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This paper focuses on designing an intercept angle guidance law for the planar interception of a stationary target. The

underlyinggeometrical rule isbasedonanArchimedeanspiral,whichallowsapursuer to enforceadesired interceptangle

or time by generating an appropriate spiral trajectory. An inherent advantage of using the proposed geometrical rule is

that the required lateral acceleration to ensure interception is bounded throughout the engagement. The applicability of

thegeometrical rule isalsoanalyzedagainstnonmaneuveringmoving targets.Thegeometrical rule is implementedusinga

sliding-mode control-based nonlinear and robust guidance law. Using the proposed guidance law, the desired intercept

angle is achieved in finite time.The theoretical results arevalidated throughnumerical simulations.The interceptionof the

targetwitha specified interceptangle fromdifferent initial conditionsandwithvarious intercept angles fromagiven initial

condition are shown. The robustness of the controller against disturbances and heading errors is also evaluated.

Nomenclature

a = Archimedean spiral parameter, m∕rad
aP = acceleration of the pursuer, m∕s2
aPeq

= equivalent controller, m∕s2
aPun

= uncertainty controller, m∕s2
I = interception point
N = gain for proportional navigation
P = pursuer notation
rP = distance of the pursuer from the target
T = target notation
Tf = reachability time, s
tf = final time, s
ν = speed ratio between the target and the pursuer
vP = speed of the pursuer, m∕s
vT = speed of the target, m∕s
vr = rate of change of rP, m∕s
vλ = rate of change of λP, rad∕s
V = Lyapunov function
w = matched uncertainty in the input, m∕s2
(xP, yP) = position coordinate of the pursuer in Cartesian

coordinate system, m
β = gain to drive the system to the sliding surface
γf = γP at interception, rad
γP = heading angle of the pursuer, rad
γT = heading angle of the target, rad
Δ = bound of the uncertainty in the time rate of change of

the sliding variable, m∕s2
δP = lead angle of the pursuer, rad
δT = lead angle of the target, rad
η = gain of the uncertainty controller
κ = curvature of a curve, 1∕m
λP = line-of-sight angle, rad
ξP = intercept angle, rad
σ = sliding variable, rad

I. Introduction

I NTERCEPTION of a target at specific impact angles can enhance
the effectiveness of a pursuer. For example, it can lead to a reduced

warhead and less collateral damage, and it can facilitate an improved
penetration. A vast variety of guidance laws are explored in the
literature that allow a pursuer to enforce an intercept angle.
To begin with, classical guidance laws that implement the

geometrical rules of pure pursuit and deviated pure pursuit (DPP) can
be used to enforce a desired impact angle [1]. In pure pursuit, the
velocity vector of the pursuer is directed towards the target, resulting
in a tail-chase scenario. In DPP, the velocity vector of the pursuer
maintains a constant lead angle from the line of sight (LOS) vector.
By varying the lead angle, different intercept angles can be achieved.
Another guidance law is proposed in [2], wherein Kim andKim use a
Lyapunov-based controller to minimize the error between the
velocity vector and the LOS vector for stationary targets. To attack a
target from a predefined direction, the guidance law is designed with
intercept angle constraints at the final phase. In [3], Livermore and
Shima implement DPP for a nonmaneuvering target using linear
quadratic optimal control theory that allows a user to enforce either a
desired impact time or angle.
One of the most remarkable guidance laws is proportional

navigation guidance (PNG). A major advantage of PNG is that it
requires zero control effort once the collision triangle is achieved.
But, in general, PNG does not enforce a specific impact angle.
However, it can be modified such that, along with interception, the
additional constraint of an impact angle can also be attained. For the
case of stationary targets, Lee et al. propose a guidance law composed
of a PNG command and a function of an error term corresponding to
the impact angle [4]. For nonmaneuvering targets, Ratnoo andGhose
propose two-stage PNG laws in [5,6] to intercept a target at desired
impact angles. In the first stage, the guidance law orients the
trajectory of the pursuer by using PNG with the navigation constant
N < 2, which is later switched toN > 2 in the second stage to achieve
the desired impact anglewith a bounded terminal lateral acceleration.
An alternate approach is to consider small deviations from the

collision triangle and obtain a linearized model of the engagement.
Based on this linearized engagement model, optimal control and
differential game theory can be used to design guidance laws that
enforce an impact angle. When there is a large deviation from the
collision triangle, the linearization does not hold. This problem is
then overcome by linearizing the engagement model iteratively and
solving the optimal control problem in each iteration. One of the
earliest works [7] in this area deals with a terminal guidance law for a
reentry vehicle with attitude constraints. Kim and Grider obtain the
guidance law by formulating the problem as a linear-quadratic
control problem with terminal constraints on the impact angle.
Extending this approach for a pursuer with first-order dynamics,
Ryoo et al. propose an optimal guidance law with an impact angle
constraint in [8]. The aforementioned guidance laws use perfect
information and lag-free dynamics of the target maneuver. While
overcoming this limitation, Shaferman and Shima use differential
game theory to obtain a guidance law with an intercept angle
constraint in [9].
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The design of guidance laws that allow a pursuer to achieve a
desired impact angle has also been pursued by using nonlinear

control theory techniques like sliding-mode control [10]. In [11],
Shima proposes a sliding-mode-based controller to achieve a desired

intercept angle bymaintaining a prespecified anglewith respect to the
target velocity vector. Rao andGhose propose a second-order sliding-
mode controller in [12] to guarantee a desired impact angle for the

interception of a nonmaneuvering target. A sliding-mode control-
based guidance law is designed by Harl and Balakrishnan in [13] that
achieves not only a desired impact angle but also an impact time. In

