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Thepaper proposes a guidance algorithm for a single pursuer facingmultiplemaneuvering evaders, one ofwhich is

finally engaged by the pursuer. It is assumed that the pursuermakes a decision to engage one of the evaders at a given

moment in flight, and the probability of each possible choice is known in advance. Under these assumptions, a

guidance law is derived that optimizes the expected integral quadratic control effort, where the expectation is taken

over all possible engagement decisions. The derived guidance law turns out to be a linear combination of optimal

pursuit guidance laws toward each of the evaders separately, with time-dependent coefficients. Numerical simulation

results show the efficiency of the proposed guidance law with respect to conventional solutions that do not take into

account the delayed engagement decision.

I. Introduction

AN INCREASING interest in the guidance design literature has

concentrated lately on issues involving several targets (evaders)

and several interceptors (pursuers).Many recent publications assumed

a form of cooperation between the interceptors and attempted to use

cooperative action to improve the effectiveness of the interceptors.

This can be realized by achieving a favorable impact angle geometry

between the attackers and the target [1] or simultaneous impact time as

in [2,3]. Similar approaches were adopted in contributions such as

[4,5], to cite only a few that tackled this problem.

Although dealing with multiple target scenarios is of a clear

practical interest, theguidance design literature on this subject ismuch

less extensive. A considerable part of the contributions tackling this

type of scenarios is geared toward target assignment problems such as

[6,7]. Few contributions consider interception guidance algorithms in

the presence of multiple targets. For example, [8] proposes such an

algorithm assuming that the interceptor is supposed to “intercept” the

targets successively at given times.Another contribution [9] examines

the performance of the classical proportional navigation guidance

algorithm in the presence of multiple targets.

In this paper, the problem is formulated and solved using a

linearized model of the engagement. In this framework, the solution

turns out to be a weighted sum of optimal pursuit strategies toward

each of the evaders with weighting coefficients that are dependent on

time-to-go values to each target and on the probabilities for the

engagement decision. For constant-acceleration evaders these

strategies are augmented proportional navigation (APN) guidance

commands. This outcome can readily be implemented, and we

examine the optimal strategy performance by numerical simulation in

linearized, but especially in nonlinear, engagement models.

II. Problem Statement and Modeling

The scenario considered in this paper is illustrated in Fig. 1. It

consists of a pursuer that faces with a number of evaders (two in the

illustrating figure) at the first stage of the engagement, and then

chooses a single evader to pursue.
It is assumed that the pursuer is part of a salvo of missiles that

have been launched against the same evaders and that its

teammates may have destroyed some of the evaders before the

pursuer has to decide which of the evaders to engage. It is also

assumed that at a given time moment, called decision time and

denoted td, the pursuer will select one of the evaders, in principle

the one of highest priority among those that are still alive.

Consider, for example, the case of two evaders. Assume that E1 is

already under pursuit by a pursuer P0 launched before and that the

pursuit of E1 is planned to be completed at time td. Assume also

that E1 is a higher priority evader than E2. In the case that E1 is not

destroyed by P0, the pursuer P will have to engage E1 because it is

a higher priority evader so that the pursuit of E2 is left to a trailing

pursuer. The chance that P will have to go after E1 is equal to the

probability p that P0 will fail to destroy E1. Then there is indeed a

probability p that P will go after E1 and a probability 1 − p that P
will go after E2. In general, assuming that the probability of

destroying each of the evaders is known and that the priority order

of the evaders is known, it is possible to determine the probability

for any given evader to be engaged by the pursuer.
The problem addressed in this paper is how to design the guidance

law of the pursuer before the assignment decision in order to

minimize the expected guidance effort over all the possible outcomes

of the engagement decision.

A. Engagement Model and Its Linearization

A planar engagement between the pursuer and N evaders is

considered. It is assumed that all adversaries have constant speeds.
In Fig. 2, the schematic engagement geometry is depicted in a fixed

coordinate system. The origin of the coordinate system is collocated

with the pursuer’s initial position, and the x axis is in the direction of
the initial line of sight to the first evader. We assume that the initial

lines of sight from the pursuer to all evaders more or less coincide.

