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A B S T R A C T

Full-state single-loop and full-state two-loop autopilot-guidance architectures are derived under a linear quadratic
differential game formulation. In the full-state single-loop case, the guidance command is injected directly to the
actuator, whereas in the full-state two-loop case, it is the input to the autopilot loop. To prevent impractical end-
game scenarios, where the states diverge to unacceptable values, a cost function that includes appropriate running
cost terms on some of the states is proposed. The conditions for obtaining an equivalence relation between
the full-state single-loop and full-state two-loop architectures are derived under a linear quadratic differential
game formulation and the proposed cost function. Under such a formulation, the two full-state architectures are
identical if and only if the number of guidance commands matches the number of available controllers. The
guidance laws performance is illustrated using an interceptor missile having forward and aft controls in linear
and nonlinear settings, while considering two types of evasion strategies. The first strategy is a linear controller
based on the linear quadratic differential game solution. The second strategy is a ‘‘bang–bang’’ controller based
on the optimal evasion solution. It is shown that the linear evasion strategy may not be suitable to represent a
realistic evading strategy. In addition, the conditions for the existence of a saddle point solution are analyzed for
the two full-state guidance laws.

1. Introduction

The term full-state guidance law refers to an autopilot-guidance
system that has a full-state feedback into the guidance loop, and thus the
coupling between the guidance and flight-control (G&C) loops is taken
into account. Such a design may enhance the interceptor’s performance
and has the potential to meet advanced design requirements, i.e. im-
proved accuracy and extended kill envelope. Two types of full-state
G&C architectures were considered in previous papers (Idan, Shima,
& Golan, 2007; Levy, Shima, & Gutman, 2013, 2015, 2017; Menon
& Ohlmeyer, 2001; Menon, Sweriduk, & Ohlmeyer, 2003; Palumbo,
Reardon, & Blauwkamp, 2004; Rusnak & Levi, 1991; Shima, Idan, &
Golan, 2006; Shkolnikov, Shtessel, & Lianos, 2001): full-state single-
loop (FS-SL) and full-state two-loop (FS-TL). In the FS-TL case, the inner
autopilot loop is designed independently of the outer guidance one,
whereas in the FS-SL case, the guidance command is injected directly
to the actuator, without a definite autopilot.

In the literature, the term ‘‘integrated guidance law’’ has been used
to describe full-state G&C systems. In Palumbo et al. (2004), Shima et al.
(2006), Idan et al. (2007), Menon and Ohlmeyer (2001) and Menon et
al. (2003), the term ‘‘integrated’’ referred to FS-SL guidance systems,
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whereas in Shkolnikov et al. (2001) the term referred to an FS-TL
autopilot-guidance system. The general solution of an optimal guidance
law with a full-state feedback was derived for an arbitrary order autopi-
lot model in Rusnak and Levi (1991). Theoretical results concerning
the equivalence of the two full-state architectures were presented under
one-sided optimal control formulation for linear quadratic optimization
problems (Levy et al., 2013, 2015) and for nonlinear optimization
problems with bounded controls (Levy et al., 2017).

In practice, the controller is bounded, which results in a nonlinear
system during saturation. In fact, during saturation the G&C loop is
opened and if in addition the open loop transfer function is unstable
or close to instability, the attitude angle may diverge to unacceptable
values (Gutman, Rubinsky, Shima, & Levy, 2013). In the nonlinear
approach, the states can be kept at reasonable values by limiting
the commands and using a carefully designed autopilot. In the linear
quadratic approach, this can be done indirectly by adding running cost
terms of each of the controllers to the cost function.

Perfect information of the target future maneuver is usually not
available. Hence, an appropriate alternative to the optimal control
formulation is the zero-sum pursuit-evasion game formulation (Isaacs,
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1965), where only the information on the target maneuver capability
is required. The linear quadratic differential game (LQDG) formulation
was presented in Ho, Bryson, and Baron (1965) while assuming ideal
dynamics for both adversaries. In Ben-Asher and Yaesh (1998), this
assumption was replaced by first-order dynamics for both the missile
and the target. In Ben-Asher, Levinson, Shinar, and Weiss (2004) it
was shown that an inclusion of a running cost on the state variables in
LQDG guidance laws has a disturbance attenuation effect. In Turetsky
and Shinar (2003), the bounded-control and LQDG formulations were
compared by assuming first-order dynamics for both players.

