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I. Introduction

TODAY’S sophisticated missile defense systems pose a sizable

obstacle in neutralizingmilitary targets. One possible solution is

coordinating multiple missiles to intercept the desired target at

specific times or angles. The ability of each missile to achieve a

certain intercept time or impact angle has profound implications on

the overall mission effectiveness. For this coordination to be

successful, the one-on-one guidance law for imposing a specific

intercept time, impact angle, or both must be determined.
A number of the previous works that enforced intercept times

adapted thewell known proportional navigation (PN) controller [1,2]

with a feedforward term to adjust the missile’s time to go (tgo).
Incorporating additional components to the PNcontroller is generally

referred to as biased PN and is based on linearized engagement

kinematics. Using this approach, an impact-time-control guidance

algorithm was developed for a one-on-one engagement and applied

for a salvo-attack scenario in [3–5]. In [6,7], sliding-mode control

was used to impose the desired intercept time of a target for nonlinear

kinematics. In all these cases, the intercept time controllers were used

for capturing a stationary or nonmaneuvering target.
There is also a wide variety of guidance laws that were developed

to impose specific impact angles. Methods using biased PN [8–10],

circular trajectories [11–14], linear optimal control [15], and state-

dependent Riccati equations [16] have been demonstrated against

stationary targets. In [17], a biased PN approach was presented for a

nonmaneuvering, nonstationary target. Solutions for a terminal

impact angle against a maneuvering target were solved using an

optimal guidance law in [18] and sliding mode in [19]. The research

presented in [20] extended the one-on-one engagement scenario by

deriving a cooperative impact angle guidance law. The developed

optimal guidance law allowed N pursuers to enforce specific impact

angles relative to each other against a maneuvering target.
Additionally, a few methods were proposed to simultaneously

enforceboth an intercept timeandan impact angleonanonmaneuvering

target. In [21,22], the impact anglewas incorporated as a constraint into

the biased PN controller, which allowed themissile to impose a specific

intercept time and angle. For engagements with nonlinear kinematics,

solutions were successfully demonstrated using sliding-mode control
[23] and a polynomial guidance law [24].
In this paper, the method for determining the intercept time and

impact angle is unique in that it uses deviated pure pursuit (DPP) as the
foundational geometric rule. In DPP, the pursuer maintains a constant
deviation angle between its velocity vector and the line-of-sight (LOS)
vector to the target. If the pursuer has a speed advantage, then it will
eventually intercept the target. For a nonmaneuvering target, the
pursuer intercept time and impact angle are direct functions of
this deviation angle. Furthermore, the simplicity of using DPP easily
extends to cooperative contexts because its implementation only
requires the current location of each agent. Past implementations of the
DPP geometric rule relied on heuristic controllers. For example,
Shneydor [25] proposed a velocity-pursuit and an attitude-pursuit
guidance law that used a simple proportional gain on the deviation
angle error. Likewise, a heuristicDPP controller guidedmobile ground
robots to intercept a target in [26].
To the best of the authors’ knowledge, this research is also the

first to present a linear optimal guidance law implementing the DPP
geometric rule. To work, the guidance law only requires a nominal
path trajectory and a corresponding acceleration profile. Even
though DPP is featured as the predominant geometric rule in this
research, the guidance law is generally derived to adhere to any
nominal trajectory. This general applicability is demonstrated by
successfully using the guidance law developed in this paper to
follow a circular nominal trajectory to intercept a nonmaneuvering
target.
The remainder of this paper is organized as follows. In Sec. II, the

nonlinear kinematics are formulated. In Sec. III, the closed-form
solutions for intercept time, angle, and acceleration that come from
the DPP geometric rule are discussed, and a case study for cooperation
is presented. The guidance law for a one-on-one pursuer–target
engagement with nth-order dynamics is developed in Sec. IV.
Section V contains the nonlinear simulations of the guidance law for a
four-on-one scenario aswell as validationof theguidance law’s general
applicability. Finally, Sec. VI concludes on the findings of this
research.