[14], Zhang et al. use the concept of finite time stability to design an
intercept angle guidance law such that the error term associated with

the sliding variable is forced to zero in finite time. Kumar et al. design
a terminal sliding-mode control-based guidance law in [15] to
enforce a desired impact angle that can be used against stationary,

nonmaneuvering, and maneuvering targets. The authors improve
upon the guidance law in [16] by proposing a nonsingular sliding-
mode-based controller that overcomes the issue of a possible

singularity resulting from small errors.
Geometrical rules inspired from mathematical curves have also

been employed in the literature to achieve desired impact angles.
Guidance laws implementing these geometrical rules shape the

pursuer’s trajectory to match the chosen mathematical curve. The
properties of the curves are then adjusted such that desired
specifications of lateral acceleration, smoothness, etc., can be

enforced. In [17], Manchester and Savkin generate a circular
trajectory by using the information of approach angles. The proposed
guidance law achieves a desired impact angle without using the

information of the range to the target. The mathematical principle of
inscribed angles is used byTsalik and Shima to design a guidance law

in [18] to drive the pursuer along a circular trajectory to a target. The
proposed guidance law is a three-point law. It achieves the desired
impact angles by constraining the pursuer’s trajectory to specific

circular arcs by varying only the inscribed angle. In [19], the authors
extend their work for the case of moving targets. Another three-point
guidance law is proposed in [20] by Livermore et al., in which the

trajectory of the pursuer follows an elliptical path. This guidance law
can impose a launch angle along with enforcing desired impact angle

and time for a stationary target.
The current work presents a geometrical rule based on the simple

mathematical curve of a spiral. The motivation for the work is derived
from the classical geometrical rule of DPP. Although DPP can enforce
a desired impact angle, it suffers from the requirement of very large

terminal lateral acceleration for the interception of stationary targets.
This renders its implementation practically impossible. To overcome
this problem, we propose a geometrical rule designed using an

Archimedean spiral.Basedon the properties of the spiral,weprove that
the resulting lateral acceleration of the pursuer is bounded throughout

the engagement. Furthermore, themathematical properties of the curve
can be modified to enforce impact angle or time constraints at target
capture. We also discuss the conditions to intercept a target moving

in a straight-line path using the proposed geometrical rule. The
implementation of the geometrical rule is carried out using a sliding-
mode controller, which is a nonlinear robust controller that rejects the

bounded disturbances appearing in the system. In addition to it, the
implementation requires only angular information.Another advantage

of the guidance law is that it is not designed assuming near-collision-
course conditions and, hence, is valid throughout the engagement.
The paper is organized as follows. Section II formulates the

problem of planar interception of a stationary target. In Sec. III,
the Archimedean spiral-based geometrical rule is presented. The

performance of the proposed geometrical rule in terms of target
capturability is elaborated in Sec. IV. Section V discusses the lateral

acceleration requirements for the proposed geometrical rule. For the
implementation of the geometrical rule, a sliding-mode controller is
proposed in Sec. VI. In Sec. VII, we discuss the performance of the

proposed geometrical rule against a nonmaneuvering and a
nonstationary target. The validation of the theoretical results is
carried out using numerical simulations in Sec. VIII. Finally, Sec. IX

concludes the paper.

II. Problem Description

The paper focuses on designing a guidance law for the interception
of a stationary target such that the lateral acceleration of the pursuer is
bounded throughout the engagement. A planar engagement between
the target T and the pursuer P is considered. In the inertial Cartesian
coordinate system, the nonlinear engagement kinematics are
as follows:

_xP � vP cos γP

_yP � vP sin γP

_γP � aP∕vP (1)

where (xP, yP) denotes the position coordinates of the pursuer, andaP
is the lateral acceleration perpendicular to its velocity. The pursuer is
assumed to bemoving at a constant speed vP with a heading angle γP.
The planar engagement geometry between the pursuer and the target
is shown in Fig. 1, where the distance and line-of-sight angle between
P and T are denoted by rP and λP, respectively, satisfying

_rP � −vP cos�γP − λP� � −vP cos δP
rP _λP � −vP sin�γP − λP� � −vP sin δP (2)

δP is called the lead angle, which is the angle between the velocity
vector of the pursuer and the line of sight between the target and the
pursuer.
With the preceding equationsofmotionof the pursuer, the objective

of the present work is to design aP such that it is always bounded and
interception is achievedwith a desired impact angle. To achieve this, a
new geometrical rule is proposed in the following section.

III. New Geometrical Rule

In this section, we propose a geometrical rule inspired from the
unique mathematical properties of an Archimedean spiral.