The points P and Ej denote the current positions of the pursuer

and the evaders, respectively. Their coordinates are �xp; yp� and

�xej ; yej �, j � 1; : : : ; N; ap, aej are their lateral accelerations normal

to the velocity vectors Vp, Vej . Let φp denote the angle between the

velocity vectorVp of the pursuer and the x axis;φej , j � 1; : : : ; N, be

the angles between the velocity vectors Vej of the evaders and the x
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axis. Then the planar motions of the pursuer P and the evaders Ej,

j � 1; : : : ; N, are described by nonlinear differential equations

ẋi � Vi cosφi;

ẏi � Vi sinφi; i � p; e1; e2; : : : ; eN

φ̇i �
ai
Vi

(1)

The distances between the pursuer and the evaders are

rj�t� �
�������������������������������������������������������������������������
�xej�t� − xp�t��2 � �yej�t� − yp�t��2

q
; j � 1; : : : ; N

(2)

In the pursuit of the evader Ej, the engagement final time (the
moment of the minimal distance between the pursuer and Ej) is

tnfj � argmin
t≥t0

frj�t�ṙj�t� ≥ 0g; j � 1; : : : ; N (3)

The time remaining to the end of the pursuit (time-to-go) is
approximated as

t̂gj � −
rj
ṙj
; j � 1; : : : ; N (4)

The miss distance in the jth pursuit is defined as

MDj � r�tnfj �; j � 1; : : : ; N (5)

Now, let us assume that the deviations of the pursuer and the
evaders from the collision course are small during the engagement.
This allows linearizing the relative trajectories along the nominal
collision geometry [10] and calculating N engagement durations:

tfj �
rj�0�

Vp cosφp�0� − Vej cosφej �0�
: j � 1; : : : ; N (6)

By Eq. (6), the zero separation in the x direction between the
pursuer and the evaderEj for t � tfj is guaranteed. The separations in
the y direction are

yj � yej − yp; j � 1; : : : ; N (7)

It is assumed that, for t ∈ �t0;maxj�1;: : : ;Ntfj �, the controller
dynamics of the pursuer is described by the linear differential equation

ẋp � Apxp � Bpup; xp�t0� � xp0 (8)

ap � Cpxp � dpup (9)

where xp is the state vector consisting of np internal variables, and

up is the guidance command. For example, an ideal pursuer is

characterized byAp � Bp � Cp � 0, dp � 1, np � 0, meaning that

ap � up. The pursuer with the first-order strictly proper dynamics is

described by Eqs. (8) and (9), where the state variable xp coincides

with the pursuer’s lateral acceleration ap (np � 1, Ap � −1∕τp,
Bp � 1∕τp, Cp � 1, dp � 0), and τp is the controller time constant.

In this paper, all the evaders are assumed to have an ideal
dynamics, meaning that their lateral accelerations aej �t� are identical
to the acceleration commands uej �t�, j � 1; : : : ; N. Moreover, the

functions uej �t�, j � 1; : : : ; N, are known to the pursuer.

Let us define N state vectors:

xj � �yj; ẏj; xTp�T ≜ �x1; x2; x3; : : : ; xnp�2�T ∈ Rnp�2;

j � 1; : : : ; N
(10)

where yj are the relative separations [Eq. (7)] and xp is the pursuer’s
controller state vector in Eq. (8). Then, due to Eqs. (8) and (9) and the
small angles assumption, the system dynamics is described by linear
differential equations

ẋj � Ax� Bup � Cuej ; t ∈ �t0; tfj �; j � 1; : : : ; N (11)

where

A �

2
664

0 1 �0�
0 0 −Cp

�0� �0� Ap

3
775; B�

2
664

0

−dp
Bp

3
775; C �

2
664

0

1

�0�

3
775 (12)

“[0]” denotes a zero matrix of appropriate dimension.

B. Minimum Control Effort Problem with Delayed Pursuit Decision

For t � t0 the pursuer is not aware which evader of Ej,
j � 1; : : : ; N, it should intercept. The decision is taken at the
prescribed time moment td > t0. It is known in advance that the
probability to pursue the evader Ej is equal to pj > 0, satisfying

XN
j�1

pj � 1 (13)

If upj
�⋅� denotes the control of the pursuer in the case that it

engages evader Ej, then the average control effort over the set of
evaders is

J �
XN
j�1

pj

Z
tfj

t0

u2pj
�t� dt (14)

This cost function has to be minimized by choosing the inputs
upj

�⋅�, j � 1; : : : ; N, under the following constraints:

1) The miss with respect to the evader Ej when using upj
is zero:

yj�tfj � � 0; j � 1; : : : ; N (15)

2) The N inputs coincide before the decision time td:

up1
�t� � up2

�t� � : : : � upN
�t� � up�t�; t ∈ �t0; td� (16)

Fig. 1 Pursuit scenario.