II. Problem Formulation

The planar engagement ofmultiple pursuers chasing a single target
is presented in this section. The engagement geometry is shown
for the N-on-one scenario in Fig. 1 with multiple pursuers P
maneuvering to intercept the nonmaneuvering target T at a desired
intercept time t�f . Each entity is related to the other entities in the

inertialX–Y coordinate frame. TheLOS from the pursuer to the target
is designated as θ, and the flight-path angle is γ for the pursuers and γT
for the target. The deviation angles for the pursuer and the target are
defined as δ � γ − θ. The speed of each pursuer (VP) is constant
throughout the engagement, and the pursuer’s control is its lateral
acceleration aP. Likewise, the target maintains a constant speed, and
the ratio of the pursuer speed to the target speed is assumed greater
than 1 (K � �VP∕VT� > 1).
The pursuer–target kinematics are displayed in Eqs. (1–3). The

equations of motion are developed generally forN pursuers using the
subscript i, where i ∈ f1; 2; : : : ; Ng

_ri � VT cos�γT0 − θi� − VPi
cos�γi − θi� (1)

_θi �
1

ri
�VT sin�γT0 − θi� − VPi

sin�γi − θi�� (2)

_γi �
aPi

VPi

(3)
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Furthermore, the pursuer’s lateral maneuver dynamics are
defined using the transfer function Hi�s� and can be represented in
state-space as

_xPi
� APi

xPi
� BPi

ui (4)

aPi
� CPi

xPi
�DPi

ui (5)

where xPi
is a ni × 1 vector denoting the ith pursuer’s internal

dynamics and ui is the ith pursuer’s scalar control input.
In the case that the pursuer has ideal dynamics [Hi�s� � 1], APi

,
BPi

, andCPi
disappear, andDPi

� 1. This phenomenon is commonly
referred to as direct lift, meaning that the pursuer can instantaneously
command the desired lateral acceleration. For the case where the
pursuer has first-order dynamics, the transfer function is

Hi�s� �
1

sτi � 1
(6)

which yieldsAPi
� −�1∕τi�, BPi

� �1∕τi�, CPi
� 1, and DPi

� 0.

III. Intercept Time and Angle

Closed-form mathematical representations were developed to
determine the intercept time, impact angle, and acceleration profile
for an idealmissile pursuing a nonmaneuvering target withDPP [25].
These equations are based on the DPP geometric rule, which states
that the pursuer maintains a constant deviation angle between its
velocity vector and the LOS to the target.

A. Intercept Time and Angle Calculation

An accurate method for determining the true time to intercept for
each pursuer is paramount to achieving simultaneous intercept. For
the DPP geometric rule, a closed-form solution for the intercept time
can be found through combining Eqs. (1) and (2), rearranging terms,
and integrating (see [25]) to give

tfi �
r0i
VT

Ki � cos�δT0i
� δi�

�K2
i − 1� cos δi

(7)

Remark: In the DPP geometric rule, γi − θi is constant, which
allows Eq. (7) to be calculated without considering _γi in Eq. (3).
As δ → �90 deg, tf → ∞, meaning that the upper limit of the

intercept time is unbounded. The minimum possible intercept time
corresponds to the deviation angle that places the pursuer on a
collision triangle [27] and is defined as

δitmin
� sin−1

�
sin δTi

Ki

�
(8)

Furthermore, for caseswhen jKi sin δij < 1, the orientation between
Pi and T in the final moments before collision resembles a collision

triangle [25]. Thismeans that the impact angle (γi − γT) can be directly
related to the deviation angle δi using Eq. (8):

γi − γTi
� δi − sin−1�Ki sin δi� (9)

In Eq. (9), γi − γT is measured from the−VT direction. This means

that if the pursuer hits directlybehind the target, then the intercept angle

is zero (γi � γT). Furthermore, intercepting the target orthogonally on

its right side corresponds to γi − γT � 90 deg.