A. Motivation

This work derives its motivation from the geometrical rule of DPP,
the details of which can be found in [1]. In DPP, the pursuer tries to
maintain its velocity vector at a prespecified lead angle from the line
of sight joining the pursuer and the target. When it comes to a
stationary target, a major drawback associated with this geometrical
rule is severe maneuver requirements toward interception. The
trajectory of the pursuer trying to intercept a stationary target by using
DPP [1] is given as follows:

rP�λP� � rP0 exp�−λP cot δP� (3)

Equation (3) describes a logarithmic spiral. By the very nature of
the curve, it approaches the origin spiraling its way inside infinitely
many number of times. This causes the turn rates to be very high near
the origin. For a pursuer following this trajectory, the lateral
acceleration [1] reduces to

X

Y

vP

P(xP,yP)

λP

δP

γP

T

rP

Fig. 1 Planar geometry between the pursuer and the target.
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aP�λP� �
v2P sin δP

rP
(4)

Given that vP and δP are constant for DPP, it is evident fromEq. (4)
that, as rP → 0, the lateral acceleration aP shoots up to infinity. This
adversely affects the implementability of the DPP geometrical rule
against stationary targets. This creates the urge to look for
geometrical rules that result in trajectories that can overcome this
issue while still being generic enough to be implemented easily.

B. Archimedean Spiral-Based Geometrical Rule

Consider an Archimedean spiral defined in polar coordinates as
follows:

r � aλ (5)

where a ∈ R is a constant. Equation (5) results in the spiral shown in

Fig. 2. The curvature of the spiral is κ�λ� � �2� λ2�∕�a�1� λ2�1.5�.
Hence, κ � 2∕a at λ � 0. Interestingly, this implies that the curve
approaches originwith a zero intercept angle and a finite curvature for
all values of a. To generate a spiral trajectory with a specific intercept
angle ξ, Eq. (5) can be modified as follows:

r � a�λ − ξ� (6)

With this knowledge, next we proceed to derive a geometrical rule
to achieve a spiral governed by Eq. (6).
Theorem 1: For a pursuer with kinematics given by Eq. (1), an

Archimedean spiral trajectory corresponds to the geometrical rule

tan δP � λP − ξP (7)

such that the intercept angle is ξP.
Proof: For r � rP, λ � λP, and ξ � ξP, the equation of

an Archimedean spiral given in Eq. (6), is substituted in the
kinematics [Eq. (2)] of the pursuer, which gives −vP cos δP �
a�−vP sin δP∕rP�. Further simplification results in the geometrical
rule tan δP � λP − ξP. □

IV. Capturability Region

This section presents the conditions for the interception of the
target based on the initial coordinates of the pursuer.
To begin with, using the equations of motion in Eq. (2), we define

vr and vλ as

vλ � rP _λP � −vP sin δP (8)

vr � _rP � −vP cos δP (9)

Squaring and adding Eqs. (8) and (9) gives

v2λ � v2r � v2P (10)

This defines a circle of radius vP centered at the origin. Now, we

define a Cartesian frame of reference Vλ −O − Vr with its origin at

O�vλ � 0; vr � 0�. In Vλ −O − Vr, Eq. (10) implies that the

instantaneous values of vr and vλ always lie on a circle centered at the
origin with radius vP, as shown in Fig. 3.
The rates of change of vλ and vr are calculated using Eqs. (8)

and (9) and evolve with time as given next:

_vλ � −vP cos δP _δP � vr _δP (11)

_vr � vP sin δP _δP � −vλ _δP (12)

The proposed geometrical rule is tan δP � λP − ξP. Differentiating
and then rearranging, we get

_δP � cos2δP _λP (13)

Substituting Eq. (13) in Eqs. (11) and (12), we obtain

_vr � −v2λcos2δP∕rP (14)

_vλ � vrvλcos
2δP∕rP (15)

To understand how vλ and vr vary with time, we take a look at the

circle of radiusvP plotted inFig. 3. There are fourpointsof significance
associated with the circle, which we call the critical points. They are

A: �vλ; vr� � �vP; 0� (16)

B: �vλ; vr� � �0; vP� (17)

C: �vλ; vr� � �−vP; 0� (18)

D: �vλ; vr� � �0;−vP� (19)

The analysis that follows is along the same lines as given in [21]. At

A and C, vλ ≠ 0 and vr � 0. Because, due to Eq. (14), vr decreases
monotonically for vλ ≠ 0, the latter implies that vr changes sign at

these points. Hence, these points correspond to the points of closest

approach where miss distance occurs in case the pursuer misses the

target. At B andD, vλ � 0, then _vr � _vλ � 0. It can be easily shown
that the rest of the higher derivatives of vλ and vr also go to zero,

implying that vλ and vr remain constant with time thereafter. At point

B, vr > 0. Thus, rP keeps increasing while the line of sight does not

rotate and the pursuer and the target move away from each other. The

point of interest isD, where vr < 0. Now, vλ � 0 implies either rP � 0

−20 −10 10 20 30 40

−20

X (m)

Y (m)

Fig. 2 Archimedean spiral.

vλ

vr

O

vP

B

A

D

C

Fig. 3 Variation of vr and vλ.
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or _λP � 0. If rP � 0, then the pursuer has already intercepted the

target. When _λP � 0, the line of sight does not rotate with time. This
means that rP keeps reducing, and the pursuer and the target keep
approaching each other until collision. Thus, if the instantaneous value
of (vλ, vr) converges to D, then target capture is guaranteed.
Now, Eq. (14) shows that

