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Anovel cooperativedefensive guidance law is presented for a two-on-two engagement. Insteadof classical strategies

in which evasive maneuvers are performed or additional agents (e.g., defender missiles) are deployed, the target pair

lures the pursuing missiles into collision. The optimal cooperative strategy is solved using state-dependent Riccati

equation method. Linearized kinematics and arbitrary-order linear adversaries’ dynamics are assumed in the

guidance law derivation. Imperfect information is assumed on the relative states and the guidance laws employed by

the missile pair. Guidance strategies that the pursuing missiles may employ are assumed to belong to a finite set of

linear guidance laws. In addition to the proposed cooperative defensive strategy, a decentralized estimation scheme

based on the multiple-model adaptive estimation approach is also presented. Guidance law and estimation

performance are demonstrated using nonlinear simulations. Simulation results show the viability of the proposed

guidance law and highlight the sensitivity of the guidance law to range measurement accuracy.

Nomenclature

A, B, C = linearized collision geometry state-space
model matrices

Av, Bv, Cv, dv = state-space model matrices of the dynamics of
vehicle v

a = acceleration normal to flight-path angle
c = center of the line of sight between missiles
g = gravitational constant
H = measurement matrix
KMTi = gain matrix for linear guidance law
J = cost function
N = set of natural numbers
N = normal distribution
N 0 = missile guidance gain
PMTi = covariance matrix of the ith estimator
P = matrix solution to the Riccati equation
Q = matrix of weights on states in running cost
Qf = matrix of weights on states in terminal cost

Rn = set of real numbers of dimension n
RMTi = noise covariance matrix of measurements of

the ith estimator
R = matrix of weights on targets’ control effort
Sj
i = covariance matrix of the jth regime-matched

filter of the ith estimator
Ts = sampling period
t = time
tf = final time
U i = set of possible guidance laws considered in the

estimator of ith target
Ucomb = set of possible combination of guidance laws

considered
u = control vector of vehicle group
u = control input of vehicle
V = speed

VC = closing speed
v = measurement noise
X0
c, Y

0
c = initial position coordinates of c

�X0
c, �Y

0
c = normalized X0

c, Y
0
c

XI , YI = inertial position coordinates
x = state vector for estimation purposes
xv = state vector representing the dynamics of

vehicle v
y = relative displacement normal to initial line of

sight
y = linear system state vector
yv = component of xv orthogonal to the associated

line of sight
Zi�0� = a priori information of the missile by the ith

target
zi = measurement vector of the ith target
γ = flight-path angle
Δ = time difference between time to missile–

missile collision and missile–target collision
δ, θ = angles between the velocity vector and

line of sight of the pursuer and target,
respectively

Λj
i = jth mode-conditioned likelihood function of

the ith estimator
λ = line-of-sight angle
μji = jth regime probability for the ith estimator

νji = innovations vector of the jth regime-matched
filter of the ith estimator

ξMT = normalized time
ρ = range

�ρ0MM = normalized ρ0MM

σ2i;ρ, σ
2
i;λ = range and line-of-sight angle measurement

noise variances of the ith estimator, respectively
τv = first-order lag of vehicle v

Subscripts

Mi = ith missile
MM = missile versus missile engagement
MTi = ith missile versus ith target engagement
Ti = ith target
v = vehicle

Superscripts

lin = linear
max = maximum
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NL = nonlinear
0 = initial condition
� = optimal

I. Introduction

M ULTIVEHICLE cooperation has received much attention in
recent years because it has shown tremendous potential in

missions such as wide-area persistent surveillance [1], cooperative
tactical reconnaissance [2], and cooperative salvo attack [3]. Although
guidance strategies have been developed specifically for the
aforementioned missions, limited work has been done to study how
cooperation could improve the survivability of such multivehicle
teams. This becomes increasingly important as countermeasures, for
example in [4], are developed to take down such teams before they
could complete their missions. In this paper, the problem of aircraft
survivability in a multivehicle engagement is tackled. Specifically, a
cooperative defensive strategy is derived for a pair of aircraft
(henceforth known as “targets” and abbreviated as “T”) being pursued
by a pair of missiles (henceforth known interchangeably as “missiles”
or “pursuers” and abbreviated as “M”).
The classical approach from a target’s perspective in a missile–

target engagement is to maximize the miss distance between itself
and the missile. Research on optimal target evasion strategies in a
one-on-one scenario has been well established. Optimal evasion
strategies have been solved using two approaches: 1) by formulating
the problem as a pursuit–evasion differential game [5–8], or 2) a one-
sided optimal evasion problem. In the latter, the missile guidance
strategy is assumed to be known to the target [9–13]. The works in
[9–12] studied the optimal evasion problem against a missile using
proportional navigation (PN), whereas in [13], optimal evasion
strategies were also solved for missiles using augmented PN (APN)
and optimal guidance law (OGL).
A key assumption in a one-sided optimal evasion problem is that

the target must have exact knowledge of the missile’s guidance
strategy. Works such as [14,15] relaxed this assumption by
incorporating a multiple-model adaptive estimator (MMAE) to
identify the guidance law of the pursuing missile. First pioneered by
Magill [16], the MMAE approach is applied on a one-sided optimal
evasion problem in [15], where it was assumed that the pursuing
missile is employing one of a finite set of linear guidance laws and
guidance parameters. Known often as a “mode” or “regime”, each
model in the MMAE represents a possible missile guidance law and
its corresponding guidance parameter. During the estimation process,
the MMAE scheme runs a bank of filters, such as the extended
Kalman filter (EKF) used in [15], in parallel with a filter matching
each of the possible regimes. Estimation of the system states is
obtained by a weighted sum of the state estimates from each filter in
the bank, and the weights represent the probability of each regime
matching the true guidance strategy of the pursuing missile based on
measurement history. Regime probabilities are updated at each
time step using Bayesian inference. It is calculated based on the
previous time step’s regime probabilities and the regime-conditioned
likelihood of the new measurement. One-sided optimal evasion is
solved for each of the possible regimes, and the final target maneuver
is derived under a multiple-model adaptive control (MMAC) [17]
framework. In the MMAC approach, the final evasion command is
determined by either the minimum mean-squared error (MMSE)
criterion, where the command is a regime probability weighted sum
of every optimal maneuver matched to each possible regime, or a
maximum a posteriori probability (MAP) criterion, where the latter
matches the optimal maneuver against the regime that is most likely
to be true.
An alternative target defensive strategy aside from purely evading

is to use defendermissiles to intercept the pursuer [13,14,18,19]. This
strategy is especially advantageous for a target that has a large
maneuverability disadvantage over its pursuer, and pursuer–target
interception is unavoidable using purely evasive maneuvers.
Shaferman and Shima [14] developed a multiple-model adaptive
guidance strategy to the three-body problem in which an MMAE is
applied to identify the pursuer’s guidance strategy so that the