B. Bounded Control Requirements

Implicit to the objective of capturing a moving target at a specific

intercept time or angle is minimizing the required acceleration. The

control required for the nominal trajectory (u�) comes directly from

the geometric rule [25] and has a closed-form solution:

u�i � KiV
2
T

sin δTi
− Ki sin δi
ri

(10)

In Eq. (10), a divergent acceleration is undesired and can only be

avoided if the numerator approaches zero faster than the denominator.

Fortunately, there are conditions related to δi that guarantee a bounded
u�i . In [25], it is shown that Eq. (11) gives the necessary condition (but
not sufficient) for Ki such that u�i is bounded throughout the

engagement:

1 < Ki ≤
2������������������������

1� 3sin2δi
p (11)

The lower limit of Ki � 1 is obvious and inherent in the DPP

formulation. Conversely, the maximum possible upper limit of Ki

occurs at δi � 0 and is Ki � 2. As δi → π∕2, the value of Ki

approaches the lower limit ofKi � 1. For a givenKi between 1 and 2,

the maximum value of δi for bounded control can be found by

rearranging the right-hand side of Eq. (11):

δimax
� sin−1

� �������������������������
1

3

�
4

K2
i

− 1

�s �
(12)

As Ki increases, the range of δi values necessary for a bounded

control decreases. Using Eqs. (7), (10), and (12) creates a framework

for relating between intercept time, deviation angle, and bounded

control.

C. Case Study

Thedrivingmotivator of this research is enforcing either an intercept

time or set of angles for multiple pursuers chasing a single,

nonmaneuvering, target. The initial conditions of a target and two

pursuers (P1 andP2) with ideal dynamics are displayed inTable 1. The

pursuers’ locations and speeds are the only information required for

cooperation. As the deviation angle δi for each pursuer changes, the
nominal trajectory necessarily changes, which affects the intercept

time [Eq. (7)] and impact angle [Eq. (9)]. Figure 2 shows the

relationship between intercept time and intercept angle (Fig. 2a)

and maximum acceleration required versus the intercept angle

(Fig. 2b) for the range of nominal DPP trajectories corresponding

to −δimax
< δi < δimax

.

Fig. 1 Multiple pursuer engagement geometry.

Table 1 Initial conditions for
case study (γT � 10 deg)

Missile X0, m Y0, m VP, m∕s
T 1000 2500 100
P1 2500 5000 140
P2 1000 3500 140
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Two examples of cooperative objectives are marked by circles and
triangles in Fig. 2. The two circles correspond to the nominal
trajectories that satisfy a 16 deg angle offset between P1 and P2. The
triangles represent the nominal trajectories for P1 and P2 that yield a
10 s difference in intercept time. In Fig. 2b, the locations of both
triangles are nearly identical, and therefore the black triangle is
covered by the gray triangle. For both scenarios, the locations of the
triangles and circles are a function of P1 and P2’s deviation angles
(δ1 and δ2) and their initial conditions.
The two vertical lines in Figs. 2a and 2b define the maximum

impact angles where the two pursuer’s can intercept the target with
bounded acceleration [Eq. (12)]. Figure 2a presents the relationship
between impact angle and intercept time for P1 and P2 [Eqs. (7) and
(9)]. The 16 deg offset between the two circles and the 10 s difference
in time between the two triangles can be clearly seen in this figure.
Figure 2b plots the maximum acceleration of the nominal trajectory

against the intercept angle [Eq. (10)]. The acceleration of P1 starts to
diverge around γ1 − γT � −10 deg. This divergence within the
bounds of δ1max

occurs because of the initial conditions of P1. The

acceleration forP1 crosses the x axis at γ1 − γT � −16.40 deg, which
corresponds to the nominal DPP trajectory that places P1 and T on a
collision triangle. The accelerations of P1 and P2 clearly approach
infinity as δi → −δimax

[Eq. (12)]; however, it is not as obvious at the

other boundary. As δi increases beyond δimax
, the acceleration of the

nominal trajectory [Eq. (10)] approaches infinity at tf. Around

δi � δimax
, this divergence of acceleration occurs so close to the

intercept time that the jump in acceleration is much more severe than
at δi � −δimax

.