_vr < 0; ∀ vλ ∈ �−vP; vP� \ f0g and vr ∈ �−vP; vP� (20)

The sign of _vλ depends on vr and vλ, as shown next:

_vλ
j _vλj

�
�

1 if vλ vr > 0

−1 if vλ vr < 0
(21)

Combining Eqs. (20) and (21), we conclude that the instantaneous
values of (vλ, vr) always move downward towards point D in the
circle shown in Fig. 3, unless vr � vP. When vr � vP, the trajectory
starts at point B, and the pursuer is driven away from the target
thereafter. For every other initial condition, (vλ, vr) eventually
reaches point D, and collision is guaranteed.
When vP is specified, every point on the circle shown in Fig. 3

belongs to the capturability region, except point B, where vr � vP.
Now, as vP varies from (0, ∞), B spans over the whole positive vr
axis. Thus, the capturability region becomes the entire (vλ, vr) plane,
except the positive vr axis, which is highlighted in red in Fig. 3. In the
figure, the capturability region is shown as the area dotted in gray.
Target capture always occurs at point D, where vr � −vP. Using

Eq. (11), δP � 0 at the end of the engagement. Now, by the very

definition of the geometrical rule, we have δP � tan−1�λP − ξP�.
Mathematically, inverse tangent is a multivalued function defined in
the range (n�π∕2�, n�π∕2� � π) for integer values of n. In our case,
we choose n � −1 to get δP ∈ �−π∕2; π∕2�. This range is chosen
because it is the only one containing δP � 0, which necessarily
occurs at target capture. Then, from Eq. (11), we get

vr � −vP cos δP < 0 (22)

for all initial conditions rP0
and λP0

where δP0
� tan−1�λP0

− ξP�
such that the geometrical rule holds. This narrows down the
capturability region to the negative vr plane. As we already know, for
target capture, the trajectory of the pursuer ends at point D, where
�vλ; vr� � �0;−vP�. Depending on the initial value of λP, two
interesting cases arise when the trajectory reaches there which, are
discussed next.
λP0

� ξP: In this case, tan δ0 � 0, which implies δ0 � 0. δ0 � π is
not an option so that it corresponds to point D and not B. Then,
vr � −vP and vλ � 0 hold from the start of the engagement. This

results in the well-known collision triangle as _λP � 0. Here, it
reduces to the line joining the initial coordinates of the pursuer and
the target, given by rP�t� � −vPt� rP0

for all time t ≥ 0.

Then, the final time reduces to tf � r0∕vP. We consider the

scenario given by: vP � 500, rP0
� 1000, λP0

� 7π∕4, ξP � 7π∕4,
and δP0

� 0. The trajectory of the pursuer in this situation is shown in

Fig. 4a, where the circle and the asterisk denote the target and the
initial position of the pursuer, respectively. The variations of rP and
λP are shown in Figs. 4b and 4c, respectively.
λP0

≠ ξP: Here, tan δ0 ≠ 0, which implies vr0 ≠ −vP. The

trajectory does not start at the pointD. But as discussed earlier in this
section, it is driven always toD under the proposed geometrical rule.
At D, vλ � 0, which implies δP � 0 and λP � ξP.
Now, the proposed geometrical rule is derived from the

Archimedean spiral. Hence, the system kinematics is driven such that
the trajectory is an Archimedean spiral for all time t ≥ 0 defined by
the equation rP � a�λP − ξP� where a � �r0∕λ0 − ξP�. Then, the
desired intercept angle is achieved at target capture as rP � 0 when
λP � ξP. This can be clearly seen in Fig. 5, which is simulated for
vP � 500, rP0

� 1000, λP0
� 5π∕4, ξP � 7π∕4, and δP0

� −1.004.
The trajectory of the pursuer is shown in Fig. 5a, where the circle and
the asterisk represent the target and the initial position of the pursuer,

-800 -600 -400 -200 0
xP (m)

0

100

200

300

400

500

600

700

y P
 (

m
)

a) Trajectory of the pursuer

0 0.5 1 1.5 2
t (sec)

0

200

400

600

800

1000

r P
 (m

)

b) Variation of rP with time

0 0.5 1 1.5 2
t (sec)

4

4.5

5

5.5

6

6.5

λ P
 (r

ad
)

c) Variation of λP with time
Fig. 4 Target capture for λP0

� ξP .
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respectively. Figures 5b and 5c show the variation of rP and λP,
respectively.

A. Behavior of the Engagement Parameters

In this subsection, we discuss the variation of engagement
parameters with respect to time.
rP: Equation (20) shows that _vr < 0 for all time t ≥ 0. Moreover,

Eq. (22) shows that vr < 0 throughout the engagement. Thus, rP
reduces to zero monotonically. This can be seen in Fig. 5b where the
monotonicity of rP holds for the given engagement scenario.

λP: From Eq. (6), we get _λP � vr∕a, where a � r0∕�λP0
− ξP�.

Further trigonometric substitutions give _λP � −sign�a��vP∕�����������������
r2P � a2

p
�. At tf, _λP � −sign�a��vP∕jaj�. For a > 0, _λP decreases

monotonically to _λPjt�tf � −vP∕a, else it increases until _λPjt�tf �
vP∕jaj is reached. For the scenario presented in Fig. 5, a � −636.62;
hence, λP increases monotonically as shown in Fig. 5c.
δP: Equation (13) shows that δP varies in the same manner as λP.

