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A new three-point guidance concept for imposing a launch angle, impact angle, and intercept time against a

stationary target is proposed. The guidance concept is based on the defining geometric rule of an ellipse. This rule

states that, for every point along an ellipse, the sum of the distances to the two focal points is constant. A general

method for finding the desired elliptical trajectory that achieves a desired launch angle, impact angle, and intercept

time is presented.Once the elliptical trajectory is determined, the sumof the distances between the interceptor and the

two foci is the only information required for implementation. The interceptor’s equations of motion are linearized

around the desired elliptical trajectory, and a proportional–integral–derivative controller is used to implement the

elliptical geometric rule. Nonlinear simulations are performed for an interceptor imposing different impact angles

with the same intercept time as well as different intercept times at the same impact angle, both against a stationary

target. The effects of initial heading errors and first-order interceptor dynamics are also examined.

I. Introduction

S HAPING an interceptor’s trajectory to achieve a specific

intercept time or impact angle has large ramifications on target

survivability, warhead size, collateral damage, and possible

coordination efforts with other interceptors. A wide variety of

guidance laws that enforce a specific impact angle, an intercept time,

or both have been documented in the open literature. Some key

characteristics distinguishing these approaches are the underlying

guidance concepts and how they are implemented.

A classic example of a guidance concept that can be used for

intercept time and impact angle guidance is deviated pure pursuit

(DPP). DPP is an extension of the pure pursuit geometric rule in that

the interceptor maintains a constant bias from the line of sight (LOS)

vector. The interceptor’s impact angle is only dependent on the LOS

bias angle and the speed ratio between the interceptor and the target

[1]. In [2], an optimal control-based guidance law was used to

implement the DPP geometric rule to enforce either an intercept time

or angle against a nonmaneuvering target. The main advantage of

using DPP is that it is simple to implement and only requires

knowledge of the target’s speed and the LOS to work.

The parallel navigation geometric rule serves as the underlying

guidance concept for a wide variety of guidance laws. A popular

solution strategy is to assume small deviations from a collision

triangle and to use optimal control methods or differential game

theory [3–5] to develop the guidance law. These guidance laws can be

successfully implemented to solve the terminal intercept angle and

time problems if the interceptor does not deviate substantially from

the collision triangle geometry during the endgame phase of the

engagement. The first appearance of an impact-angle guidance law

using optimal control was in [6]. The proposed guidance law was

developed by solving a linear quadratic control problem of a reentry

vehicle intercepting a nonmaneuvering target with a constraint on its

impact angle. Similar guidance laws have been developed in [7–9]

that solve linear optimal control problems to enforce a specific

intercept angle. In these approaches, a performance index involving

the interceptor’s control, impact angle, and miss distance is
minimized.
Linearization around a collision triangle was also used to develop

an optimal guidance law that achieved a specific impact time against a
stationary target in [10]. The guidance law was developed by
formulating the intercept time as a path constraint andminimizing the
interceptor’s acceleration throughout the engagement. In [11], an
extra degree of freedom was added to the system by controlling the
jerk instead of the acceleration of the missile. This additional degree
of freedom enabled the interceptor to achieve both an intercept time
and angle simultaneously. The guidance law in [12] enforced both an
impact time and angle using a polynomial guidance law. Polynomial
guidance [13] was developed based on small deviations from a
collision triangle and expresses the interceptor’s time to go (tgo) as a
polynomial function. Overall, the benefit of linearizing around the
collision triangle is that it enables the use of linear controller
strategies and oftentimes leads to analytical solutions. However, the
accuracy of these guidance laws degrades when there are large
deviations from the collision triangle during the endgamephase of the
engagement.
Biased proportional navigation (BPN) is another prominent

guidance concept that has been used for imposing a terminal intercept
angle and time. Using a form of BPN, Lu et al. [14] developed an
adaptive framework for determining the proportional navigation gain
that guided a hypersonic vehicle toward a stationary target. The
guidance laws in [15–19] imposed a specific impact angle by
dividing the missile trajectory into two distinct phases. The
differences in [15–19] lie in the gain values selected for each phase as
well as the switching time between the phases. Additionally, Liu et al.
[20] obtained a desired impact angle by continuously solving a
closed-loop, optimal-control problem to update the proportional
navigation gain. Zhang et al. [21] extended the use of BPN to enforce
both an intercept angle and time by incorporating a tgo estimate in the
gain calculation.
Other guidance concepts developed for imposing intercept

times and angles have been implemented using nonlinear guidance
laws. A new guidance concept was proposed in [22] that enabled an
interceptor to impose a predefined angle relative to the target’s
velocity vector. The guidance lawwas developed using the nonlinear,
robust sliding-mode control (SMC) methodology [23]. Similarly,
Kumar et al. [24,25] defined the terminal impact angle in terms of a
desired LOS and used SMC to shape the missile’s normal
acceleration. In [26], an LOS rate shaping process was developed for
an interceptor to achieve both a specific intercept time and angle and
was implemented using a second-order SMC.
Geometric guidance concepts featuring circular trajectories have

also been used for intercepting targets at a specific angle. In [27], a
circular navigation guidance law was developed and implemented
using the instantaneous approach angle of the missile relative to the
target. Similarly, Yoon [28] developed a guidance law that imposed a
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specific impact angle using a circular reference curve relative to a
moving target.
The guidance laws found in [2,6–22,24–29] are considered to be