Fig. 2 Engagement geometry.
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III. Solution

A. Model Reduction Using Zero Effort Transformation

Let us use the scalarizing transformation [11]

zj � D

�
Φ�tfj ; t�xj �

Z
tfj

t
Φ�tfj ; τ�Cuej�τ� dτ

�
(17)

where Dj � �1; 0; �0�1×np�, and Φ�t; τ� is the transition matrix of a

homogeneous system associated with Eq. (11). Then the zero-effort

miss (ZEM) zj satisfies the scalar differential equation

żj � hj�t�upj
; t ∈ �t0; tfj �; j � 1; : : : ; N (18)

where

hj�t� � DΦ�tfj ; t�B (19)

B. After the Decision Moment

Assume that at t � td, the pursuer decides to pursue the jth evader.
Then, for t ∈ �td; tfj �, the problem is to minimize the control effort

Jj �
Z

tfj

td

u2pj
�t� dt; j � 1; : : : ; N (20)

subject to the scalar differential equations (18) with zj�tfj � � 0. Let
us denote

zj�td� � zjd ; j � 1; : : : ; N (21)

Then, by the Pontryagin’s maximum principle [12], the open-loop

optimal acceleration commands are produced by the linear optimal

guidance laws [13]:

u�pj
� cjhj�t�zjd ; j � 1; : : : ; N (22)

where

cj �
1R tfj

td h2j �t� dt
(23)

This yields the optimal costs:

J�j � cjz
2
jd
; j � 1; : : : ; N (24)

C. Before the Decision Moment

The cost functional (14) can be rewritten as

J �
Z

td

t0

u2p�t� dt�
XN
j�1

pjJ
�
j (25)

Because of Eq. (24),

J �
XN
j�1

pjcjz
2
jd
�

Z
td

t0

u2p�t� dt (26)

where, due to Eq. (18),

zjd � zj0 �
Z

td

t0

hj�t�up�t� dt; j � 1; : : : ; N (27)

Let us introduce the vectors

zd �

2
64
z1d
..
.

zNd

3
75; z0 �

2
64
z10
..
.

zN0

3
75; h�t� �

2
64
h1�t�
..
.

hN�t�

3
75 (28)

and the diagonal matrix

P � diag

�
1

p1c1
; : : : ;

1

pNcN

�
(29)

Then the cost functional (26) is rewritten as

J � zTdP
−1zd �

Z
td

t0

u2p�t� dt (30)

where

zd � z0 �
Z

td

t0

h�t�up�t� dt (31)

Remark 1:Bydirect calculation, it can be shown that for any vector
z ∈ RN and for any symmetric positive-definite N × N-matrix P,

zTP−1z � max
l∈RN

�
lTz −

1

4
lTPl

�
(32)

By using Eq. (32) for z � zd and taking into account Eq. (31), the
cost functional is represented as

J � max
l∈RN

f�up�⋅�; l� (33)

where

f�up�⋅�; l� � lTz0 −
1

4
lTPl�

Z
td

t0

�u2p�t� � �lTh�t��up�t�� dt (34)

Remark 2: It can be shown that the maximum over RN in Eq. (33)
can be relaxed to

J � max
klk≤L

f�up�⋅�; l� (35)

where L > 0 is a sufficiently large number. Thus, by applying
Corollary 3.3 in [14],

min
up�⋅�

max
l∈RN

f�up�⋅�; l� � max
l∈RN

min
up�⋅�

f�up�⋅�; l� (36)

Because of Eq. (36),

min
up�⋅�

J � max
l∈RN

min
up�⋅�

f�a�⋅�; l� (37)

Let us calculate the maximin in the right-hand side of Eq. (37). For
any fixed l ∈ RN , the minimizing function is

u�p�t� � u�p�t; l� � −
1

2
lTh�t� (38)

By substituting Eq. (38) into Eq. (34),

ψ�l� ≜ f�u�p�⋅; l�; l� � lTz0 −
1

4
lT�P�G�t0��l (39)

where the symmetric matrix G�t� is

G�t� �
Z

td

t
h�ξ�hT�ξ� dξ (40)