target–defender team could maneuver optimally to enforce pursuer–
defender interception. Besides solving this three-body engagement
as a one-sided optimal control problem, different approaches were
also proposed by works such as [18,19]. Ratnoo and Shima [18]
derived a guidance strategy in which the defender employs line-of-
sight (LOS) guidance to maintain its position on the LOS connecting
the target platform to the pursuer. Kumar and Shima [19] developed
nonlinear guidance strategies basedon sliding-mode control techniques
and highlighted its effectiveness even if there were large errors in the
initial heading and the time-to-go estimates for the defender.
In this paper, we consider the problem of a two-on-two scenario in

which the objective of the target pair is to survive the engagement by
luring the two pursuers into collision with each other through
cooperative maneuvers. This problem, to the best of the authors’
knowledge, has not been explored in open literature. It differs from
previous works because the target pair does not simply evade from
their pursuers nor do they require additional defender missiles to
survive the engagement. The proposed strategy does, however, draw
inspiration from the target–defender–pursuer engagement, but
instead of luring the pursuers into a defender, the targets capitalize on
the presence of multiple adversaries to guide the pursuers into
collision with themselves. This multiple-missile engagement also
presents an interesting challenge when incorporating the MMAE
with the cooperative guidance strategy because the latter is unique to
each possible combination of guidance laws employed by the missile
pair. If the MMAE problem is solved conventionally, in which each
possible combination is modeled by a separate filter in the regime
bank, the number of filters will growquadraticallywith the number of
possible missile guidance laws considered for each missile and can
become computationally intensive.
The main contribution of this paper is to present a novel

cooperative defensive strategy for the target pair in a two-on-two
scenario in which the targets ensure their survivability by luring the
pursuing missiles into collision. It is assumed that the pursuers are
using one of the finite set of linear guidance laws. The target pair is
assumed to know this set but not the active guidance laws being
employed by the missiles. The vehicles are assumed to have
arbitrary-order linear dynamics. In addition, a decentralized MMAE
approach is proposed for state estimation and missile guidance law
identification. In this decoupled approach, each target only computes
the estimates of states related to its own pursuer and need not account
explicitly every possible guidance law combination of the pursuer
pair in its regime bank. Although the target pair has imperfect
information of the relative states between themissiles and the targets,
perfect information of the targets’ positions, accelerations, and
flight-path angles are assumed. Communication of the preceding
information between the targets is also assumed to occur with
zero lag.
The remainder of this paper is organized as follows. Description of

the two-on-two engagement and its mathematical model will be
presented in Sec. II. Subsequently, the cooperative optimal guidance
law of the target pair is derived in Sec. III, and the MMAC-based
cooperative guidance strategy is presented in Sec. IV. Detailed
analysis of the performance is shown in Sec. V. Finally, some
concluding remarks will be made in Sec. VI.

II. Engagement Formulation

Consider a scenario with two missiles homing on two targets. The
objective of the targets in this engagement is to conduct cooperative
guidance so that the pursuers are lured into interception with each
other without any of the targets being intercepted by the missiles. In
addition, we assume that the problem can be simplified to a point-
mass planar engagement, and effects of gravity can be neglected. All
vehicles use skid-to-turn control with roll stabilization. All vehicles
are assumed to have constant speeds and perform lateral maneuvers
only. Imperfect information on the relative states between each
missile and target is assumed, whereas perfect information on those
between the targets is considered. Lag-free communication of all
states between the targets is also assumed. Each target in the
engagement is assumed to be pursued by one missile, and each
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missile pursues only one target. The missile pair is also assumed to

have no knowledge that they are on a collision coursewith each other.
A schematic of the engagement can be seen in Fig. 1, where

XI–OI–YI denotes the Cartesian, inertial reference frame.

A. Nonlinear Kinematics

Consider first the kinematics of theMi–Ti engagement, i ∈ f1; 2g,
in the two-on-two scenario (Fig. 1). Defining the latter in polar

coordinates �ρMTi; λMTi� referenced toMi, Ti’s state vector ofMi is

xMTi � � ρMTi λMTi xMi γMi VMi �T (1)

where xMi is the internal state vector of Mi associated with its

dynamics. Assuming that the velocity of each vehicle v ∈ fMi; Tig is
constant near the end game and their dynamics can be represented by

an arbitrary-order linear system, i.e.,

_xv � Avxv �Bvuv

av � Cvxv � dvuv

)
(2)

the equations of motion (EOMs) associated with xMTi are

_ρMTi � −VC;MTi

_λMTi � Vλ;MTi∕ρMTi

_xMi � AMixMi �BMiuMi

_γMi � aMi∕VMi

_VMi � 0

9>>>>>>>>=
>>>>>>>>;

(3)

where the closing speed of the Mi–Ti engagement, VC;MTi, is

VC;MTi � VTi cos�γTi � λMTi� � VMi cos�γMi − λMTi� (4)

the speed orthogonal to the Mi–Ti LOS, Vλ;MTi, is

Vλ;MTi � VTi sin�γTi � λMTi� − VMi sin�γMi − λMTi� (5)

and γTi is defined by the following:

_γTi � aTi∕VTi (6)

where aTi is defined in Eq. (2).

In addition to kinematics between the missiles and targets, the
relative motion between M1 and M2 is also described in a manner
similar to Eq. (3), i.e.,

_ρMM � −VC;MM

_λMM � Vλ;MM∕ρMM

)
(7)

where

VC;MM � −VM2 cos�γM2 − λMM� � VM1 cos�γM1 − λMM� (8)

Vλ;MM � VM2 sin�γM2 − λMM� − VM1 sin�γM1 − λMM� (9)

B. Measurement Model

It is assumed that the targets are using electro-optic seekers and/or
radar to acquire measurements. Therefore, each target may measure
either ρMTi and λMTi or only λMTi, where i ∈ f1; 2g. The discrete time
measurements zMTi�k� ∈ Rnz are corrupted by a zero-mean, mutually
independent, white Gaussian measurement noise, vMTi�k� ∈ Rnz .
Therefore, the measurement model of the ith estimator, when both
ρMTi and λMTi are available, is

zMTi�k� � HxMTi�k� � vMTi�k� �
"
ρMTi�k�
λMTi�k�

#
� vMTi�k� (10)

where

vMTi�k� ∼N ��0�nz×1;RMTi�; RMTi � diag�σ2i;ρ; σ2i;λ� (11)

such thatH is the correspondingmeasurement matrix, andRMTi is the
covariance matrix, with σ2i;ρ and σ

2
i;λ being the variances for the range

and LOS angle measurements acquired by ith target, respectively. In
the case when only λMTi is acquired, the first row of H is removed,
and RMTi � σ2i;λ.