two-point guidance laws. In two-point guidance laws, only the
interceptor and the target are considered. This means that the
successful implementation of the guidance concept is dependent on
the interceptor’s ability to measure or estimate all of the required
parameters (e.g., LOS, target heading and velocity). Furthermore, in
the cases where both an intercept time and impact angle are
independently enforced [11,12,21,26], an extra degree of freedom is
required in the guidance law. This extra degree of freedom results in
greater guidance law complexity because more information is
required (e.g., tgo and LOS rate).
A three-point guidance concept approach incorporates a third

party. Tsalik and Shima [30,31] proposed a new, three-point guidance
law called inscribed angle guidance, which can be used to enforce an
intercept angle. This guidance concept capitalizes on the unique
geometric principle that a constant inscribed angle between the
launcher, missile, and target necessitates a circular trajectory.
Therefore, only the inscribed angle is required to implement the
guidance law. The downside of using circular trajectories is that there
is only one degree of freedom, namely, the origin (focus) of the circle.
This single degree of freedommeans that each nominal trajectory has
only one unique launch angle, impact angle, and intercept time.
Extending the scope of a geometric guidance concept with a single
focus to two foci adds two additional degrees of freedom (distance
and angle between the foci) that allow for the launch angle, impact
angle, and intercept time to be determined independently.
Hyperbolas and ellipses are the two types of conic sections that

have two foci. Hyperbolas are defined by the difference of the
distances between the two foci being constant. Hyperbolic guidance
strategies [32] capitalize on this principle by picking the desired
distance between the two foci to form the missile’s trajectory.
Unfortunately, no uses of hyperbolic guidance to impose a specific
intercept time or angle have been found in the open literature.
There are also a few cases where elliptical trajectories have been

used for missile guidance applications. In [33], elliptical trajectories
were developed for a missile to intersect a stationary target at a
specific angle. Additionally, Reidel et al. [34] used elliptical
trajectories to impose a terminal intercept angle for the Tomahawk
missile. Depending on the initial conditions of the missile, the
Tomahawk would converge to the closest ellipse that intersected the
target at the desired impact angle. In both [33,34], the guidance laws
that maintained the missile along the elliptical trajectories were
not shown.
This paper presents a new three-point guidance concept and a

linear guidance law that imposes a launch angle, impact angle, and
intercept time against a stationary target. The foundation of this
guidance concept is the elliptical geometric rule that states that the
sum of the distances between any point along an ellipse and the two
foci of that ellipse is constant. This elliptical guidance concept is
beneficial because it has three degrees of freedom (the origin of the
ellipse, the rotation angle of the ellipse, and the distance between the
foci), and a control scheme can be designed around one variable (sum
of the distances between the interceptor and the two foci). The three
degrees of freedom allow for a range of launch angles to be achieved
for a defined impact angle and intercept time, and the single control
parameter allows for the development of a simple and implementable
guidance law. The result is a flexible framework for achieving a range
of intercept times and angles that can be implemented without
calculating time-varying variables like tgo and LOS rate. The
simplicity of implementation distinguishes this elliptic guidance
concept from other similar impact angle and intercept time guidance
laws [11,12,21,26].
This paper is organized as follows. The equations of motion are

formulated in Sec. II. The new guidance concept and implementation
strategy is presented in Sec. III. The method for finding the desired
elliptical trajectories is developed in Sec. IV. Section V presents the
guidance law development. Section VI contains simulations for
various scenarios. And Sec. VII concludes on the findings of this
research.

II. Equations of Motion

The engagement between the interceptor and the target is
formulated as a surface-to-surface, planar interception problem. The
interceptor is assumed to travel at a constant speed V from a
stationary launcherL clockwise around an elliptical trajectory toward
a stationary target T. The problem is formulated using both a
Cartesian and polar coordinate frame. TheCartesian frame is used for
the simulations of the guidance law, whereas the polar frame is used
for deriving the linear guidance law.

A. Cartesian Frame

The problem is initially formulated in the Cartesian frame, and the
engagement geometry is displayed in Fig. 1. The equations ofmotion
for an ideal missile in the Cartesian frame are given as

_x � V cos γ (1a)

_y � V sin γ (1b)

_γ � aM
V

(1c)

Themissile acceleration aM is measured orthogonal to the velocity
vector, and themissile’s flight-path angle γ is measured relative to the
inertial frame. The angle θ, called the eccentric anomaly in orbital
mechanics, is an angular parameter that gives the relative location of
the missile along the elliptical trajectory. To correspond with the
definition of γ, θ is measured clockwise. The Euclidean distances
between the two foci (f1, f2) to the missile are marked as d1 and d2,
respectively.
The major axis of the ellipse is a, and the minor axis is b. The

distance from the origin to either focus is c �
����������������
a2 − b2

p
. The angle

betweenL and T is ξ. Finally, the general parametric equations for an
ellipse rotated by λ about its origin, �x0; y0�, in the inertial Cartesian
frame are

x � −a cos θ cos λ� b sin θ sin λ� x0 (2a)

y � a cos θ sin λ� b sin θ cos λ� y0 (2b)

B. Polar Frame

Although the Cartesian frame is intuitive and the equations of
motion [Eq. (1)] are straightforward, the equations for a nominal
elliptical trajectory are better suited to the polar frame. A nominal
trajectory is essential to developing and analyzing a linear guidance
law for the proposed guidance concept. Therefore, a polar coordinate
frame is used for developing the equations of motion of the ellipse to
simplify the linearization process. Figure 2 presents the engagement
geometry in the polar frame.
The origin of the polar frame is located at f1, and the radial (ed1 )

and the rotational (eψ ) directions make up the two axes. The rates of
change along these two axes are

Fig. 1 Elliptical path geometry: Cartesian frame.