The only difference is that δP converges to zero at tf for all values of
a, vr0 , and ξP.
Because γP � δP � λP, γP varies in accordance with λP. Further,

δP � 0 at tf which gives γPjt�tf � γf � ξP. Thus, the desired

intercept angle is always achieved at target capture.

B. Impact Time

The equation of an Archimedean spiral is given in Eq. (7). The arc

length of this spiral is s�λP� � �1∕2�a��λP − ξP�
�������������������������������
1� �λP − ξP�2

p
�

sinh−1�λP − ξP�� [22]. For a constant speed vP, the impact time is
given by using Eq. (7) as

tf�
1

2vP

rP0

λP0
−ξP

�
�λP0

−ξP�
������������������������������
1��λP0

−ξP�2
q

�sinh−1�λP0
−ξP�

�

(23)

Hence, the proposed geometrical rule can also enforce an impact

time by suitable choice of the spiral parameter a or the initial

conditions rP0
and λP0

.

The impact angle is also related to the spiral parameter and initial

conditions as shown below:

ξP � λP0
−
rP0

a
� λP0

− tan δP0
(24)

From Eqs. (23) and (24), it is evident that, by using the proposed

geometrical rule, both impact time and angle can be imposed on the

trajectory of the pursuer. However, arbitrary values of tf and ξP
cannot be achieved simultaneously because they are dependent on the

same parameters.
Thus, it is established that the geometrical rule not only ensures

target capture but also achieves it with a desired intercept angle or

time. Next, we discuss the variation of the lateral acceleration aP
during the engagement for different initial conditions and parameters

of the proposed geometrical rule.

V. Bounds on Lateral Acceleration

Under the proposed geometrical rule, tan δP � λP − ξP, which

gives _δP � cos2δP _λP. From the third equation in Eqs. (1), we know

that _γP � _δP � _γP � �1� cos2δP�_λP. Because aP � vP _γP, the

lateral acceleration is then given by

aP � vP�1� cos2δP�_λP (25)

This is equivalent to PNG with a varying gain N � �1� cos2δP�,
such that 1 ≤ N ≤ 2. As rP tends to zero, it has been proved in the

previous section that δP also tends to zero. Hence, at target capture,

the guidance law behaves like PNG with N � 2.
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Fig. 5 Target capture for λP0
≠ ξP .
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The trajectory of the pursuer following PNGwithN � 2 is circular
with a constant lateral acceleration. Therefore, under the proposed
geometrical rule, the lateral acceleration at target capture is always
finite. Figure 6a shows the variation of the parameter N for the
following initial conditions: rP0

� 1000, λP0
� 3π∕4, ξP � π∕4,

and δP0
� π∕3. It is evident that N → 2 as rP → 0. Figure 6b shows

the plot of the lateral acceleration, from which it is clear that aP
is finite.
Next, we calculate the bounds of aP. In a Cartesian frame of

reference, the curvature of any curve [23] is given by

κ � x 0y 0 0 − x 0 0y 0

�x 02 � y 02�1.5 (26)

To find the behavior of the trajectory of the pursuer, we substitute
the equations of motion from Eqs. (1) in Eq. (26) to obtain

κ��vP cosγP��cosγPaP�− �vP sinγP��−sinγPaP�
v2Pcos

2γP�v2Psin
2γP

� aP
vP

(27)

This shows that, for a constant speed vP, the kinematics of the
pursuer drives the trajectory in such a manner that its curvature is a
linear function of the lateral acceleration only.
The curvature [22] of an Archimedean spiral, as defined in Eq. (6),

can be expressed as follows:

κ�λP� �
2� �λP − ξP�2

a�1� �λP − ξP�2�1.5
(28)

where a � rP0
∕�λP0

− ξP�. As a increases, the curvature of the spiral
at any given λP reduces. This property can be exploited to design
curves with curvatures lower than some specific values.
In Eq. (28), κ is strictly a function of λP because a and ξP are

constants. To study the variation of κ with respect to λP, we look for
the points of extrema in the curve. We start with the following:

dκ

dλP
� −

�λP − ξP��1� �λP − ξP�2�0.5�4� �λP − ξP�2�
a�1� �λP − ξP�2�3

(29)

�dκ∕dλP� � 0 gives λP � ξP, which is the only point at which an
extremum occurs. To find whether the extremum is a maximum or a
minimum, λP � ξP is substituted in the second derivative, which
gives

d2κ

dλ2P

����
λP�ξP

� −4

This implies that, for an Archimedean spiral, the curvature
becomes maximum at λP � ξP and is equal to

max�κ� � 2∕a (30)

The variation of κ with respect to λP is shown in Fig. 7 for

ξP � 0.78 rad. As is evident in the figure, the maximum value of the

curvature occurs at λP � ξP.
Now, substituting Eq. (27) in Eq. (28) gives

aP � vPκ � vP
2� �λP − ξP�2

a�1� �λP − ξP�2�1.5
(31)

Because the lateral acceleration is a scalar function of the

curvature, the former also has an extremum at λP � ξP. The

maximum value of the lateral acceleration is calculated using

Eqs. (30) and (31) and is given as follows:

max�aP� �
2vP
a

(32)