III. Optimal Cooperative Guidance Law
for the Target Pair

In this section, the optimal cooperative guidance law for the target
pair is derived. The optimal strategy is solved using linearized
kinematics. It is assumed that the missiles are using a linear guidance

Fig. 1 Schematic of a two-on-two engagement.
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law that is known to the target pair through an identification scheme

such as the one that will be presented in Sec. IV.A.

A. Linearized Kinematics for Guidance Law Derivation

Classical linearization [11] about the collision triangles in the

engagement is performed with reference to each triangle’s initial

LOS. The state yMTi, i ∈ f1; 2g, is defined as the separation between
Mi andTi orthogonal to the initial LOS ofMi andTi, whereas yMM is

the separation betweenM1 andM2 orthogonal to the initial LOS of

M1 and M2 (Fig. 1).
Because the objective for the target pair defined in this paper is to

survive the engagement by cooperatively luring the missiles into

collision, the guidance law should drive the final time of the

M1–M2 engagement, tf;MM, to occur earlier than both M1–T1 and

M2–T2 engagements, i.e.,

tf;MM < min�tf;MT1; tf;MT2� (12)

However, depending on initial positions and flight-path angles of

the missiles, condition (12) need not necessarily hold. Referring to

Fig. 1, it is evident that, to reduce tf;MM, the target pair should

minimize themagnitude of δMM and θMM so as to increase the closing

velocity of the M1–M2 engagement. To this end, the linearized

model is formulated incorporating the latter two states.
Thus, to solve for the optimal guidance law, the following

linearized state vector y is defined:

y �
h
yTMT1 yTMT2 yTMM δMM θMM

i
T

(13)

where

yMM�
h
yMM _yMM

i
T
; yMTi�

h
yMTi _yMTi yTMi yTTi

i
T
; i∈f1;2g

(14)

The internal state vectors yMi and yTi are the components of xMi

and xTi orthogonal to the initial line of sight of the Mi–Ti
engagement and

δMM ≜ γM1 − λMM

θMM ≜ π − �γM2 − λMM�

)
(15)

The linearized EOMs are

_y �

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

_y1 � y2

_y2 � a⊥T1 − a⊥M1

_yM1 � AM1yM1 � BM1u
⊥
M1

_yT1 � AT1yT1 � BT1u
⊥
T1

_ynMT1�3 � ynMT1�4

_ynMT1�4 � a⊥T2 − a⊥M2

_yM2 � AM2yM2 � BM2u
⊥
M2

_yT2 � AT2yT2 � BT2u
⊥
T2

_ynMT1�nMT2�5 � ynMT1�nMT2�6

_ynMT1�nMT2�6 � −a⊥M2C
θ
MM∕Cδ

MT2 − a⊥M1C
δ
MM∕Cδ

MT1

_ynMT1�nMT2�7 � _γM1 − _λMM

_ynMT1�nMT2�8 � _λMM − _γM2

(16)

where for i ∈ f1; 2g, nMi � dim�AMi�, nTi � dim�ATi�, and

nMTi � nMi � nTi (17)

and for E ∈ fMT1;MT2;MMg, η ∈ fδ; θg,

Cη
E � cos ηE (18)

with δMTi and θMTi defined as

δMTi � γMi − λMTi

θMTi � γTi � λMTi

)
(19)

and δMM and θMM as presented in Eq. (15).
In Eq. (16), the superscript ⊥ represents the component of the

acceleration orthogonal to the associated LOS, i.e., for i ∈ f1; 2g,

a⊥Ti � aTiC
θ
MTi (20)

a⊥Mi � aMiC
δ
MTi (21)

Assuming that linearization holds, _λMM defined in Eq. (7) is

incorporated into Eq. (16) in its linearized form as

_λMM � yMM � _yMMtgo;MM

VC;MMt
2
go;MM

(22)

where VC;MM is defined in Eq. (8), and tgo;MM is defined as

tgo;MM � tf;MM − t (23)

Next, the missiles are assumed to be using a linear guidance law in

the following form:

u⊥Mi � KMTiyMTi � KuTiu
⊥
Ti (24)

where

KMTi �
h
KMi

1 KMi
2 KMi KTi

i
; i ∈ f1; 2g (25)

Remark 1: In this paper, the cooperative guidance law is derived

against missiles using PN [20], APN [21], and OGL [22]. For the

sake of brevity, gains of these well-established linear guidance

laws, KMTi and KuTi , are not explicitly defined in this paper.

Readers are referred to [15] for the detailed formulation of these

guidance laws.
Assuming that information about KMTi and KuTi is known to the

target group, Eq. (16) can be formulated as a one-sided optimal

control problem, i.e.,

_y � A�t�y�t� � B�t�uT�t� (26)

such that

A�t� �

2
66664
AMT1 �0� �0�
�0� AMT2 �0�

AM1
MM AM2

MM A0
MM

3
77775; B�t� �

2
666664

BMT1 �0�

�0� BMT2

BT1
MM BT2

MM

3
777775;

uT�t� �
h
u⊥T1 u⊥T2

i
T

(27)

where [0] is a matrix of zeros with appropriate dimensions. Elements

of A�t� and B�t� are defined in Appendix A.

B. Optimal Cooperative Guidance Law Derivation

As discussed previously, Eq. (12) may not hold for all initial

conditions. Thus, to derive a guidance law that can drive the system

towardachievingEq. (12), states δMM andθMM need tobe incorporated

into the cost function of the optimal control problem.
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The cost is defined using the finite-horizon, linear-quadratic

formulation:

J � yT�tf;MM�Qfy�tf;MM� �
Z

tf;MM

t0

�yT�t�Qy�t� � uTT�t�RuT�t�� dt

(28)

where

Qf �
" �0� �0�
�0� wf

#
; wf �

"
wms �0�
�0� �0�

#

Q �
" �0� �0�
�0� wr

#
; wr �

"
wδ 0

0 wθ

#

R �
"
wu1 0

0 wu2

#
(29)

Theweights in Eq. (29) are defined as follows:wms is theweight on

yMM�tf;MM�;wδ andwθ are weights on the angles δMM and θMM that

were defined in Eq. (15) and shown in Fig. 1; and wu1 and wu2 are

weights on u⊥T1 and u
⊥
T2, respectively.