Note thatG�t� ≥ 0, which along with Eq. (29) guarantees that the
matrix P�G�t0� is positive definite and, in particular, invertible.
The maximizing vector in the right-hand side of Eq. (37) is

l� � 2�P�G�t0��−1z0 (41)
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By substituting Eq. (41) into Eq. (38),

u�p�t� � u�p�t; l�� � −hT�t��P�G�t0��−1z0 (42)

By using Eq. (42) and by replacing �t0; z0� with �t; z�, where
z � �z1; z2; : : : ; zN�T , the optimal feedback is obtained as

u�p�t; z� � K�t�z (43)

where

K�t� � �K1�t�; K2�t�; : : : ; KN�t� � −hT�t��P�G�t��−1 (44)

and the matrices P and G�t� are given by Eqs. (29) and (40),

respectively.
Let us define the times-to-go

tgj ≜ tfj − t; j � 1; : : : ; N (45)

Remark 3: In the particular case where the pursuer has an ideal

dynamics and the evaders have constant accelerations

aej �t� ≡ aej � const, j � 1; : : : ; N, the zero-effort miss is

zj � t2gj

�
Vcj

˙λj �
1

2
aej

�
; j � 1; : : : ; N (46)

where Vcj � Vp � Vej is the closing speed between the pursuer and

the jth evader, and λj is the line-of-sight angle between the pursuer

and the jth evader. Then, by virtue of Eq. (44), the optimal feedback

(43) in this case is represented as a linear combination of the

augmented proportional navigation (APN) guidance algorithms with

time-varying coefficients to each of the evaders:

u�p�t; z� �
XN
j�1

Nj�t�
�
Vcj

˙λj �
1

2
aej

�
(47)

where

Nj�t� � Kj�t�t2gj ; j � 1; : : : ; N (48)

D. Particular Cases

1. Pursuer with Ideal Dynamics

Consider the casewhere the pursuer has an ideal dynamics, that is,

in Eqs. (8) and (9), Ap � Bp � Cp � 0, dp � 1, np � 0, and,
respectively, ap � up. In this case,

hj�t� � −�tfj − t�; j � 1; : : : ; N (49)

Define the quantities

tgd ≜ td − t; tgdj ≜ tfj − td; j � 1; : : : ; N (50)

Then, the coefficients cj given by Eq. (23) are

cj �
1R tfj

td �tfj − t�2 dt
� 3

t3gdj
; j � 1; : : : ; N (51)

yielding

P � diag

�t3gdj
3pj

�
; j � 1; : : : ; N (52)

Because of Eqs. (40) and (49), the elements of the matrixG�t� are

Gij�t� �
Z

td

t
�tfi − ξ��tfj − ξ� dξ � 1

3
t3gd �

1

2
tgd�tgi tgdj � tgj tgdj�;

i; j � 1; : : : ; N

(53)

ForN � 2, we denote p1 � p, p2 � 1 − p. In this case, the gains
(48) are calculated explicitly:

N1 � N1�tg1 ; tg2 ; tgd1 ; tgd2 ; tgd� �
1

A
�A3tg1 − A2tg2�t2g1 (54)

N2 � N2�tg1 ; tg2 ; tgd1 ; tgd2 ; tgd� �
1

A
�−A2tg1 � A1tg2�t2g2 (55)

where

A1 � G11 � P11 �
1

pc1

t3g1 − t3gd1
3

� 1

3p
t3gd1 ; A2 � G12 (56)

A2 �
1

3
t3gd �

1

2
tgd�tg1 tgd2 � tg2 tgd1� (57)

A3 � G22 � P22 �
t3g2 − t3gd2

3
� 1

3�1 − p� t
3
gd2

(58)

A � det�P�G�t�� � A1A3 − A2
2 (59)

For N > 2, the gains (48) also can be represented explicitly in
terms of the time-to-go (45) and quantities (50). For the sake of
brevity, we do not present these expressions.