The direct correlation between the ideal pursuer’s initial conditions
and its end-game behavior allows for easy cooperation between
multiple pursuers. By choosing the deviation angles of each pursuer,
the nominal trajectories can be shaped to meet desired end-game
conditions. Overall, the cooperation requirements can be driven by
intercept time, impact angle, acceleration saturation limits, or some
combination of the three. The coordination is constrained by the
pursuers’ initial conditions and ultimately results in a desired δi for
each pursuer.

IV. Optimal Control-Based Guidance Law

The guidance law used to optimally follow a nominal trajectory is
developed in this section. First, the pursuer’s equations of motion in
Eqs. (1–5) are linearized around the nominal trajectory. Next, the
optimal controller is solved using the Riccati equation.

A. Linearization

When linearizing nonlinear kinematics for a guidance law, it is
customary to assume small deviations around a collision course. In the
case of parallel navigation, a collision triangle is used for the nominal
trajectory, and therefore the nominal control needed for interception
is zero. For any other geometric rule, as in the case of DPP, this
nominal acceleration is typically nonzero [Eq. (10)]. Regardless of the
geometric rule, the objective is to find a controllerΔui that corrects for
deviations from the respective nominal trajectoryu�i . The guidance law
ui is the linear combination of these two inputs:

ui � u�i � Δui (13)

The linearization process first starts with defining the state vector:

Δxi � �Δri Δθi Δγi xTPi
	T (14)

The deviations from the desired trajectory are assumed to be small
and therefore can be linearly represented by

Δ _xi � Ai�t�Δxi � Bi�t�Δui (15)

where

Ai�t� �

2
666664

2
6664

∂_ri
∂ri

∂ _ri
∂θi

∂ _ri
∂γi

∂_θi
∂ri

∂_θi
∂θi

∂_θi
∂γi

∂_γPi
∂ri

∂_γPi
∂θi

∂_γPi
∂γi

3
7775

�0	2×n

V−1
Pi
CPi

�0	n×3 APi

3
777775Bi�t� �

2
664

�0	2×1
V−1

Pi
DPi

BPi

3
775

(16)

The upper-left quadrant of the Ai matrix is the Jacobian of the
nonlinear equations of motion, which provides the time-varying
gradient of ri, θi, and γi. If the pursuer dynamics are assumed ideal,
then this is the only portion of theAi matrix considered. However, in
the case of nonideal dynamics, the pursuer’s internal dynamics are also
included. Similarly, the Bi matrix contains the changes in Δxi with
respect to Δui.
The linear formulation inEq. (16)provides thebasis for solvingaone-

sided optimizationproblemassuming that the target is nonmaneuvering.
The optimal value of Δui is developed for a generalized one-on-one
engagement with nth-order dynamics.

B. Optimal Controller

Given that the systemdynamics are linear, the desired cost function
is characterized in the following linear quadratic form:

Ji �
1

2
Δxi�tf�TPfΔxi�tf� �

1

2

Z
tf

0

Δu2i � ΔxTi QΔxi dt (17)

which results in the optimal control [28]

Δui � −GiΔxi (18)

where G is the controller gain vector, defined as

Gi � Bi�t�TPi�t� (19)

and Pi�t� is the well-known, differential matrix Riccati equation

_P � −PA −ATP � PBBTP −Q (20)