Let us assume that the maximum permissible lateral acceleration

for the pursuer is denoted asaPmax
. AnyArchimedean spiral forwhich

the initial distance to target rP0
, the initial line-of-sight angle λP0

, and

intercept angle ξP satisfy a � rP0
λP0−ξP

≥ 2vP
aPmax

can be chosen as the

pursuer’s trajectory. Such a value of a ensures that the required aP
does not exceed its maximum permissible value.
At interception, rP tends to zero, and λP tends to ξP. Thus, from the

preceding analysis, we infer that the maximum lateral acceleration is

required at interception; nonetheless, it is bounded for all finite values
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Fig. 6 Equivalence to PNG.
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Fig. 7 Curvature of an Archimedean spiral.
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of the parameter a. Thismakes the implementation of the geometrical
rule feasible.

VI. Guidance Law

In this section, a sliding-mode controller is used to derive a
guidance law [24] whose objective is to impose the geometrical rule
in Eq. (7) on the system kinematics given in Eqs. (1). We assume that
the system is corrupt with some external disturbances entering
through the input channel arising from wind disturbances, process
noise, etc., in which case the kinematics of the system in Eq. (2)
becomes

_rP � −vP cos�γP − λP�
_λP � −vP sin�γP − λP�∕rP
_γP � �aP �w�∕vP (33)

wherew is an external disturbance that is amatched uncertainty to the
system.
Sliding-Mode Controller: The geometrical rule in Eq. (7)

commands a desired lead angle, denoted by ξP, with respect to the
line-of-sight angle λP. Let the sliding surface be designed as

σ � tan δP − λP � ξP (34)

The time derivative is computed to be _σ � sec2δPaP∕vP�
sec2δPw∕vP � �1� sec2δP�vP sin�γP − λP�∕rP. Now, the sliding-
mode controller consists of an equivalent component aPeq

and an

uncertainty component aPun
[10] such that

aP � aPeq � aPun (35)

The equivalent controller ensures that the system is maintained on
the sliding surface in the absence of disturbances. Thus, it is chosen as

aPeq �
vP

sec2δP
�1� sec2δP�_λP

� vP
sec2δP

�
−�1� sec2δP�

vP sin�γP − λP�
rP

�
(36)

It is to be noted that, without any uncertainty, the system is driven
towards the sliding surface with aP � aPeq. Now, the substitution of
the equivalent controller in the expression of _σ gives

_σ � sec2δP
vP

�aPun � w�

The uncertainty controller aPun is then chosen as

aPun � −βsgn�σ� (37)

such that β > 0. This gives _σ � sec2δP�−βsgn�σ� � w�∕vP. To
check the stability of the system, a candidate Lyapunov function

V � 0.5σ2 is considered. Then,

_V � σ _σ � σ�−βsgn�σ� � w� sec
2δP
vP

≤ −jσj�β − jwj� sec
2δP
vP

≤ −ηV0.5 (38)

where η > sec2δP�β − jwj�∕vP > 0, implying the bound on the gain
as β > max�jwj�.
It can be shown from Eq. (38) that the sliding surface is reached in

finite time Tf ≤ 2V0.5�0�∕η. Once the sliding surface is reached, the
geometrical rule holds thereafter. Then, the interception of the target
can be guaranteed using the results of Sec. IV.

VII. Moving Targets

In this section, we analyze the performance of the proposed
geometrical rule against a moving target. The target is assumed to be
nonmaneuvering while moving in a straight line. Let the target speed
be vT . The heading angle and the lead angle of the target are denoted
by γT and δT , respectively. The engagement geometry is shown in
Fig. 8a. In this case, we show that the actual intercept angle of the
pursuer, denoted by γf in Fig. 8b, is different from the desired

intercept angle ξP. But the difference between γf and ξP is known

beforehand and hence can be compensated.
The nonlinear engagement kinematics can be written as

vr � _rP � vT cos δT − vP cos δP (39)

vλ � r_λP � vT sin δT − vP sin δP (40)

The time derivatives of the equations are given next:

_vr � −vT sin δT _δT � vP sin δP _δP (41)

_vλ � vT cos δT _δT − vP cos δP _δP (42)

Under the effect of the proposed geometrical rule, the equations of
motion evolve as follows:

_vr � −vT sin δT�−_λP� � vP sin δP�cos2δP _λP� (43)

_vλ � vT cos δT�−_λP� − vP cos δP�cos2δP _λP� (44)

X

Y

vP

P(xP, yP)

λP

δP

γP

T

γT

δ T

λT

rP

vT

a) Planar geometry between the pursuer and
the target

X

Y

vP

I(rP = 0)

γT

γP = γ f

vT

b) Actual intercept angle γ f

Fig. 8 Moving target.
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Rearranging the equations gives

_vr � �vT sin δT � vP sin δPcos
2δP�_λP (45)

_vλ � −�vT cos δT � cos3δP�_λP (46)

Let ν � vT∕vP. Then, the equations can be further rearranged as

_vr � vP�ν sin δT � sin δPcos
2δP�_λP (47)

_vλ � −vP�ν cos δT � cos3δP�_λP (48)