The objective of the optimal controller, u�T�t�, is to minimize J in

Eq. (28), i.e.,

u�T�t� � arg min
uT∈Ω

J (30)

where Ω is the set of admissible controls.
The solution to the problem defined in Eq. (30) is given by

u�T�t� � −R−1BT�t�P�t�y�t� (31)

where P�t� is the solution to the differential Riccati equation [23]:

− _P�t� � P�t�A�t� �AT�t�P�t� − P�t�BR−1BTP�t� �Q�t�;
P�tf� � Qf (32)

Physically,u�T�t� not onlyminimizes themiss distance between the

missiles at tf;MM withminimal control effort, but it alsominimizes the

weighted sum of δ2MM and θ2MM over [t0, tf;MM] to maximize VC;MM

and drive the missiles to collision before they could hit the targets.

Note that this is unlike classical linearization assumptions for

missile–target engagements [11] where the geometry of the collision

triangle is assumed to be near constant because u�T is altering the

collision geometry at each time step by minimizing δ2MM and θ2MM.

C. Implementing the Linear Optimal Strategy in the Nonlinear
Engagement

The optimal controller, u�T , in Eq. (31) is solved in the linearized

frame and represents the required control that is orthogonal to

corresponding line of sight. This subsection describes how u�T is

implemented in the proposed guidance strategy to obtain the nonlinear

controller uNLT .
As noted in Sec. III.B, in such two-on-two engagements, there exist

initial conditions inwhich themissiles are not on the required collision

triangle such that the condition in Eq. (12) is met. In such conditions,

the targets are required to maneuver in a way such that the initial

collision geometry is altered to meet the condition in Eq. (12). Thus,

the classical linearization assumption of the collision geometry

remaining constant is no longer valid, and to implement the proposed

linear controller, this paper employs the state-dependent Riccati

equation (SDRE) method [24]. Under the SDRE framework, the

nonlinear engagement is relinearized at every time step k, and Eq. (32)
is solved online to obtain u�T�k�. Finally, to obtain the required

nonlinear control at each time step, uNLT �k�, u�T�k� is resolved to the

direction orthogonal to the target’s velocity vector, i.e.,

uNLTi �k� �
u�Ti�k�

cos�γTi�k� � λMTi�k��
; i ∈ f1; 2g (33)

To solve for u�T, integration of Eq. (32) from tgo;MM ∈ �0; tf;MM� is
required. Because it is assumed that the missile is using classical
missile guidance laws, there exist elements that are inversely
proportional to tgo;MT1 inA�t� (see Appendix A), and A�t� becomes
singular when tgo;MM � Δ.
In this work, we use the classical linearizedmethod to approximate

tgo;E of the collision geometry E, E ∈ fMT1;MT2;MMg, at each
time step. Let tlingo;E be the linear approximation for the tgo;E; then,

tlingo;E � ρE∕VC;E; E ∈ fMT1;MT2;MMg (34)

This method of estimating tlingo;E can deviate far from the true value
especially when there are large changes to the initial collision
geometry. Depending on initial conditions, such errors in tlingo;E could
violate the condition in Eq. (12), although actual values of tgo;E do
not. Therefore, for the implementation of the SDRE-based controller
in this paper, to avoid the aforementioned singularity issue, �tgo;MM is
used to approximate tgo;MM, where �tgo;MM is defined by the following
conditional statement.
Condition 1: If tlingo;MM ≠ min�tlingo;MT1; t

lin
go;MT2; t

lin
go;MM�, then

�tgo;MM � min�tlingo;MT1; t
lin
go;MT2� (35)

else

�tgo;MM � tlingo;MM (36)

Although Eq. (35) clearly does not accurately depict the true
kinematics of the problem, it is a heuristic method that allows us to
avoid the singularity problem. It also makes physical sense to assume
that the missile–missile collision, if it succeeds, should occur no later
than the earliest missile–target collision. Note that although more
accurate methods of approximating time to go exists in open literature
(e.g., in [25]), the method proposed using condition 1 is much simpler
to implement and, as shown in the simulation results in Sec. V, proved
to be sufficient for the implementation of the cooperative guidance law.

IV. Multiple-Model Adaptive-Control-Based
Cooperative Guidance Law

In order for the target pair to maneuver optimally against the
pursuing missiles and lure them into collision, the targets are assumed
to know exactly what guidance laws the missile team is using. In this
section, anMMAE approach is proposed to identify the guidance laws
employed by the missile team, the relative states of the engagement,
and the various time-to-go values necessary for the computation of the
cooperative guidance strategy. The section begins with a brief review
of the fundamental principles of MMAE before presenting the
implementation of the estimator together with guidance law described
in Sec. III under an MMAC framework.

A. Multiple-Model Adaptive Estimator

TheMMAE approach [14–16,26,27] is a well-established method
of estimating unknown system parameters. The system is assumed to
have a known finite set of possible regimes, and the true regime is
fixed. Filters are run in parallel, and each filter matches one of the
possible regimes (see for instance [14]).
In this work, it is assumed that the pursuingmissiles are employing

one of the p possible missile guidance strategies in the set U i,
i ∈ f1; 2g, i.e.,

uMi ∈ U i ≜ fu1Mi; : : : ; u
j
Mi; : : : ; u

p
Mig (37)

In addition, we assume in this paper that the target pair has perfect
information on its own parameters associated to the estimation
process (xTi, γTi, and VTi, i ∈ f1; 2g). It is also assumed that
the target pair has exact information on the missile dynamics
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(for methods to identify the latter, readers are directed to [14,15]). The

estimation process is assumed tobedecoupledbetween the two targets,

and the estimator of each target needs only themeasurements acquired

by itself. Therefore, the jth regime dynamics is defined by the EOM

presented in Eq. (3) with uMi � ujMi and can be compactly written in

discrete time as

xjMTi�k� � f j
k−1�xjMTi�k − 1�;uT�k − 1��; i ∈ f1; 2g (38)

where xjMTi�k� is the discretized version of the state vector xMTi�tk� in
Eq. (1) associatedwith the jth regime and tk � kTs,Ts is the sampling

period used for estimation. The vector function f j
k−1 is obtained by

integrating the EOMs of the jth regime from tk−1 to tk. In this work,

EKFmatching the regimedynamics is used to calculate the timeupdate

state estimate because the engagement kinematics is nonlinear.
Next, using Bayes’s rule, the jth regime probability at the kth time

step, μji �k�, can be determined by the following recursive formula

[26], based on a given initial probability, μji �0�:

μji �k� �
Λj
i �k�μji �k − 1�Pp

l�1 Λ
j
i �k�μji �k − 1� ; j ∈ f1; : : : ; pg (39)

where Λj
i �k� ≜ fp�zi�k�jzi�1:k − 1�; ujMi� is the jth regime-

conditioned likelihood function computed based on the innovations

process statistics of the jth filter of the ith missile; zi�1:k� is the

measurement acquired by the ith missile from first time step to the

kth; and fp�AjB� is the conditional probability density function of

A given B.
Under linear Gaussian assumptions, Λj

i �k� is also Gaussian and is
thus

Λj
i �k� � N �νji �k�; �0�nz×1;Sj

i �k�� (40)

where νji �k� and Sj
i �k� are the innovation and its covariance from the

jth regime-matched filter.