The general cost function formulation [Eq. (17)] considers all of the
states in the running cost and all of the states in the terminal cost.
This general formulation can be simplified through a number of

a) Intercept time vs Intercept angle b) Max acceleration vs Intercept angle

Fig. 2 Interception coordination between P1 and P2.
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assumptions. First, the main objective is to intercept the target by
minimizing the pursuer’s miss distance, meaning that only Δri�tf� is
considered in the terminal cost. Second, adherence to the nominal
trajectory is a crucial component to the controller’s success. Therefore,
theLOS errorΔθi is included in the running cost to enforce compliance
with the nominal trajectory. These changes are incorporated by setting
Pf � diag�α; 0; : : : ; 0� andQ � diag�0; β; 0; : : : ; 0�, simplifing the
cost function to

Ji �
α

2
Δri�tf�2 �

1

2

Z
tf

0

Δu2i � βΔθ2i dt (21)

Remark: Any combination of states could be included in the
running cost; however, only one state is desired for controller
simplicity.Of then� 3 possible states,Δθiwas chosen because of its
direct effect on the pursuer’s equations of motion. Additionally, in
situations specifying a desired impact angle, Δγi�tf� could also be
added to the terminal cost.
The two weights in Eq. (21), α and β, quantify the relative

importance of miss distance and the LOS error, respectively, in
the total cost. As α → ∞, perfect interception is enforced with the
minimal amount of control and LOS error. However, as α → 0,
the integral cost ofΔui andΔθi determines the pursuer behavior. The
value of β distinguishes the relative importance of minimizing the
running cost on the LOS error. As β → ∞, the relative importance of
minimizing control and miss distance is superseded by the emphasis
to minimize Δθi. The result is a multi-objective cost function that
balances the relative weights of miss distance, control effort, and
LOS error.
Although Eq. (21) is a much simpler formulation, it is highly

unlikely that a closed-form solution exists for the Riccati equation
[Eq. (20)] because the state and control matrices are time-variant.
This means that numerical integration is required to determine the
value of Pi�t� for a given nominal trajectory.
Remark: It is important to remember that the guidance law is

applicable for a wide range of nominal trajectories and is not
explicitly derived from a particular geometric rule.

V. Simulation

In this section, the efficacy of the proposed guidance concept and
derived guidance law is evaluated through nonlinear simulations. The
scenario features four pursuers, each with first-order dynamics,
intercepting a nonmaneuvering target at t�f . The initial conditions for
the engagement are shown in Table 2. The nominal trajectory is
determined using ideal pursuer dynamics and is recomputed
throughout the engagement every 5 s. Every time the nominal
trajectory is recomputed, the equations of motion are relinearized
around the new nominal trajectory [Eq. (15)] and the optimal gain is
recalculated [Eq. (18)]. Recomputing the nominal trajectory is
important because it allows the pursuer to compensate for large initial
heading errors and other perturbations. The trajectory could be
recomputed in shorter intervals; however, when simulations are done
with a trajectory refresh rate of 1 Hz, the improvements in accuracy

are on the order of 10−4 m for miss distance and negligible for
intercept time. Because the target is not maneuvering, recomputing at
0.2 Hz sufficiently provides both accurate and computationally
efficient results for the simulations.
This section is divided into three subsections, with the first

subsection focusing on the individual behavior of P1 as it chases the

target. Here, the results of the guidance law are evaluated in the
presence of a large heading error. The second subsection presents
the collective performance of the guidance law for the four-on-one
engagement. Last, the guidance law is simulated using a circular
nominal trajectory instead of a DPP nominal trajectory. The purpose
of this simulation is to substantiate the viability of using the guidance
law for different nominal trajectories.