For a given set of initial conditions, we vary only the parameter ν in
the range (0, 1) to see its effect on target capture. Then, the pursuer has

a speed advantage over the target. The corresponding plots of vλ and
aP are given in Figs. 9a and 9b, respectively. Target capture occurs at

the point where vλ � 0. Figure 9a shows that, as ν increases, vλ takes
more time to become zero. This implies that the capture time tf
increases as vT approaches vP. Interestingly, the lateral acceleration
aP changes its nature depending on the value of ν. For smaller values

of ν, aP increases monotonically with respect to time. After a certain

critical value of ν, aP becomes monotonically decreasing with

respect to time. Furthermore, for this set of ν values, the engagement

ends in a collision triangle as _λP becomes zero. The geometrical rule

then converges to parallel navigation at target capture.
For ν ≥ 1, the target has a speed advantage over the pursuer.

Simulation results suggest that the pursuer fails to capture a faster,

nonmaneuvering target under the proposed geometrical rule.
For _λP � 0, Eq. (40) gives

vP sin δP � vT sin δT (49)

The geometrical rule gives δP � tan−1�λP − ξP�. After some

trigonometric manipulations, we get

sin δP � λP − ξP�������������������������������
1� �λP − ξP�2

p (50)

The substitution of Eq. (50) in Eq. (49) gives

vP
λP − ξP�������������������������������

1� �λP − ξP�2
p � vT sin�γT − λP� (51)

Because the target is moving in a straight-line path, the heading
angle γT is constant. Thus, Eq. (51) has only one unknown for a given
set of initial conditions. The equation can be solved numerically to
obtain the final value of λP � λf. The intercept angle then becomes

γf � tan−1�λf − ξP� � λf (52)

Thus, the intercept angle is always deviated from the desired value
ξP by some a priori known quantity that could be compensated.

VIII. Simulation Results

This section presents results of numerical simulations to validate
the proposed geometrical rule. Throughout this section, the pursuer is
assumed to have a constant speed. The target is moving in a straight-
line path in one of the cases and is stationary otherwise. To begin
with, the initial conditions and the intercept angle of the pursuer are
varied, and the effect on the target capturability is studied. The
performance of the sliding-mode control-based guidance law is also
evaluated. The simulations are carried out in both noise-free and
noisy environments for different initial conditions. The scenario
where the pursuer has errors in its initial heading angle is also taken
into account and evaluated through simulations.
It is to be noted that, in all of the figures obtained through the

simulations, the target T and the initial position of the pursuer P are
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a) Variation of vλ with time
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b) Variation of aP with time

Fig. 9 Effect of the variation of ν.

Table 1 Engagement parameters

Parameter Value

Speed of the pursuer vP 500 m∕s
Speed of the target vT 0 m∕s
Target coordinates (xT , yT ) (0, 0)
Initial range r0 1000 m

-500 0 500 1000
xP (m)

-600

-400

-200

0

200

400

600

800

y P
 (

m
)

λP = 5π /4

λP = 3π /4
λP = π/4

λP = 7π /4

T

Fig. 10 Trajectories for different initial conditions.

1112 TRIPATHYAND SHIMA

D
ow

nl
oa

de
d 

by
 T

E
C

H
N

IO
N

 -
 I

SR
A

E
L

 I
N

ST
 O

F 
T

E
C

H
 o

n 
Ja

nu
ar

y 
3,

 2
02

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
40

16
 



denoted by an asterisk and a circle, respectively. Also, as mentioned

before, the target is assumed to be at the origin.

A. Different Initial Conditions and Intercept Angles

In this subsection, the interception of the target under the

geometrical rule proposed in Eq. (7) is simulated for different initial

conditions of the pursuer and desired intercept angles. Two types of

simulations are carried out; the first considers different initial

conditions of the pursuer while the intercept angle remains the same,

and the second one has varying intercept angles for the same initial

condition of the pursuer. In both the simulations, a noise-free

environment is assumed. The engagement parameters that are
common in both of the simulations are summarized in Table 1.
First, we discuss the case when the initial condition of the pursuer

is varied while the desired intercept angle is ξP � 0. Figure 10 shows
the trajectories of the pursuer intercepting the stationary targetT. The
initial line-of-sight angle is different in each case and belongs to the
set λP0

∈ fπ∕4; 3π∕4; 5π∕4; 7π∕4g.
It can be noted thatwhen the intercept angle ξP, initial range r0, and

line-of-sight angle λP0
are specified, the parameter a of the resulting

spiral is given by a � �r0∕λP0
− ξP�. The trajectory of the pursuer is

governed by the spiral defined by rP � �r0∕λP0
− ξP�λP. The initial

lead angle δP0
is calculated using the geometrical rule given in Eq. (7)

and is equal to tan−1�λP0
− ξP�. Then, the desired heading angle

becomes λP0
� tan−1�λP0

− ξP�.
The proposed geometrical rule drives the pursuer to capture the

target with the desired intercept angle in all the cases. As we can see,
the curvature of the pursuer’s trajectory increases as the deviation of
the initial line-of-sight angle λP0

increases from the intercept angle

ξP. This can be attributed to the decreasing values of the spiral
parameter a, as given by Eq. (6), whose effect on the curvature is
given by Eq. (28).
Now, we consider the case where the different intercept angles are

required to be achieved from the same initial condition of the pursuer.
The position coordinate of the pursuer considered for this
case is �rP0