2. Pursuer with First-Order Strictly Proper Dynamics

The pursuer with the first-order strictly proper dynamics is
described by Eqs. (8) and (9) with Ap � −1∕τp, Bp � 1∕τp,
Cp � 1, dp � 0, np � 1, where the state variable xp coincides with
the pursuer’s lateral acceleration ap, and τp is the controller time
constant. In this case,

hj�t� � −τp�exp�−�tfj − t�∕τp� � �tfj − t�∕τp − 1�;
j � 1; : : : ; N

(60)

Note that in this case, the gains (48) also can be represented
explicitly in terms of the time-to-go (45) and quantities (50), but the
expressions are more bulky.

IV. Simulation Results

A. Two Evaders

Numerical simulations were carried out in the case of the pursuer
with the ideal dynamics and two diverging evaders for the parameters
presented in Table 1. For these parameters, tf1 � 4.5 s, tf2 � 6.25 s.
Notice that, although the decision taken by the pursuer at time td is

probabilistic, we can obtain the performance of the guidance law
without Monte Carlo simulations. Indeed, by simulating both cases,
that is, the pursuer goes after E1 and after E2, respectively, all
statistical performance indicators can be obtained by averaging over
the evader set, using the known probability of each decision result.

1. Linear Simulation

In this section, the optimal pursuer’s strategy (43) is applied to the
linearized systems (11).
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In Fig. 3, the optimal trajectories of the pursuer are shown in the

cases of the homing to the evader E1 or to the evader E2 for different

values of the probability p. It is seen that for t ∈ �t0; td�, the pursuer’s
trajectory lies “between” the evaders and “closer” to E1 for larger p.
For t ∈ �td; tf� (after the decision), the pursuer’s trajectories are

shaped differently, making the homing on E1 easier for a larger

probability p.
In Fig. 4, the respective optimal acceleration profiles of the pursuer

are shown. If the decisionwas to interceptE1, then for larger values of

p the acceleration effort is lower. For the opposite decision, the

dependence is opposite.

Because of Eqs. (55–59), it can be shown that for p � 0, N1 � 0
and N2 � 3 for any values of tg1 ; tg2 ; tgd1 ; tgd2 ; tgd. In this case,

the optimal strategy becomes APN against the second evader.

Correspondingly, for p � 1, N1 � 3 and N2 � 0, yielding APN

against the first evader. The gain N1 decreases and the gain N2

increases as functions of p ∈ �0; 1�. These facts are illustrated

in Fig. 5, depicting the gains N1 and N2 as functions of p
for t � 0.5td � 1.5 s.
In Fig. 6, the performance of the optimal control strategy Eqs. (47)

and (48) is compared with that of two nonoptimal strategies, not

taking into account that at t � td the pursuer decides to pursue the

evaderE1 with the probabilityp or the evaderE2 with the probability

1 − p. The two strategies for comparison are the APN againstE1 and

against E2 for t ∈ �t0; td�. In Fig. 6, the average of the control effort

J � pJ1 � �1 − p�J2 is shown as a function of p. It is seen that the
optimal control guarantees the smallest values of J for p ∈ �0; 1�
when compared with the alternative strategies of just homing on one

of the evaders, not taking into account that later in flight the other

evadermay need to be engaged. Forp � 0, the optimal strategy is the

APN against E2, whereas for p � 1, it is the APN against E1, but

between these extreme values there is a lot to save by choosing the

proposed guidance law.

2. Nonlinear Simulation

In this section, the performance of the optimal strategy (43) is

verified in a more realistic nonlinear simulation; that is, the optimal

pursuer’s strategy (43) is applied to the original nonlinear systems

(1). Our main purpose in this section is to show that the linearization

assumption that we made in order to derive the guidance law is

adequate. The nonlinear simulation of the pursuit of Ej is carried out

Table 1 Two-evader simulation parameters

Parameter Symbol Value Unit

Speed E1 Ve1 400 m∕s
Initial position E1 �x0e1 ; y0e1 � (3600, 0) m
Lateral acceleration E1 ae1 30 m∕s2
Speed E2 Ve2 400 m∕s
Initial position E2 �x0e2 ; y0e2 � (5000, 0) m
Lateral acceleration E2 ae2 −30 m∕s2
Speed P Vp 400 m∕s
Initial position P �x0p ; y0p � (0, 0) m
Decision time td 3 s

Fig. 3 Linear simulation: optimal pursuer’s trajectories and evader’s

trajectories.

Fig. 4 Linear simulation: pursuer’s optimal acceleration profiles.

Fig. 5 Optimal gains for t � 0.5td.