A. Individual Pursuer Performance

Figure 3 shows the simulation results of P1 chasing a
nonmaneuvering target with a desired intercept time of 27 s. Both the
initial nominal DPP trajectory P�

1�t0� as well as the actual pursuer

trajectoryP1 are plotted in Fig. 3a. The inset figure shows the results at
the end-game phase of the engagement. The circle in the inset figure
represents the location of interception between P1 and T. The gray
square shows the target’s position at tf � 27 s, and the spatial

discrepancy between the circle and the square represents the intercept
time error Δtf. Figure 3b displays P1’s time-varying acceleration and

control inputs versus tgo (where tgo � t�f − t). The realized acceleration

of P1 (aP1
) comes from the guidance law, which combines the

acceleration inputs from the optimal controller Δu1 and the nominal
DPP trajectory u�1. The relinearization instances of the nominal

trajectory can be clearly seen by the jumps in Δu1 and u�1 .
The time, angular, and spatial miss distances of the target are three

of the standards of merit used to evaluate the performance of each
pursuer. The impact time error is measured by subtracting the actual
intercept time from the desired impact time (Δtf � t�f − tfact ).

A negative value indicates that the pursuer arrived after the desired
time, and a positive value signifies that the pursuer arrived early. The
angular offset is determined by subtracting the actual intercept angle
from the desired impact angle [Δ�γ − γT� � γ� − γact]. In Fig. 3a,P1

intercepts the target 4.64 × 10−4 s earlier, with an angular error of

−4.96 deg, and misses by only 3.46 × 10−4 m.
The trajectory resulting from the guidance law in Fig. 3a can be

generalized by three distinctive characteristics: an initial corrective
maneuver, a big looping turn in the middle of the engagement, and a
straight terminal path. In the simulation, P1’s initial heading is in a
direction that is not conducive for intercepting the target at t�f .
Therefore, an initial correction in the direction opposite the target’s
trajectory ismade to align the pursuer along amore favorable heading.
This maneuver positions the pursuer to make a gentle turn to
coordinate the intercept timing. The velocity ratio of P1 (K1) is within
the limits defined in Eq. (11), meaning that the acceleration for the
guidance law throughout the engagement meets the necessary
conditions for bounded control. Near the end game of the engagement,
P1 converges to a straight-line approach toward the target, reminiscent
of a collision triangle in parallel navigation.
The acceleration profile of P1 in Fig. 3b parallels the three phases

seen in Fig. 3a. The immediate output of the controller is a negative
acceleration command that counteracts the initial heading error.
Because of the large heading error, the nominal trajectory must be
recomputed a couple of times beforeΔu1 is nulled. Themiddle hump
corresponds with the acceleration required for the looping turn that
coordinates the intercept time. This turn is influenced by the nominal
DPP trajectory and positions the pursuer on a collisionlike triangle.
Finally, the acceleration commanded from both controllers goes to
zero as the pursuer approaches the target.
A deeper understanding of the guidance law behavior comes

through evaluating the controller gains. The optimal controller in
Eq. (18) is dependent on the linearized states Δxi and the controller
gain vector Gi. This gain vector is calculated based on the desired
nominal trajectory [Eq. (19)], and the time-varying components ofG1

are displayed in Fig. 4. These gains are responsible for shaping the
pursuer’s response to disturbances throughout the engagement. Note
that the magnitudes of the individual gain components in the y axis
vary greatly. The gain values for Δγ1 (Fig. 4c) and Δθ1 (Fig. 4b) are
disproportionately larger than Δr1 (Fig. 4a) and ΔaP1

(Fig. 4a),
primarily because small changes in θ and γ have a large effect on the
pursuer kinematics in Eqs. (1) and (2). Additionally, the difference in
scaling between the different states could also play a role in the

Table 2 Initial conditions for four-on-one engagement
(γT � 10 deg)

Missile X0, m Y0, m VP, m∕s Heading error, deg Time constant, s

T 1000 2500 100 —— ——

P1 2500 5000 140 30 0.1
P2 1000 3500 140 5 0.1
P3 1500 1000 140 −5 0.2
P4 2500 0 140 −30 0.1
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magnitudes of the gains. Last, the gain for each state peaks at the end
of the engagement, consistent with the typical gain profiles for
optimal guidance law controllers with terminal cost.
The general behavior displayed by P1 in this engagement is

representative of how the guidance law behaves for a pursuer with
bounded control. The pursuer accelerates to counteract initial
heading errors, tracks to the nominal trajectory, and approaches a
collision-like triangle orientation to minimize terminal accel-
eration. The limitations of the guidance law occur when Ki is
outside the boundaries set in Eq. (11). However, the benefit of the
guidance law is that, for a given deviation angle, the pursuer’s
intercept time and impact angle can be determined from the start.
The next subsection includes the other three pursuers from Table 2

to evaluate the performance of the guidance law in a multipursuer,
cooperative context.