2436 LIVERMORE, TSALIK, AND SHIMA

D
ow

nl
oa

de
d 

by
 T

E
C

H
N

IO
N

 -
 I

SR
A

E
L

 I
N

ST
 O

F 
T

E
C

H
 o

n 
Ja

nu
ar

y 
7,

 2
02

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
35

65
 



_d1�t� � −Vd1�t� (3a)

_ψ�t� � −
Vψ �t�
d1�t�

(3b)

Similar to the Cartesian frame, the acceleration of the interceptor is
orthogonal to the velocity vector, which is the vector sum of the two
velocity components in the polar frame (Vψ and Vd1 ). The time rates
of change of Vd1 and Vψ are given as

_Vd1�t� �
Vψ �t�2
d1�t�

−
Vψ �t�aM�t�

V
(4a)

_Vψ �t� � −
Vd1�t�Vψ �t�

d1�t�
� aM�t�Vd1 �t�

V
(4b)

The elliptic guidance concept is dependent on the sum of the
distances from each focus. Therefore, the value of d2 is found using
the law of cosines, yielding

d2 �
���������������������������������������������
d21 � 4c2 − 4d1c cos β

q
(5)

where

β � π − jψ j (6)

The absolute value of ψ is used in Eq. (6) to ensure that β is the
supplementary angle of ψ (given−π < ψ < π). Last, the ellipse in the
polar frame can be mapped back into the Cartesian frame using the
following parametric equations:

x � c� d1 cosψ � x0 (7a)

y � d1 sinψ � y0 (7b)

III. New Guidance Concept

The new elliptic guidance concept is presented in this section.
First, the guiding geometric rule is defined, followed by a
recommended implementation strategy for executing the guidance
concept.

A. Geometric Rule

The proposed three-point elliptic guidance concept is based on the
defining geometric rule of an ellipse, which states the following.
Theorem 1: The sum of the distances between any point along an

ellipse and the two focal points of that ellipse are constant and equal
to twice the length of the semi-major axis.
Proof: See [35]. □

The location of the ellipse’s origin, the angle of rotation of the
ellipse, and the distance between the origin and the foci provide three
degrees of freedom for manipulating the interceptor’s trajectory.
Smartly picking the location of each focus allows the elliptical
trajectory to be customized to intercept the stationary target at a
desired intercept time t�f and at desired launch and impact angles
(γ�L and γ�T). Once the foci locations are determined, the distances
between them and the interceptor can be measured. The sum of these
two distances is given as

D � d1 � d2 (8)

This total distance is subtracted from twice the major axis to give
the deviation error of the interceptor from the desired elliptical
trajectory:

e � 2a −D (9)

The only parameter required for the successful enforcement of this
guidance concept is D. As a result, this elliptical guidance concept
gives a simple framework for following along an elliptical trajectory.

B. Implementation

The concept of measuring distances from the interceptor to the
foci is simple in theory but can be difficult in implementation. In a
real-world scenario, a physical device would be required at each
focus to serve as a beacon for the interceptor. Because the foci
locations are functions of the desired ellipse, these devices would be
required to move potentially large distances, depending on the
desired launch angle, impact angle, and intercept time. Therefore,
an alternative approach using virtual foci is proposed. Figure 3
shows schematically how the two distances from these virtual foci
to the interceptor are measured relative to the launcher’s location.
In Fig. 3, the launcher is the reference point for determining the

distances and the angles to the two foci (f1 and f2) and the
interceptor. Because the launcher and two foci are stationary
throughout the engagement, dL1, dL2,ϕ1, andϕ2 are constant and can
be calculated from the launcher. The distances from the interceptor to
the foci are calculated using the law of cosines:

di �
����������������������������������������������������������������
d2L � d2Li − 2dLdLi cos�ϕ − ϕi�

q
; i ∈ f1; 2g (10)

The only time-varying parameters in Eq. (10) are the distance dL
and the angle ϕ of the interceptor to the launcher, and both of them
can be measured by the launcher. All the other variables are known a
priori and are constant throughout the engagement. Therefore, the
error value of the interceptor [Eq. (9)] can be calculated by the
launcher and sent via uplink to the interceptor. This process
minimizes the hardware required by the missile, while maintaining
the integrity of the guidance concept.

IV. Trajectory Design

The proper implementation of the elliptic guidance concept is
dependent on knowing the locations of the desired ellipse’s foci. This
section outlines the process used to find the desired elliptical

Fig. 2 Elliptical path geometry: polar frame.