B. Multiple-Model Adaptive Estimator for Identification of Classical
Guidance Laws

In this work, the cooperative targets guidance law is derived

against a missile team using the well-established classical guidance

laws PN, APN, and OGL. Application of these guidance laws is

usually in its nonlinear form rather than the linearized formulation

presented in Eq. (24). For the sake of brevity, the index for the ith
missile or target, i ∈ f1; 2g, is dropped in the formulation of this

subsection:

ujM � N 0
GL

ZGL

t2go;MT cos�γM − λMT�
GL ∈ fPN;APN;OGLg

(41)

where N 0
GL is the effective navigation gain, and ZGL is the missile’s

ZEM distance, which is unique for each guidance law:

ZPN � VC;MT
_λMTt

2
go;MT (42a)

ZAPN � ZPN � t2go;MT

2
a⊥T (42b)

ZOGL � ZAPN − a⊥Mτ
2
Mψ�ξMT� (42c)

where _λMT and VC;MT are defined in Eqs. (3) and (4), respectively.

Variables a⊥T and a⊥M are the components of the target and missile

accelerations orthogonal to the missile–target LOS as presented in

Eqs. (20) and (21). And ψ�ξ� is defined as

ψ�ξMT� � exp�−ξMT� � ξMT − 1 (43)

where ξMT ≜ tgo;MT∕τM is the nondimensionalized time to go.
AlthoughN 0

GL are constants for PNandAPN,N 0
OGL is a function of

ξMT and is defined as

N 0
OGL�

6ξ2MTψ�ξMT�
3�6ξMT−6ξ2MT�2ξ3MT−3exp�−2ξMT�−12ξMT exp�−ξMT�

(44)

Thus, to determine the guidance law of the missiles, the MMAE is
required to identify the ZEM values, Eq. (42), and in the case of PN
and APN, N 0

GL.

C. Estimating the Range and Line-of-Sight Angle BetweenM1
andM2

Besides the states associated with the missile–target collision
geometries, the cooperative guidance law defined in Sec. III requires
also the states ρMM and λMM for computation of the linearized states.
In this work, these states are computed separately out of the

estimation loop using the estimates of ρMTi and λMTi, i ∈ f1; 2g, and
the relative position of the targets. This way, estimation can be
decoupled between the targets, and they need only compute the
number of filters that corresponds to the p number of possible
guidance laws. LetρTT and λTT (see Fig. 2) define the relative position
between the targets in polar coordinates, and assume that we have
perfect information on these parameters. Then, by taking reference
from one of the targets, say T1, ρMM and λMM can be computed:

ρMM �
����������������������������������
ΔX2

MM � ΔY2
MM

p
λMM � arctan�ΔYMM∕ΔXMM�

)
(45)

where

ΔXMM � ρTT cos λTT − ρMT2 cos λMT2 � ρMT1 cos λMT1 (46)

ΔYMM � ρTT sin λTT − ρMT2 sin λMT2 � ρMT1 sin λMT1 (47)

Estimates ρ̂MM and λ̂MM can then be computed using Eqs. (45–47)
based on the estimates ρ̂MT1, ρ̂MT2, λ̂MT1, and ρ̂MT2 and variables ρTT
and λTT , of which we assumed to have perfect information.
Remark 2: If the estimation process is coupled betweenT1 andT2,

i.e., ρMM and λMM are estimated by incorporating their dynamics
[Eq. (7)] into the EKF equations, then the number of filters increases
drastically with p because, in addition to the number of possible
guidance laws employed by each missile, the MMAE scheme has to

compute p2 number of filters in parallel to account for the possible
combinations of guidance laws employed by the two missiles. Also,
the size of the covariance matrix to be solved by each filter increases

Fig. 2 Relative positions of M1 andM2 referenced to T1.
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from 5 × 5 (five states for each Mi–Ti engagement, i ∈ f1; 2g) to
12 × 12 (10 states for bothMi–Ti engagements plus ρMM and λMM).

This can become very computationally intensive with increasing p.

D. Multiple-Model Adaptive-Control-Based Cooperative
Guidance Law

To compute the maneuver commands for the target pair when

information on the missiles is imperfect, this paper employs the

MMACapproach [17]. In this approach, the state estimates from each

filter are fed into a regime-matched controller. The final target

commands can then be computed by either 1) minimum mean-

squared error (MMSE), or 2) maximum a posteriori probability

(MAP) approach.

1. Minimum Mean-Squared Error Approach

In theMMSE approach, the final target command uT is determined

by a weighted average of the regime-matched target commands.

However, each regime-matched controller varies with different

combinations of guidance laws used by the missile team, and

computing the final target commands using the MMSE approach

would require multiple solutions of the Riccati equation [Eq. (32)]

each accounting for every possible combination.

Consider that each target Ti computes p number of regimes that

corresponds to the list of possible guidance laws employed by its

pursuer Mi. Let Ucomb denote the set that consists of all possible

combinations of guidance laws between M1 and M2, and ulM is the

lth combination in this set, i.e.,

ulM � � uj1M1; uj2M2
�; l ∈ f1; : : : ; p2g; j1; j2 ∈ f1; : : : ; pg; and ulM ∈ Ucomb (48)

If Ucomb is arranged in the following order:

Ucomb ≜

8>>>>>>>><
>>>>>>>>:

u1M ≜
h
u1M1; u1M2

i
T
; · · · ; upM ≜

h
u1M1; upM2

i
T

up�1
M ≜

h
u2M1; u1M2

i
T
; · · · ; u2pM ≜

h
u2M1; upM2

i
T

..

.

u�p−1�p�1
M ≜

h
upM1; u1M2

i
T
; · · · ;up

2

M ≜
h
upM1; upM2

i
T

9>>>>>>>>=
>>>>>>>>;

(49)

then the index l can be written as a function of j1 and j2:

l � �j1–1�p� j2 (50)

The combined regime probability of ulM at time step k, μl�k�, is
calculated based on the regime probabilities associated with the j1th
and j2th regimes in the MMAE of T1 and T2, i.e.,

μl�k� � μj11 �k�μj22 �k�; l ∈ f1; : : : ; p2g (51)

The final command at time step k in a MMSE sense is

u�mmse�
T �

Xp2

l�1

μl�k�u�lT (52)

where u�lT � � u�lT1; u�lT2 �T , l ∈ f1; : : : ; p2g, is the optimal

maneuver based on the cooperative guidance strategy as formulated

in Sec. III against the lth combination of missile guidance laws.
Remark 3: If the estimation is coupled, then both MMAE scheme

and Riccati equation (32) will be computed p2 number of times in

parallel. Instead of Eq. (51), μl�k� will simply correspond to regime

probability of the lth regime in thep2 number of filters in the coupled

MMAE scheme.