B. Four-on-One Engagement

This subsection presents the collective results of the four-on-one
engagement. Given the initial conditions in Table 2, a tf versus γ − γT
curve is created for all four pursuers and plotted in Fig. 5. Identical in
format to Fig. 2a, Fig. 5 displays the range of intercept times and
angles available to each pursuer assuming ideal dynamics. The
objective of each of the four pursuers is to intercept the target at
t�f � 27 s. The circle on each line represents the nominal DPP
trajectory corresponding to t�f . Notice that the dot for P2 lies outside
the vertical, dashed line marking the bounded control limits. The

a) Gain on radius error b) Gain on line of sight error

c) Gain on flight path angle error d) Gain on acceleration error

Fig. 4 P1 gain profiles for each state (tf � 27 s, α� 103, β� 102).

a) Trajectory comparison b) Acceleration comparison
Fig. 3 Comparison of guidance law to original nominal DPP trajectory for P1 (tf � 27 s, α� 103, β� 102).
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location of P2 outside these dashed lines indicates that the terminal

acceleration ofP2 is unbounded. The path trajectories corresponding

to t�f � 27 s for each of the four pursuers are plotted in Fig. 6a.

Each pursuer in Fig. 6, with the exception ofP2, maneuvers in such

a way that the terminal portion of their trajectory approaches a

straight line. This orientation occurs as a direct result of the DPP

geometric rule for aKi value within the limits defined in Eq. (11). In

the case of P2, the trajectory never appears to be on a collisionlike

triangle. Instead, the trajectory continuously arcs as it intercepts the

target. Figure 6b gives greater insight to these behaviors by

portraying the realized, first-order accelerations of each pursuer.

Starting at tgo � 27 s, each pursuer maneuvers to overcome the

initial heading errors. For P1 and P4, there is a noticeable spike as

both pursuer’s react to their initial 30 deg heading errors. After the

pursuers reacquire the nominal DPP trajectory, the optimal controller

(Δui) is nulled, and u�i is used to intercept the target. For P1, P3, and

P4, the acceleration humps correspond to the large turns that each

pursuer performs to align themselves to intercept the target at t�f . Last,
and most importantly, the accelerations at tgo � 0 are bounded and

near zero. The acceleration of P2 looks different because it is not

bounded. After correcting for the initial heading errors, the

acceleration of P2 slowly declines until it gets close to tgo � 0, and

then it begins to asymptotically approach infinity. Absent in the P2

acceleration profile is the alignment turn to approach the collision-

like triangle. The overall results of the four-on-one simulation are

displayed in Table 3.

The objective is for all of the pursuers to intercept the target at

t�f � 27 s. Despite two pursuers with large initial heading errors and

another pursuer with an unbounded control, all four pursuers arrive

within 3.4 × 10−3 s of the desired time. Furthermore, some of the

temporal and spatial miss errors occur because the value of α used for
the optimal controller [Eq. (21)] is finite, meaning that perfect

intercept is not enforced. Even without forcing perfect intercept, the

performance of the guidance law is excellent, with a maximum miss

distance of 8.1 × 10−2 m, a maximum Δtf of 3.4 × 10−3 s, and the

maximum total acceleration of the bounded pursuers (P1,P3, andP4)

not exceeding �4 g. Last, the angular offset errors were relatively

high for P1 and P2 because the terminal intercept angle was not

considered in the cost function. In a situation where a specific

intercept angle is required, the cost function in Eq. (21) can be

amended to reflect this new requirement.