Fig. 3 Implementation of elliptic guidance for launcher–target scenario.
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trajectory. First, the general equations that define an elliptical
trajectory for γ�L, γ

�
T , and t�f are presented. Next, a special case is

developed that gives closed-form equations for a subset of ellipses
that meet γ�T and either γ�L or t�f. Third, an algorithm outlining a
solution strategy for finding the elliptical trajectory that satisfies γ�L,
γ�T , and t

�
f is presented. Last, the algorithm is applied in a case study.

A. General Case

The process for finding an ellipse that satisfies γ�L, γ
�
T , and t�f can

best be understood by first looking at how the foci of that ellipse
are defined. The foci f1 and f2 are defined in the inertial Cartesian
frame as

f1x � x0 � c cos λ (11a)

f1y � y0 � c sin λ (11b)

f2x � x0 − c cos λ (11c)

f2y � y0 − c sin λ (11d)

Four variables define the location of the foci in Eq. (11): the origin
of the ellipse (x0 and y0), the distance from the origin to each foci (c),
and the angle of rotation of the ellipse (λ). The values of x0 and y0 are
coupled because the elliptical trajectory must intersect both L and T.
This leaves three degrees of freedom, which means that three
equations are required.
Two of the three equations come from the flight-path angle γ of the

interceptor, which is defined in the inertial Cartesian frame as

tan�2γ� � −
�y − f1y��x − f2x� � �y − f2y ��x − f1x �
�y − f1y ��y − f2y � − �x − f1x��x − f2x�

(12)

The first equation accounts for the flight-path angle of the
interceptor at L (γ � γ�L, x � xL, and y � yL), and the second
equation accounts for the interceptor’s flight-path angle at T (γ � γ�T ,
x � xT , and y � yT). Because of the constant-speed assumption, the
arc length of the ellipse is directly correlatedwith t�f . The equation for
the arc length of an ellipse yields the third equation needed in the
formulation. The equation that gives the arc length of an ellipse is
known as the elliptical integral of the second kind and is defined as

L � a

Z
θT

θL

������������������������
1 − ϵ2cos2θ

p
dθ (13)

where ϵ, θ, and a are defined, respectively, as

ϵ � c

a
(14)

θj � tan−1
� ����������������

a2 − c2
p

a
tan

�
tan−1

�
yj − y0
xj − x0

�
− λ

��
; j ∈ fL; Tg

(15)

a � 1

2

���������������������������������������������������������������������������������������������
��xL − x0� − c cos λ�2 � ��yL − y0� − c sin λ�2

q
� : : :

1

2

�����������������������������������������������������������������������������������������������
��xL − x0� � c cos λ�2 � ��yL − y0� � c sin λ�2

q
(16)

As seen in Eqs. (14–16), the arc length of the ellipse is dependent
on the same four variables that define the foci of the ellipse [Eq. (11)].
Once the arc length from Eq. (13) is known, the intercept time is
simply

tf � L
V

(17)

Given the complexity of Eqs. (12) and (13), explicit solutions
defining the ellipse that satisfies a specific γ�L, γ

�
T , and t

�
f have not been

found. Therefore, a simplifying assumption is made that reduces the
degrees of freedom from three to two and yields explicit solutions for
elliptical trajectories that satisfy either γ�T and t�f or γ�T and γ�L. This
special case is developed in the following subsection.

B. Special Case

An explicit representation of a subset of ellipses that satisfy a given
γ�T and either t�f or γ�L is developed in this subsection. To draw an
ellipse, four things are needed: the origin, the semi-major and semi-
minor axes (a and b), and the rotation angle λ. This method starts by
setting λ � γ�T . Next, the inertial Cartesian frame itself is rotated to
match γ�T . An example of rotating the ellipse and the inertial Cartesian
frame to match γ�T is displayed in Fig. 4.
Remark:All parameters in the rotated reference frame are denoted

with prime notation.
Because the ellipse and the inertial Cartesian frame are rotated by

the same angle λ, the ellipse can be represented as an unrotated ellipse
in the rotated reference frame (see Fig. 4). This allows the parametric
equations describing the ellipse in this rotated reference frame
[Eq. (2)] to be simplified to

x 0 � −a cos θ� x 0
0 (18a)

y 0 � b sin θ� y 0
0 (18b)

The flight-path angle, relative to the rotated reference frame, can
now be defined as

tan γ 0 � _y 0

_x 0 �
b

a tan θ
(19)

where

γ 0 � γ − λ (20)

Plugging Eq. (18) into Eq. (19) yields the general equation for the
flight-path angle as a function of the missile’s location on the ellipse:

tan γ 0 � −
b2

a2
x 0 − x 0

0

y 0 − y 0
0

(21)

Rotating the ellipse tomatch γ�T placesT at one of thevertices of the
ellipse. This is important because, in the rotated frame γ 0

T � 0,
enabling closed-form equations to be developed. Equations (18) and
(21) describe a subset of possible ellipses that satisfy γ�T. These
equations are only a function of the y location of the ellipse’s origin in
the rotated frame (y 0

0) and are given as

x 0
0 � x 0

T (22)

Fig. 4 Elliptical path geometry: rotated reference frame.
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b �
����������������������
�y 0