2. Maximum A Posteriori Probability Approach

In the MAP approach, uT is determined as the command against

the combination of missile guidance laws that has the maximum a

posteriori probability. In this approach, only one solution to Eq. (32) is

required becausewe only need to compute the SDRE controller for the

combination of guidance laws that corresponds to the regimes with the

highest probability from each target’sMMAE.Consider the following:

j1 � arg max
j∈f1; : : : ;pg

μj1�k�

j2 � arg max
j∈f1; : : : ;pg

μj2�k�

9>=
>; (53)

then

u�map�
T � u�lT (54)

where l relates to indices j1 and j2 throughEq. (50), and it is the index
in Ucomb as defined by Eq. (49).
Remark 4: If the estimation process is coupled, then a total of p2

number of filters need to be run in parallel. However, unlike inMMSE

approach, u�map�
T only needs Eq. (32) to be solved once at each time

step for u�lT instead of solving all p2 number of regime-matched

optimal maneuvers as shown in Eq. (52).

E. Sensitivity of Guidance Law to Estimation Performance

The cooperative guidance law derived in Sec. III follows a similar

geometric rule to the classical PN in which collision is achieved if the

associated vehicles are able to remain on the collision triangle. The

targets must therefore ensure that the LOS rate between the missiles is

nullified towards the end of the engagement. Hence, accuracy of the

estimate for the LOS angle between the missiles, λMM, becomes

paramount to achieving good miss-distance performance. Figure 3

depicts the effects of missile–target estimation errors on the estimation

Fig. 3 Effects of missile–target estimation errors on missile–missile
miss-distance estimation ~yMM.
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error of λMM. Here, the accent “∼” denotes the estimation error of the
associated parameter. For the purpose of this discussion, it is assumed
that states ofM1 are known perfectly, and ~λMM is attributed to errors in
state estimates of the M2–T2 engagement. We introduce another
parameter in this discussion, ~yMM, which represents the difference in
the true and estimated position ofM2. The parameter ~yMM can also be
viewed as the miss distance associated with estimation error, ~λMM.
Assuming that estimation errors are small near the end of M1–M2
engagement, using small-angle approximations, ~yMM can bewritten as

~yMM ≃ ρMM
~λMM �

���������������������������
~y2MT2 � ~ρ2MT2

q
(55)

such that

~yMT2 ≃ ρMT2
~λMT2 (56)

FromEqs. (55) and (56), it is clear that contribution of ~λMT2 to ~yMM

diminishes as the range between theM2 andT2 decreases. Assuming
that ~λMT2 and ~ρMT2 converge to its asymptotic values toward the end
of the engagement and _ρMT2 < 0, the influence of ~λMT2 on ~yMM

reduces as compared to ~ρMT2 as the missile approaches the target.
Thus, the quality of the range estimate between the missile and the
target becomes the dominant factor influencing the cooperative
guidance law’s miss distance performance.
To have some quantitative assessment on the influence of errors in

range and LOS angle estimates between the missiles and targets
toward ~yMM, we compute and tabulate ~yMM in Table 1 using Eq. (55)
for various error levels in the missile–target state estimates for the
case when ρ̂MT2 � 2000 m at tf;MM. Here, it is assumed that the
missiles have a nonzero miss (i.e., ρMM ≠ 0) at tf;MM.
As seen in Table 1, a significant reduction in ~yMM is achieved for a

given ρMM only in the case when ~ρMT2 is reduced. This influence of
the range estimation accuracy between themissile–target on ~yMM will
be further validated in the Monte Carlo studies in Sec. V.B.3.

V. Simulation Analysis

In this section, the performance of the cooperative target guidance
strategy derived in Sec. II is presented. The section begins by
evaluating the proposed guidance law using perfect information,
where we demonstrate the importance of the weights on δMM and
θMM in the cost function [Eq. (28)]. A “collision map” is presented
thereafter inwhich the ability of the target team to lure themissile into
collision based on different initial conditions is shown.
In the subsequent subsection, performance of the guidance law

using the estimated states (i.e., “estimation in the loop”) is analyzed in
Monte Carlo (MC) simulations. Results from a sample run are also
presented in this subsection to demonstrate the performance of the
estimator. Sensitivity of the cumulative distribution function (CDF)
of the missile–missile miss distance to measurement noise is also
evaluated.

A. Guidance Law Performance with Perfect Information

1. Simulation Setup

The simulation setup is as follows. All vehicles have constant
speeds: VM1 � VM2 � 600 m∕s, VT1 � VT2 � 400 m∕s. Flight-
path angles were set such that γT1 � γT2 � 0 deg, and missiles have
zero initial heading error. The guidance laws for M1 and M2 are
APN, with N 0

APN � 5, and OGL, respectively. All vehicles have

first-order dynamics with time lag constants τM � 0.25 s for both
missiles and τT � 0.5 s for both targets. Accelerations were bounded
at amax

T � 10g for both targets and at amax
M � 20 g for both missiles,

where g � 9.80665 m∕s2 is the gravitational constant. Control

update frequency is set at 50 Hz. Unless otherwise stated, weights on

the cost function [Eq. (28)] are set as such: wms � 1e4,
wu1 � wu2 � 0.003, and wδ � wθ � 30.

2. Influence of Weights on Guidance Performance

In this subsection, the weights on δMM and θMM from the cost

function [Eq. (28)], wδ and wθ, respectively, are varied to

demonstrate its influence on the guidance performance. Referring to

Fig. 4, whenwδ � wθ � 0, the targets simplymaneuver to minimize

the change in LOS between the missiles, through minimizing

yMM�tf;MM� in the linear system. Although the targets were able to

guide themissiles to be on a collision course, theywere not able to do

so before M2 collided with T2. When wδ � wθ � 30, the targets

maneuver to reduce δMM and θMM, thus driving themissiles to collide

at an earlier time. It is important to note that theweights were tuned to

ensure zero miss between the missiles; values too high compared to

theweight on yMM�tf;MM�will result in nonzeromiss, whereas values

too low (similar towδ � wθ � 0) lead to collision betweenmissile(s)

and target(s).
Remark 5: In the proposed guidance law, collision avoidance

between the targets is not explicitly accounted for. Thus, in the

singular cases (e.g., when the engagement has perfect symmetry, i.e.,

in position, target/missile velocities, missile guidance laws), the

targets may collide before the missiles do. To avoid target–target

collision, the target pair can 1) fly in an asymmetric formation as

shown in Fig. 4, 2) fly at different velocities and/or 3) implement an

anticollision guidance strategy.

