. (54) are no more
accurate. This leads to the degradation in the performance of the
guidance law. Also, the nonideal dynamics of the pursuer and
assumption of perfectly constant speed are attributed to the
differences seen between the trajectories obtained in simulations and
experimental validation.

VII. Conclusions

In this paper, a cooperative guidance law for n pursuers, which
integrates collision avoidance between the pursuers and ensures
capture of their respective targets, was proposed.An optimal-control-
based formulation was used to minimize the total team effort with
different penalties on the control effort of each pursuer, while
incorporating target interception and collision avoidance as state
constraints. Using this formulation, the guidance laws for the
pursuers were derived using the linearized engagement model and
linear quadratic optimal control theory. For constantly maneuvering
targets, the guidance law for each pursuer has the form of augmented
proportional navigation, with additional terms corresponding to
collision avoidance. A special case of two pursuers was considered,
and an analytical solution of the guidance law for this case was
obtained. In cases where one of the pursuers has a severely limited
acceleration capabilities, the proposed guidance law amounts to
performing the avoidance maneuver only by the other pursuer,

Fig. 8 Kobuki robotic platform.

Table 2 Parameters for experiment

Parameter Value

Initial position of P1, m (−1.8, −2.3)
Initial position of P2, m (−1.8, 1.0)
Initial position of T1, m (1.8, 1.0)
Initial position of T2, m (1.8, −2.3)
Speed of pursuers �VP1

; VP2
�, m/s (0.3, 0.3)

Speed of targets �VT1
; VT2

�, m/s (0, 0)
Target accelerations �acT1

; acT2
�, m∕s2 (0, 0)

Minimum safe distance R, m 0.4
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whereas the second pursuer performs only the intercept according to
augmented proportional navigation guidance law. Simulations for
both linear and nonlinear engagements and highlight the cooperation
between the pursuers. The experimental validation also confirms the
applicability of the guidance law, at least in the tested small indoor
environments. The proposed guidance law requires estimates of the
time-to-go between the different entities in the engagement scenario.
Apoor estimate of time-to-go in highly nonlinear scenarioswill result
in performance degradation.

Appendix: Generalized Dead-Zone Function

The generalized dead-zone function ΨS;Q�⋅�:RN → RN is
proposed in [15,20]. It is associated with subset S ∈ RN and a
positive-definite matrix Q ∈ RN×N , such that

ΨS;Q�z� � Q�zd� − z� (A1)

The minimizer zd� is given by

zd� � argmin
zd∈S

�zd − z�TQ�zd − z� (A2)

Because Q is positive-definite, the minimum value zd� always
exists. In cases in which the set S is convex, the minimum value is
unique, and the dead-zone function is unequivocally defined at each
point. But this is not the case in our problem. Here, S is not even
connected, and hence multiple solutions may exist. Fortunately, this
occurs on a set ofmeasure zero. Evenmore importantly, even in those
cases in which the dead-zone function takes multiple values, each of
them can be used for our purpose because each of these values
corresponds to the optimum solution to the guidance problem.
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