T − y 0
0�2

q
(23)

a �
������������������������������������������������
�x 0

L − x 0
T�2�y 0

T − y 0
0�2

�y 0
T − y 0

0�2 − �y 0
L − y 0

0�2

s
(24)

tan γ 0
L � 2y 0

0�y 0
T − y 0

L� � y 02
L − y 02

T

y 0
0�x 0

T − x 0
L� � y 0

L�x 0
L − x 0

T�
(25)

The limits of y 0
0 are found by evaluating the denominator of

Eq. (24) and are dependent on the y values of T (y 0
T ) and L (y 0

L) in the
rotated reference frame. The value of θ for an unrotated ellipse is
found by rearrangingEq. (18) and substituting inEqs. (23) and (24) to
give

θ�x 0; y 0� � tan−1
�

−j�x 0
L − x 0

T�j������������������������������������������������
�y 0

T − y 0
0�2 − �y 0

L − y 0
0�2

p �y 0 − y 0
0�

�x 0 − x 0
T�
�

(26)

By plugging Eqs. (24) and (26) into Eq. (13), the length of the
trajectory between the launcher and the target is shown to be only a
function of y 0

0. Therefore, by choosing a specific y 0
0, the arc length

[Eq. (13)] and intercept time [Eq. (17)] can be easily calculated. Once
the desired ellipse is found in the rotated reference frame, the
locations of the foci can be translated back into the inertial Cartesian
frame using

x � x 0 cos�−λ� � y sin�−λ� (27a)

y � −x 0 sin�−λ� � y 0 cos�−λ� (27b)

It is important to emphasize that the ellipses generated from
Eqs. (22–25) constitute only a subset of the possible solutions. This
occurs for the special case because it is assumed that λ � γ�T , which
reduces the degrees of freedom from three to two. Therefore, for a
given γT , tf is dependent on the value chosen for γL, and vice versa.
The advantage of using the special case is that it yields closed-form
solutions of the elliptical trajectories, albeit for a limited range of
impact angles and intercept times. This method is still beneficial
because the resultant elliptical trajectories can be used directly for the
guidance law or as a valid initial guess to the numerical solver in the
general case.

C. Trajectory Design Algorithm

The proposed solution strategy for finding the desired elliptical
trajectory is portrayed in Algorithm 1. The process starts by defining
γ�T . Equations (22–25) from the special case are used to find the
elliptical trajectory that satisfies γ�T and t�f . If this resultant trajectory
is satisfactory, either because γL � γ�L or because the launcher has a
variable launch angle, then the trajectory design process is complete.
If the resultant trajectory is not sufficient because γL ≠ γ�L, then the

special case trajectory that satisfies γ�L and γ�T is used instead. This

new trajectory is used as the initial guess for solving the equations
describing the general case [Eqs. (12) and (17)] to determine the
elliptical trajectory that satisfies γ�L, γ

�
T , and t�f .

The successful implementation of Algorithm 1 assumes that the
desired trajectory is achievable. It is important to note that not every
combination of γ�L, γ

�
T , and t

�
f is possible. Thevalues are dependent on

each other as well as the relative distance and angle that L and T are
from each other. Because of these five different variables (L, T, γL,
γT , and tf), the limit cases for all of the possible combinations are
not shown.
That being said, there are two specific values of γT where unique

solutions exist. When γ�T � ξ, the angle between T and L in the
inertial Cartesian frame, the only possible solution connecting the
two points is a straight line. Next, a singularity exists when
γ�T � ξ	 π, and there is no ellipse that connects L and T.

D. Case Study

In this subsection, a case study implementing Algorithm 1 is
presented. A trajectory with γ�L � 80 deg, γ�T � −60 deg, and

t�f � 50 s is desired. The launcher and the target are located at

L � �0; 0 m� and T � �10;000; 1000 m�, respectively, in the inertial
Cartesian frame, and the interceptor’s speed is assumed to be
constant at V � 300 m∕s.
The first step is to set λ � γ�T and use the special case equations

[Eqs. (22–25)] to find the value of y 0
0 that corresponds to t

�
f . Figure 5

displays six different elliptical trajectories corresponding to different
values of y 0

0. The specific properties for each trajectory are shown in

Table 1.
In Fig. 5, the lines 1 and 6 represent the limits of γL for the special

case. When the two foci are collocated, the resulting trajectory is a
circle (number 5) and is identical to the result of the inscribed angle
method [30].
Specific to the case study, the dotted line (number 3) is the trajectory

that achieves both γT � −60 deg and tf � 50 s. However, the value

of γL for the trajectory is 93.1 deg, which does not satisfy γ�L for the
problem.The next step is to find the special case trajectory that satisfies
γ�L and γ�T (number 4) and use it as the starting point for solving the
general case equations [Eqs. (12) and (17)]. Successfully solving

Algorithm 1 Determining foci for γ�T, γ
�
L, and t�f

1: identify locations of L and T
2: choose γ�T
3: if γ�T ≠ ξ� kπ∕2, k ∈ Z, then
4: set λ � γ�T
5: choose y 0

0 corresponding to t
�
f [Eqs. (13), (24), and (26)]

6: find γL for given y 0
0 (Eq. 25)

7: if γL ≠ γ�L, then
8: choose y 0

0 corresponding to γ�L [Eq. (25)]
9: use trajectory from step 8 as initial guess for numerical solver
10: numerically solve Eqs. (12) and (17) for λ, c, and �x0; y0� that

satisfy t�f
11: end if
12: return Location of two foci f1 and f2 [Eq. (11)]
13: end if

Fig. 5 Special case: range of elliptical trajectories for γ�T � −60 deg.