3. Collision Map

The performance of the guidance law is evaluated over a range of

initial conditions and presented in a collision map. Missile and target

parameters are the same as described in Sec. V.A.1. Target positions

are fixed at the same location as seen in Fig. 4, whereas positions of

the missiles are varied.
Positions of the missiles are varied as follows. Referring to

Fig. 5, the missiles’ initial LOS angle is fixed at λ0MM � −π∕2
(i.e., parallel to the YI axis). The center of missile–missile LOS is

denoted as c, and the initial inertial position of c is (X0
c, Y

0
c). The

initial range between the missiles ρ0MM together with X0
c and Y

0
c are

variedover the intervalsρ0MM∈ �100;6000�m,X0
c∈ �−10000;−1000�m,

and Y0
c∈ �−3000;3000�m. These parameters are normalized by the

initial range between the targets, ρ0TT, and are denoted as �ρ
0
MM,

�X0
c, and

�Y0
c, i.e.,

�ρ0MM ≜ ρ0MM∕ρ0TT; �X0
c ≜ X0

c∕ρ0TT; �Y0
c ≜ Y0

c∕ρ0TT (57)

The collision maps obtained from the simulations are presented in

Fig. 6, in which initial conditions that resulted in missile–missile

collision are marked with circles, whereas conditions which led to a

miss are marked by asterisks. Missiles are considered to have

“collided” if ρMM�tf;MM� ≤ 0.1 m.
As shown in Fig. 6, the guidance law is most effective when

�ρ0MM > 1, �X0
c is large, and �Y0

c is small. This is intuitive; as observed in

the sample trajectory in Fig. 4, the targets require sufficient initial

separation between themselves and the missiles so that the target pair

has sufficient time to lure the pursuers into collision. The guidance is

less effective when �ρ0MM < 1 (i.e., ρ0MM < ρ0TT). In such scenarios, the
missile velocities are initially pointing away fromeach other (because

we assumed that themissiles have zero initial heading error), andwith

decreasing �X0
c, the initial difference between the missile headings

becomes too large for the target pair to turn the missiles into head-on

collision before one of the targets is intercepted. Also, as seen in

Figs. 6c and 6d, the targets were able to enforce collision if
�Y0
c ∼ �−1; 2�. This is also intuitive because a large offset in the center

point c meant that one of the missiles is closer to the target than the

Table 1 Missile–missile miss distance due to
estimation errors from missile–target engagement

Case ~λMT2, mrad ~ρMT2, m ~yMT2, m ~yMM , m

Nominal 0.25 1.5 0.5 1.581
0.1 × ~λMT2 0.025 1.5 0.05 1.501
0.1 × ~ρMT2 0.25 0.15 0.5 0.522
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other, and target interception would occur earlier than the missile–
missile collision.

B. Monte Carlo Study with Estimator in the Loop

1. Simulation Setup

A Monte Carlo study was conducted to evaluate the estimator-in-
the-loop performance of the cooperative guidance law. Inertial
positions are the same as that shown in Fig. 4 and are fixed in this
study. Initial flight-path angles of the targets are uniformly selected
from the interval [–10, 10] deg, whereas the initial heading errors of
the missiles are drawn from a zero-mean normal distribution with
3 deg standard deviation. The guidance law that is employed by each
missile is assumed to be one of the seven regimes considered by each
target in this study. This includes PN, APN, and OGL with N 0

GL ∈
f3; 4; 5g for GL ∈ fPN;APNg. Selection of the missiles’ guidance
laws at the beginning of each run is based on the initial regime
probability, μji �0�, i ∈ f1; 2g, j ∈ f1; : : : ; 7g. μji �0� is set such that
each type of guidance law has 1∕3 probability, and each N 0

GL has a
1∕9 chance of occurring within the guidance law. Each MC
simulation includes 500 runs.
In this study, the MAP approach is employed for MMAC (see

Sec. IV.D.2) because it is computationally more efficient and is more
practical to implement on the onboard processor of an aircraft/missile.
Each filter of the ith estimator is initiated with the same state estimate,
x̂jMTi�0j0� ∼N �xMTi�0�;P�0j0��, i ∈ f1; 2g, j ∈ f1; : : : ; 7g, where

xMTi�0� is the true initial state, and the initial covariance
P�0j0� � diagf6502; �3π∕180�2; �5g�2; �3π∕180�2; 602g.
The targets are assumed to be acquiring both range and bearing

measurements that are corrupted by noises as defined in Eq. (11).
Variances of the measurement noises are varied in this study to assess
the sensitivity of the cooperative guidance law to noise.Measurements
are taken at a frequency of 50 Hz.

2. Sample Run

A sample run is presented here to demonstrate the performance of
the estimator and the guidance law when using imperfect information.
In this sample run, σρ � 10 m and σλ � 1 mrad. Missile and target
parameters follow exactly as described in Sec. V.A.1.
Convergences of the regime probabilities μj1 and μj2 are shown in

Fig. 7. As seen in the figure, regime probabilities for both missiles
converged to 1 by t � 4 s. Convergence of μj2 is slower because the
guidance behaviors for OGL and APN, N 0

APN � 3 (i.e., the optimal
guidance gain for APN), are very similar. They differ only in the term
associated with the M2’s first-order lag, τM2 [see Eq. (42)], and
because the τM2 � 0.25 s contribution from this term is hardly
discernible. Although this is true, T2‘s estimator correctly identified
OGL as the most probable guidance law being employed by M2
throughout the engagement, and because it is using the MAP
approach to derive its optimal maneuver, it is still behaving optimally
against M2.
For brevity, only the estimation performance of the states relating

to the M2–T2 and M1–M2 engagements are presented because
similar results are seen in the M1–T1 case. Despite the slower
convergence in the regime probabilities in T2‘s estimator, the state
estimation errors converge to their asymptotic values at around 2 s, as
seen in Fig. 7. Note that because ρ̂MM and λ̂MM are computed using
Eq. (45) and not within the estimator, only the sample errors without
the variances are shown in Fig. 8. For other estimates presented in
Fig. 7, the error performance is obtained based on the blended
estimate x̂MTi and blended covariance PMTi and are calculated using

x̂MTi�kjk� �
Xp
j�1

μji �k�x̂jMTi�kjk� (58a)

Fig. 5 Relative positions ofM1 andM2 referenced to T1.
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Fig. 4 Influence of the weights on the relative angles between missiles’ heading and the LOS between them.
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Fig. 7 Regime probabilities of T1’s and T2’s estimator. M1 is using APN with N 0
APN � 5, whereasM2 is using OGL.
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Fig. 8 Sample estimation error performance.
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Fig. 6 Collision map. Data points where a missile hits its target were excluded in Fig. 6d for clarity.
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PMTi�kjk� �
Xp
j�1

μji �k�
h
Pj
MTi�kjk� � �Pj

MTi

i
(58b)

where x̂jMTi�kjk�, j ∈ f1; : : : ; pg, and Pj
MTi�kjk� are the jth regime

estimate and covariance of the ith estimator, respectively, and

�Pj
MTi ≜

h
x̂jMTi�kjk� − x̂MTi�kjk���x̂jMTi�kjk� − x̂MTi�kjk�

i
T

(59)

Engagement trajectories of the sample run are shown in Fig. 9 and

are very similar towhat was depicted in Fig. 4b.Missile–missile miss

distance in this run was 0.599 m. Acceleration profiles of the target

pair in this sample run when using imperfect and perfect information

(labeled amap
Ti and a�Ti, respectively, i ∈ f1; 2g) are plotted in Fig. 10.