The important takeaway from this simulation is the guidance law’s

ability to accurately enforce a specific intercept time. Each pursuer

starts in a different physical location, with a heading error and a first-

order time constant. In the case ofP1 andP4, the guidance law is able

to overcome the significant 30 deg heading error and intercept the

target almost perfectly. For P2, even though the deviation angle

needed for t�f corresponds to an unbounded control input, the pursuer
still intercepts the target with minimal time and spatial error.

C. General Applicability

One of the strengths of the optimal controller in Eq. (18) is that it

was formulated independent of a specific nominal trajectory and can

therefore be applied to a wide range of trajectories. To demonstrate

the applicability of this guidance law, the same exact optimal

controller that usedDPP as the nominal trajectory for the four-on-one

simulation is applied using a circular nominal trajectory. A circular

trajectory is used because of its simplicity to implement and because

the nominal acceleration u� is constant throughout the engagement.

The circle-based, inscribed angle guidance law in [11] was used as a

reference for determining this trajectory. Using the identical initial

conditions for P1 from Table 2, a simulation is performed using a

circular trajectory.

Figure 7 shows the pursuer trajectorywith first-order dynamicsP1,

relative to the recomputed, nominal trajectories based on ideal

dynamicsP�
1 . The large initial heading error is seen in the initial offsetFig. 5 Target intercept times vs pursuer impact angles.

a) Trajectory comparison b) Acceleration Comparison
Fig. 6 Four-on-one simulation for simultaneous capture (tf � 27 s, α� 103, β� 102).

Table 3 Simulation results from four-on-one engagement

Pursuer Time offset, s Angular offset, deg Miss distance, m

1 4.64 × 10−4 −4.96 3.46 × 10−4

2 2.44 × 10−3 −5.26 8.11 × 10−2

3 3.40 × 10−3 1.00 3.74 × 10−4

4 4.64 × 10−4 2.87 2.94 × 10−4
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between P1 and P
�
1 . To overcome this error, the nominal trajectory is

recomputed at 0.2Hz,which can be clearly seen by the large jumps of
P�
1 in the graph. The black, dashed lines in Fig. 7 represent the

portions of the various nominal trajectories that are not considered.
These lines are included to aid in understanding how the nominal
trajectory changeswith time. As the pursuer approaches the target, its
path becomes almost indistinguishable from the nominal trajectory.
Ultimately, using circular nominal trajectories P1 achieves a miss

distance of 2.0 × 10−3 m and an intercept time error of 6.4 × 10−4 s.
The flexibility of the guidance law to accurately work with a circular
nominal trajectory confirms that its utility extends beyond DPP
trajectories.

VI. Conclusions

This research leveraged the unique attributes of the deviated pure
pursuit geometric rule to enforce a specific intercept time or impact
angle of a nonmaneuvering target. An optimal control-based
guidance law was developed using linear quadratic optimal control
theory. To the authors’ knowledge, this is the first published
implementation of an optimal guidance law for deviated pure pursuit.
The guidance law was simulated for a four-on-one engagement, with
each pursuer having first-order dynamics. Despite having heading
errors and different time constants, all four pursuers converged on the
target within 3.4 × 10−3 s of the desired intercept time. The ability to
achieve an intercept time and impact angle with a high level of
accuracy proves the viability of using this guidance law to implement
the deviated pure pursuit geometric rule.
Additionally, the guidance law developed in this research is not

only applicable to deviated pure pursuit trajectories but can be
extended to meet a general class of nominal trajectories. This is
possible because the guidance law was formulated independent of
any specific geometric rule or nominal path. In application, the
guidance law behaves as a trajectory-shaping guidance law that
works with any nominal trajectory. Therefore, this research not only
presents a viable solution to the intercept time and impact angle
problemusing deviated pure pursuit but also produces a guidance law
of adhering to a wide range of nominal trajectories.
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