Table 1 Trajectory properties for Fig. 5

Trajectory tf , s γL, deg y 0
0, m

1 ∞ 120 �y 0
L � y 0

T�∕2 � 4580
2 71.1 109.7 400
3 50 93.1 4110
4 44.4 80 3851
5 42.2 71.4 3647
6 34.7 17.34 −∞
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Eqs. (12) and (17) yields the values of x0, y0, λ, and c and subsequently
the foci of the desired ellipse [Eq. (11)]. A series of trajectories
corresponding to γ�L � 80 deg and γ�T � −60 deg are plotted in
Fig. 6 to illustrate the solution space for the numerical solver.
A unique property exists when finding the set of ellipses that

intersect L and T at γL and γT . The angle between the origin and the
midpoint of the trajectory [�θL � θT�∕2] is the same for every ellipse
in the set. This is shown graphically in Fig. 6a, where a number of
ellipses are plotted that achieve both γ�L and γ

�
T . For this particular case,

the limits of λ are the angle between T and L (λmax � ξ � 5.7 deg)
and the angle of the vertical line (λmin � −79.4 deg). Figure 6b is a
zoomed-in version of Fig. 6a and plots the special case trajectory used
as the initial guess for the numerical solver (dashed line) and the
minimum and maximum intercept times, which correspond to the
maximum and minimum values of λ (black and gray triangles,
respectively). Most importantly, the solution trajectory that achieves
γ�L � 80 deg, γ�T � −60 deg, and t�f � 50 s is plotted as the black

dotted line in Fig. 6.

V. Guidance Law

The purpose of the guidance law is to maintain the interceptor
along the desired elliptical trajectory by implementing the elliptical
guidance concept. Functionally, the guidance concept is enforced by
driving the error in Eq. (9) to zero. A linear guidance law is used
because of the breadth of design and analysis tools available. The
process of developing the linear control law is split into three
sections. The first step is to define the nominal elliptical trajectory for
a specific set of foci. Next, small deviations are assumed around this
nominal trajectory, which allows the equations of motion to be
linearized. Finally, a linear controller is developed that minimizes the
missile’s error from the nominal trajectory.

A. Nominal Elliptical Trajectory

A nominal ellipse is required to linearize the missile’s nonlinear
equations of motion and eventually design the controller. The ellipse
is linearized in the polar frame (see Fig. 2), and the values of the states
for the nominal trajectory are given as

d�1 � l
ρ

(28)

where l is called the semilatus rectum and is defined as

l � a�1 − ϵ2� (29)

and ρ is

ρ � 1� ϵ cosψ� (30)

Remark: The asterisk denotes the parameters from the nominal

trajectory corresponding to the ellipse that satisfies γ�L, γ
�
T , and t

�
f .

The rates of change of the twovelocity componentsV�
d1
andV�

ψ are

given as

V�
d1

� _d�1 � ϵd�1 _ψ
� sinψ�

ρ
(31)

V�
ψ � _ψ�d�1 (32)

Because of the constant-speed assumption,

V �
��������������������
V2
d1
� V2

ψ

q
(33)

Plugging in Eqs. (31) and (32) into Eq. (33) yields

_ψ� � −
Vρ

d�1
���������������������������������������
1� ϵ2 � 2ϵ cosψ�p (34)

Last, the nominal acceleration is defined in terms of the curvature

a�M � −V2κ (35)

The curvature κ is defined in polar coordinates as

κ � jd21 � 2d2ψ − d1dψψ j
�d21 � d2ψ �3∕2

(36)

where

dψ � ∂d�1
∂ψ� �

_d�1
_ψ�

dψψ � ∂2d�1
∂ψ�2 �

ϵd�1
ρ2

�ρ cosψ� � 2ϵsin2ψ�� (37)

Notice that the nominal trajectory defined in Eqs. (28–32) is only

dependent onψ�. Thismeans that, for any angleψ , the corresponding
values of d�1 , V

�
d1
, V�

ψ , and a�M can be easily found.

B. Linearization

The first step in the linearization process is determining the linear

equations of motion relative to the nominal elliptical trajectory. The

sumof the two distancesD is the parameter used for the guidance law,

but it is not included as one of the states. Therefore, the second step is

to perform a transformation to change the existing states into the

desired parameter D.

a) Range of Trajectories b) Range of Trajectories (Zoomed In)
Fig. 6 General case: range of elliptical trajectories for γ�T � −60 deg and γ�L � 80 deg.
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1. Equations of Motion

The linearized states of the system are

Δx � �Δd1 ΔVd1 ΔVψ �T (38)

The equations of motion of these linearized states are defined as

Δ _x � A�t�Δx� B�t�Δu (39)

The values of A and B in Eq. (39) are found from taking the

Jacobians of the equations of motion in Eqs. (3) and (4) for the states

and controls, respectively, and are given as

A�t� �

2
66664

0 1 0

−V�
ψ �t�2

d�
1
�t�2 0

�
2V�

ψ �t�
d�
1
�t� − a�M�t�

V

�
V�
d1
�t�V�

ψ �t�
d�
1
�t�2

�
− V�

ψ �t�
d�
1
�t� �

a�M�t�
V

�
−

V�
d1
�t�

d�
1
�t�

3
77775

B�t� �

2
6664

0

− V�
ψ �t�
V

V�
d1
�t�

V

3
7775 (40)

The linearized system in Eq. (39) is a linear time-varying (LTV)

system that is a function of the time-dependent values of d�1�t�,
V�
d1
�t�, and V�

ψ �t�.