Initial disparities between amap
Ti and a�Ti are observed due to large

estimation errors. As estimation errors converge at t ∼ 2 s, amap
Ti

behaves close to that of a�Ti. The kink observed in a
map
Ti near t � 5.4 s

was due to divergence of ~λMM, as observed in Fig. 8. The divergence

is consistent with what was derived in Eq. (55), as ~λMM increases
exponentially as ρMM approaches zero.

3. Monte Carlo Study

Results of theMCsimulations are presented in this subsection. The
performance metric in this study is the CDF of the miss distance
between the missiles. The sensitivity of the miss CDF to
measurement noise is evaluated here. Measurement noise variances
are the same for both targets (i.e., σi;ρ � σρ and σi;λ � σλ, for
i ∈ f1; 2g). Figure 11 shows the CDF of the missile–missile miss
distance for different levels of noise in the range and bearing
measurements. As shown in Fig. 11, the miss CDF improves
drastically with the reduction in σρ. The results shown in Fig. 11

0 1 2 3 4 5 6
-10

-5

0

5

10

Fig. 10 Target acceleration profiles.
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1

Fig. 11 Sensitivity of missile–missile miss distance to measurement noise.
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Fig. 9 Engagement trajectories when targets are using MMAC with M1 using APN,N 0
APN � 5, andM2 using OGL.
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substantiate the discussion in Sec. IV.E because the accuracy of the
range estimates between the missile–target significantly affects the
target pair’s ability to accurately nullify the missile–missile LOS and
keep the pursuers on their collision triangle.

VI. Conclusions

A novel optimal cooperative defensive strategy in a two-on-two
engagement was derived in this paper. The proposed strategy
capitalizes on the presence of multiple adversaries to lure them into
collision. With the proposed multiple-model adaptive estimator
(MMAE) scheme, the targets are able to identify the missiles’
guidance laws and predict their future trajectories. This information
allows the target pair tomaneuver cooperatively and set their pursuers
on a collision triangle such that the missiles will hit each other before
they could reach any of their targets.

When using perfect information, the proposed guidance

strategy was shown to be effective over a wide range of initial

conditions, as demonstrated by the collision map. This is despite

the fact that the targets had half the maximum allowable

acceleration and double the time lag compared to themissiles. This

result highlights the advantage of the proposed cooperative

strategy over conventional defensive strategies such as evasion or

deploying defenders because the target pair was able to survive the

engagement despite being less agile and not carrying any

defending missiles.

For the case when the targets use imperfect information,

a decentralized MMAC scheme was presented. Unlike the

conventional MMAE approach, in which the number of required

filters for guidance law identification grows quadratically with

the number of possible missile guidance strategies, the number

of filters in the proposed decentralized scheme grows only
linearly. The sensitivity of the proposed guidance law to the
estimation error of the missile–target range was also presented
analytically, and the findings were verified by Monte Carlo
simulations.
Finally, it is important to note that the effectiveness of the

guidance law also depends on the appropriate tuning of the weights
in the cost function. Therefore, it is critical for the designer to
make adjustments to the weights, if necessary, based on the
required engagement conditions when applying the proposed
guidance law.

Appendix A: Definition ofA�t� andB�t� in Equation (27)

Referring to Eq. (27), the submatrices in A�t� are defined as
follows. The submatrix AMTi represents the influence of the ith
missile on theMi–Ti engagement:

AMTi �

2
66666664

0 1 �0� �0�

−dMiK
Mi
1 −dMiK

Mi
2 −�CMi � dMiKMi� CTi − dMiKTi

BMiK
Mi
1 BMiK

Mi
2 AMi � BMiKMi BMiKTi

�0� �0� �0� ATi

3
77777775
; i ∈ f1; 2g

whereas AMi
MM represents the influence of the ith missile on the M1–M2 collision geometry:

AM1
MM � 1

Cδ
MT1

2
66666664

0 0 �0� �0�
−Cδ

MMdM1K
M1
1 −Cδ

MMdM1K
M1
2 −Cδ

MM�CM1 � dM1KM1� −Cδ
MMdM1KT1

dM1K
M1
1 ∕VM1 dM1K

M1
2 ∕VM1 �CM1 � dM1KM1�∕VM1 dM1KT1∕VM1

0 0 �0� �0�

3
77777775
;

AM2
MM � 1

Cδ
MT2

2
666666664

0 0 �0� �0�

−Cθ
MMdM2K

M2
1 −Cθ

MMdM2K
M2
2 −Cθ

MM�CM2 � dM2KM2� −Cθ
MMdM2KT2

0 0 �0� �0�
−dM2K

M2
1 ∕VM2 −dM2K

M2
2 ∕VM2 −�CM2 � dM2KM2�∕VM2 −dM2KT2∕VM2

3
777777775

and A0
MM is defined as

A0
MM �

"
A0 �0�
ΛMM �0�

#

where A0 is

A0 �
�
0 1

0 0

�

and ΛMM consist of terms associated with _λMM:

ΛMM � 1

VC;MMt
2
go;MM

"
−1 −tgo;MM

1 tgo;MM

#
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Next, we define B�t�. Submatrix BMTi describes the influence of
the ith target on the Mi–Ti engagement:

BMTi �
h
0 dTi − dMiKuTi KuTiB

T
Mi BT

Ti

i
T
; i ∈ f1; 2g

and submatrices BTi
MM, i ∈ f1; 2g, represent the influence of the ith

target on the M1–M2 collision geometry:

BT1
MM � 1

Cδ
MT1

h
0 −Cδ

MMdM1KuT1 dM1KuT1∕VM1 0
i
T

BT2
MM � 1

Cδ
MT2

h
0 −Cθ

MMdM2KuT2 0 −dM2KuT2∕VM2

i
T
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