; λP0
� � �1000; π∕4�. The simulations are carried out

for four different intercept angles that are chosen from the set
ξP ∈ f0; 3π∕4; 5π∕4; 7π∕4g.
Figure 11 shows the trajectories of the pursuer for the different

intercept angles. It is clear that the pursuer intercepts the target with
the desired intercept angle in each of the cases. Furthermore, the
curvature of the pursuer’s trajectory varies in accordance with the
magnitude of the difference between the line-of-sight angle and
the intercept angle, as in the previous case. The higher the difference is,
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Fig. 11 Trajectories for different intercept angles.
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Fig. 12 Implementation of the guidance law for a stationary target.
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the greater the curvature of the resulting spiral is, and consequently, the

higher will be the required terminal lateral acceleration aP.

B. Guidance Law Implementation

This subsection investigates the robustness of the designedguidance

law in the presence of uncertainties. The simulations are carried out for

two different scenarios. In the first one, the system is subjected to

disturbances, and in the second one, errors in the heading angle of the

pursuer are taken into account. In both the cases, the target is assumed

to be stationary, and the speed of the pursuer is vP � 500 m∕s.
In the first case, the initial range from the stationary target is

1000 m, and the initial line-of-sight angle is λP � 3π∕4. The desired

intercept angle at target capture is equal to ξP � π∕4. The

disturbances in the system are modeled byw � 20 sin�t�. The results
achieved through the numerical simulations by using the proposed

guidance law are shown in Fig. 12.

Because of the presence of the disturbances, the system behaves

like a perturbed system. This can be seen in Fig. 12a, where the

trajectory in the presence of disturbances is perturbed with respect to

the nominal trajectory. The magnitude of the disturbancew is upper-

bounded by 20 m∕s2. Hence, using the results presented in Sec. VI,

we set the gain of the uncertainty controller aPun greater than

max�jwj� � 20 as β � 21.
As proved before, the guidance law drives the dynamics to the

sliding surface in finite time, which is clear from Fig. 12. Then, by

using the designed guidance law, the pursuer reaches the target at the

desired intercept angle in the presence of disturbances. Thevariations

of the heading angle, line-of-sight angle, and lead angle, with respect

to time, are shown in Figs. 12b–12d, respectively.

In the second scenario, the performance of the sliding-mode

controller is evaluated against errors in the initial heading angle of the

pursuer. The nominal trajectory of the pursuer in the absence of any

heading error is shown in Fig. 13 in the solid blue line. The heading

errors that are used in the simulation lie in the set {−π∕8, −π∕10,
π∕10, π∕8}. The gain of the sliding-mode controller is chosen as

β � 21.
In all of the cases, the sliding-mode controller drives the pursuer to

the target in finite time even in the presence of heading errors.

Furthermore, the desired intercept angle is also achieved, as can be

seen in the simulation results.

C. Moving Target

In this subsection, we deal with the scenario where the target is

moving in a straight-line path. The attributes of the pursuer

are vP � 500 m∕s, r0 � 1000 m, λP0
� 0.644, and δP0

� −1.042.
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Fig. 13 Robustness against heading errors.
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Fig. 14 Implementation of the guidance law for a moving target.
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The parameters of the target are given as vT � 425 m∕s,
�xT0

; yT0
� � �0; 0�, and αT � 0.685. Furthermore, ξP � 3π∕4.

Figure 14a shows that the pursuer captures the target at the
interception point I even though their speeds are comparable.
Furthermore, towards the end of the engagement, the geometrical rule
converges to parallel navigation. This can be seen in Fig. 14d, where
_λP becomes zero after 12 s. Consequently, the engagement ends in a
collision triangle. The geometrical rule drives _rP from positive to
negative values, which in turn drives rP to zero. During the
engagement, thevariation of the lateral accelerationaP is displayed in
Fig. 14b. For this particular scenario, aP reduces monotonically to
zero. The actual intercept angle is γf � 0.8417 with a deviation of

−1.5145 from the desired intercept angle.

IX. Conclusions

This paper proposes a new geometrical rule, based on an
Archimedean spiral, for the interception of stationary targets. As the
name suggests, the proposed geometrical rule drives the pursuer along
anArchimedean spiral trajectorywhile enforcing any desired intercept
angle. Theoretical results have been presented to prove that
interception with a specified intercept angle is guaranteed for any
engagement scenario. In scenarios when the initial line-of-sight angle
is equal to the desired intercept angle, the pursuer heads toward the
target in a straight-line path.Whenused for a targetmoving in a straight
line, it is observed that the proposed geometrical rule can lead to
interception if the pursuer has a speed advantage over the target. It is
shown that there exists a deviation between the desired and actual
intercept angles,which can be calculated and compensated for a priori.
To implement the proposed geometrical rule, a robust sliding-

mode controller is designed. It is proved that the lateral acceleration is
always bounded, which makes the implementation of the guidance
law feasible in practical scenarios. The implementation is further
facilitated by the fact that the guidance law makes use of only angle
information. Finally, various numerical simulations are presented in
the paper to validate the theoretical results and evaluate the
performance of the proposed guidance law in noise-free and noisy
environments.
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