2. Total Distance Transformation

Theguidance concept is based onminimizing the deviation error in

Eq. (9). In the linear formulation, this error is represented as ΔD.

Because ΔD is not one of the states in Eq. (38), a transformation is

performed to relateΔD in terms of the known states. Assuming small

deviations from the nominal ellipse allows

ΔD�t� � ∂D�

∂d�1
Δd1�t� �

∂D�

∂V�
d1

ΔVd1�t� �
∂D�

∂V�
ψ
ΔVψ �t� (41)

whereD� is defined in Eq. (8), and its partial derivatives with respect
to the different states are

∂D�

∂d�1
� 1� d�1 − 2c cos β�

d�2
(42a)

∂D�

∂V�
d1

� 0 (42b)

∂D�

∂V�
ψ
� 0 (42c)

The time rate of change of the total distance error is found by taking

the time derivative of Eq. (41)

Δ _D�t� � d

dt

�
∂D�

∂d�1

�
Δd1�t� �

∂D�

∂d�1
ΔVd1�t� (43)

where

d

dt

�
∂D�

∂d�1

�
� d�2� _d�1 � 2_β�c sin β�� − _d�2�d�1 − 2c cos β��

d�22
(44)

d2 is defined in Eq. (5), and _β and _d�2 are defined as

_β � −
ψ _ψ

jψ j (45)

_d�2 �
_d�1�1 − 2c cos β�� � d�1�1� 2c_β� sin β��

d�2
(46)

Using Eqs. (42a) and (44), the states Δd1 and ΔVd1 can be
transformed into ΔD and Δ _D:

�
ΔD
Δ _D

�
�

2
4 ∂D�

∂d�
1

0

d
dt

�
∂D�
∂d�

1

�
∂D�
∂d�

1

3
5� Δd1

ΔVd1

�
(47)

Equation (47) effectively transforms the measured states of d1 and
Vd1 into the states required for the controller. Although Vψ does not
explicitly appear in this transformation, it still implicitly affects the
values of ΔD and Δ _D.

C. Guidance Law Design

The objective of the guidance law is to minimize ΔD. Figure 7
displays the guidance loop for the linearized system that drives ΔD
to zero.
In the guidance loop, the controller receives ΔD and outputs a

commanded acceleration acM. This acceleration passes through an
autopilot, and the nominal acceleration a�M is subtracted resulting in
the acceleration difference Δu. This value of Δu is the input to the
linearized equations of motion [Eq. (39)]. Although the system is
linear, it is not time-invariant, which is problematic because it negates
the use of stability analysis methods like root locus, Bode plots, and
Nyquist criterion.
A proposed method for analyzing the stability of an LTV system is

called the “frozen range” method [1]. In this method, the time-
varying system is “frozen” for a specific time (t � Tc) and therefore
can be evaluated as a linear time-invariant system. It should be noted
that, although this method is convenient and intuitive, it does not
always meet the sufficiency conditions for stability of the LTV
system. Another approach (Gurfil et al. [36]) derives necessary and
sufficient conditions for finite time stability of an LTV system. Both
of these methods can be verified in simulation. For simplicity, and
because the major thrust of this research is the guidance concept and
not the specific guidance law, the frozen range method is used to
demonstrate the viability of the proposed guidance law.
Using the frozen range method, the plant, evaluated at t � Tc, in

transfer function form is

H�s� � ΔD�s�
Δu�s� �

�
∂D�
∂d�

1

�Tc� 0 0

��
sI −A�Tc�

�−1
B�Tc�

(48)

The output of the plant transfer function isΔD, and a proportional–
integral–derivative (PID) controller G�s� is used to minimize ΔD in
Fig. 7:

G�s� � KP � KI

s
� sKD (49)

A PID controller is chosen as the guidance law because of its
simplicity to implement and tune. The gains KP, KI, and KD in
Eq. (49) are for the proportional, integral, and derivative terms of the
controller, respectively. To implement this guidance law, these gains
need to be tuned to achieve the desired system response. The
equivalent controller in the time domain is

acM � KPΔD� KI

Z
ΔD dt� KDΔ _D (50)

VI. Performance Analysis

Numerical simulations are used to evaluate the proposed elliptic
guidance law. First, the linear model used for both the plant and the
controller is validated against the nonlinear reference. Next, the
validated linear PID controller is used to control a missile, with
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nonlinear kinematics, to follow different elliptical trajectories. These

trajectories correspond to specific values of t�f and γ�T . The chosen
gains for the PID controller remain the same for both the validation

process and the specific simulation scenarios. The specific gain

values are KP � −5, KI � −1, and KD � −5, and they are chosen

using the root locus method to ensure closed-loop stability.