Fig. 6 Average control effort.
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for t ≤ t̂fj , where t̂fj is given by Eq. (3). The time-to-go is estimated
at each time step according to Eq. (4).
Figure 7 is a counterpart of Fig. 3 for the nonlinear simulation. In

this simulation, φp�0� � φe1�0� � φe2�0� � 0 deg. It is seen that
the trajectories are similar to those in the linear simulation. Figure 8,
where the trajectories obtained in the linear and nonlinear simulation
are compared for the case of pursuit ofE1withp � 0.3, demonstrates
closeness of the trajectories in the linear and nonlinear simulation.
The optimal acceleration profiles for p � 0.3 are compared in

Fig. 9 for the pursuit of E1 and E2. It is seen that the acceleration
profiles in the nonlinear simulation are close to those in the linear
simulation.
Figure 10 is a nonlinear version of Fig. 6. It is seen that the average

control effort for the optimal strategy and for two nonoptimal controls
depends on p very similarly to a linear case.
Let us consider the realistic case where the lateral acceleration

(control) of the pursuer is bounded japj ≤ amax
p . In this case, zero

miss distance cannot be guaranteed by any pursuit strategy. Define
the average miss distance

MDave � pMD1 � �1 − p�MD2 (61)

where the miss distances MDj, j � 1; 2, are given by Eq. (5).
In Fig. 11, the averagemiss distances are depicted as functions ofp

for three strategies: optimal strategy [Eqs. (47) and (48)] and two
nonoptimal strategies using APN control against one of the evaders
for t ∈ �t0; td� and eventually switching to the other evader with
the given probability p, respectively 1 − p. These results were
obtained for amax

p � 220 m∕s2, xe2 � 4000 m, td � 2.8 s, and other
parameters coinciding with those of Table 1. The graphs for
nonoptimal strategies are cut at the level of 20 m. It is seen that the

optimal guidance that takes the probability p into account pro-
vides small average miss distances (smaller than 50 cm) for
p ∈ �0.35; 0.75�, whereas the average miss distances obtained using
the nonoptimal strategies are large in the whole probability range,
except when p is small or very close to 1; that is, there is almost no
uncertainty. However, the optimal guidance law can handle this
uncertainty very well.

Fig. 7 Nonlinear simulation: optimal pursuer’s trajectories and

evader’s trajectories.

Fig. 8 Trajectories: linear vs nonlinear simulation.

Fig. 9 Optimal acceleration profiles: nonlinear vs linear simulation.

Fig. 10 Average control effort in nonlinear simulation.

Fig. 11 Average miss distance for bounded control.
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B. Three Evaders

In this section, the results of the nonlinear simulation for the case

of three evaders are presented. The first and the third evaders are

the same as in the two-target simulation; the second target is

nonmaneuverable (see the simulation parameters in Table 2). In

Fig. 12, the optimal pursuer’s trajectories and the evader’s trajectories

are shown for p1 � 0.3, p2 � 0.2, and p3 � 0.5. In Fig. 13, the

average control efforts for the optimal strategy and for three

nonoptimal controls are depicted for fixed probability p1 � 0.2 as

functions of p2. It is seen that the optimal strategy performs better

than others, as in the two-evader simulation.

V. Conclusions

A minimum control effort pursuit strategy was proposed for the
case in which the pursuer is confronted with multiple evaders and the
decisionwhich of the evaders should be engaged is taken only later in
the flight and the probability of each decision outcome is assumed
to be known. The strategy is a weighted sum of optimal guidance
commands, each corresponding to the engagement of one of the
evaders, and so the structure of the algorithm is very simple.
However, the expressions of the weighting coefficients are complex
as they depend on the time-to-go to each of the evaders and the
outcome probabilities of the engagement decision. In this paper, it is
assumed that these probabilities remain constant until the decision
time. In practice, the probabilities may change during the flight as
more information becomes available. The consequences of this fact
will be explored as part of future work.
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Speed E3 Ve3 400 m∕s
Initial position E3 �x0e3 ; y0e3 � (5000, 0) M
Lateral acceleration E3 ae3 −30 m∕s2
Speed P Vp 400 m∕s
Initial position P �x0p ; y0p � (0, 0) m
Decision time td 3 s

Fig. 12 Three evaders: optimal pursuer’s trajectories and evader’s

trajectories.

Fig. 13 Average control effort in three-evader nonlinear simulation.
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