A. Linear Approximation Validation

In this subsection, the validity of the developed PID controller is

tested. The same PID controller is simulated using the nonlinear

equations ofmotion [Eqs. (3) and (4)] and using the linearized system

inEq. (39). Line number 3 fromFig. 5 is used as the nominal elliptical

trajectory. The behaviors of both the linear and nonlinear systems are

compared for a scenariowith no heading error and ideal dynamics. In

both simulations, the starting acceleration is zero. The results of the

commanded acceleration verses time are plotted in Fig. 8a.
In Fig. 8, the dotted line represents the response of the nonlinear

system, the dashed line corresponds to the response of the linear

system, and the solid black line shows the acceleration [Eq. (35)] and

distance error for the nominal trajectory. The important takeaway is

that the accelerations and distance errors for both the linear and

nonlinear equations are nearly identical. The close proximity of the

simulated results for the linear and nonlinear equations of motion

validates the linearization of the ellipse.

B. Nonlinear Simulations

Nonlinear simulations are performed using the linear PID

guidance law. Three different missile scenarios (M1,M2, andM3) are

considered in the nonlinear simulation. Table 2 lists the desired

objectives of each missile.
The objective of the simulation is to evaluate how γ�L, γ

�
T , and t�f

impact the elliptical trajectories. The trajectory for M1 serves as

a baseline trajectory in that it shares a common t�f with M2 and a

common γ�T withM3. The trajectories of all three missiles are plotted

in Fig. 9a. For all the scenarios, the missile acceleration is limited to

	10 g, and it uses a first-order autopilot with a time constant of

τ � 0.1 s. Additionally, a heading error of 20 deg is used to stress the
controller.

The time-varying plots of each missile’s actual and nominal

accelerations are portrayed in Fig. 9b. In all three cases, the missile’s

acceleration initially saturates due to the presence of the 20 deg

heading error but quickly stabilizes and remains within the g limits

for the remainder of the engagement. The dip in acceleration around

44 s for M1, 60 s for M2, and 18 s for M3 occurs when the missiles

“turn the corner”. This dip in acceleration has a negligible effect on

the performance of the guidance law as long as the acceleration of the

missile does not saturate during the turn.Despite the initial saturation,

the PID controller is stable throughout the engagement and

effectively implements the elliptic guidance concept for both desired

intercept angles.

Figure 9c shows the time-varying values of each missile’s γ. The
initial spike in γ is seen as all three missiles maneuver from their

respective γL and converge to their nominal trajectory. At the end of

each missile’s respective engagement (t � t�f), each missile

intercepts the target at γ�T .
The values of ΔD are plotted with respect to time in Fig. 9d. The

initial heading errors cause large deviation errors at the beginning of

the engagement, but the guidance law is able to negate the deviation

error after only two overshoots. Additionally, when M1 and M2 are

“turning the corner”, the accelerations are high enough that there is a

small jump inΔD. The PID controller is able to quicklyminimize this

error as well, allowing all three missiles to converge to the nominal

trajectory and intercept the target with zero error.

Fig. 7 Guidance loop diagram for elliptic guidance law.

a) Acceleration Comparison (aM) b) Error Comparison (Δ D)
Fig. 8 Comparison of linear and nonlinear equations of motion.

Table 2 Initial conditions for the three nonlinear
simulations

Simulation γ�T , deg γ�L, deg t�f , s Heading error, deg

M1 −60 115.3 100 −20
M2 −120 77 100 20
M3 −60 93 50 −20
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VII. Conclusions

A new three-point, trajectory-shaping guidance concept against a
stationary target was presented. This guidance concept was based on
the elliptical geometric rule that the sum of the distances between any
point on an ellipse and the two foci of that ellipse is constant. The
equations for an ellipse that satisfied a desired launch angle, impact
angle, and intercept time were presented. Closed-form equations
were developed for a special case where the angle of rotation of the
ellipse was set equal to the desired impact angle. These solutions
constituted a subset of the possible elliptical trajectories and were

valuable for trajectory planning or for using as an initial guess for the
more general case. An algorithm was developed that outlined the
process for finding an elliptical trajectory that satisfied a desired
launch angle, impact angle, and intercept time. A case study
demonstrated how the algorithm successfully converged to the
desired elliptical trajectory.
A linear guidance law was chosen to implement the developed

guidance concept. The equations of motion were linearized around a
nominal elliptical trajectory, and a proportional–integral–derivative
(PID) controller was used to drive the total distance error to zero. The
stability of the PID controller was evaluated using the frozen range
method, and the gains were chosen with root locus. The performance

of this guidance law was evaluated with a nonlinear simulation of
three different missile trajectories using first-order dynamics. The
guidance law successfully overcame an initial 20 deg heading error
and first-order dynamics to maneuver each interceptor to follow the
desired elliptical trajectory. The success of the guidance law
reinforced the viability of the linearization process, the frozen range
method, and the PID gains for implementing the elliptic guidance
concept. Furthermore, the successful performance of the guidance

law in the different simulations showcased how the guidance concept
could be used to enforce different impact angles for the same intercept
time, and vice versa.
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