In the present paper, FS-SL and FS-TL autopilot-guidance laws are
derived under an LQDG formulation, by assuming: linear dynamics
for both adversaries, perfect information of the states, and unbounded
controls. The equivalence condition of the two full-state guidance laws
is provided for a cost function that contains running cost terms of
the states. According to the theorem, the two full-state optimization
problems are identical if and only if the number of guidance commands
is identical to the number of available controllers. This result encourages
usage of the FS-TL architecture over the FS-SL one in practical autopilot-
guidance systems. In these systems the autopilot is an important com-
ponent since it ensures the inner stability of the airframe if the guidance
loop is inactive. Thus, by following the equivalence condition, the FS-
TL architecture can have the best of both worlds: inner stable autopilot
loop, and at the same time, the same cost as the FS-SL architecture.

Preliminary results related to the present work appeared in Levy,
Shima, and Gutman (2014). The present paper expands on Levy et al.
(2014) in several directions:

1. The conditions for the existence of a saddle point solution are
analyzed for both FS-SL and FS-TL architectures.

2. Derivation of the optimal evasion strategy in a practical bounded
control setting against an LQDG maneuvering missile.

3. A thorough analysis of the FS-SL and FS-TL performance is done
using linear and nonlinear test scenarios, while considering two
types of target acceleration commands. The first evasion strategy
is linear and is based on the LQDG formulation. The second
evasion strategy is of ‘‘bang–bang’’ type and is based on the
optimal evasion solution against an LQDG guided missile.

The remainder of this paper is organized as follows. The linearized
model derivation and autopilot-guidance design are given in Sec-
tion 2 and Section 3, respectively. The equivalence of the two full-
state guidance laws is presented in Section 4. The test case and the
corresponding guidance laws formulations are given in Section 5 and
Section 6, respectively. Simulation results were made for two types of
target strategies: an LQDG one and the optimal evasion strategy against
an LQDG guided missile. These strategies are presented in Section 7,
followed by the simulation results in Section 8, and the concluding
remarks. The nonlinear models of the relative kinematics and missile
lateral dynamics are presented in Appendix.

2. Linearized model derivation

This section provides the design assumptions and describes the
linearized end-game geometry used for the synthesis of the guidance
laws and their analysis.

2.1. Design assumptions

The derivation of the guidance laws will be performed based on the
following assumptions:

1. A skid-to-turn roll-stabilized missile is considered. The motion of
such a missile can be separated into two perpendicular channels,
thus allowing to treat only a planar motion.

2. Linear dynamics for the target and the missile.

Fig. 1. Planar engagement geometry.

3. The missile and target deviations from the collision triangle are
small during the end-game, consequently the relative end-game
trajectory can be linearized about the nominal line of sight (LOS).

4. Constant speeds are assumed for both the missile and the target.

2.2. End-game scenario description

Fig. 1 presents a schematic view of the planar end-game geometry,
where 𝑋 axis is aligned with the initial LOS (𝐿𝑂𝑆0) and 𝑍 axis is
perpendicular to it. The subscripts 𝑀 and 𝑇 denote the missile and the
target, respectively. 𝑉 , 𝑎, and 𝛾 denote the speed, normal acceleration,
and path angle. 𝑎𝑀𝑁 , and 𝑎𝑇𝑁 are respectively the missile and target
accelerations normal to 𝐿𝑂𝑆0. 𝑟 is the range between the adversaries
and 𝜆 is the angle between the LOS and the 𝑋 axis. 𝑦 is the relative
displacement between the target and the missile normal to the 𝑋 axis.

The missile and the target accelerations normal to the initial LOS are

𝑎𝑀𝑁 ≈ 𝑎𝑀 cos(𝛾𝑀0), 𝑎𝑇𝑁 ≈ 𝑎𝑇 cos(𝛾𝑇 0) (1)

Then, the corresponding kinematic equation is

�̈� = 𝑎𝑇𝑁 − 𝑎𝑀𝑁 (2)

2.3. Linear equations of motion

The general set of equations can be classified into three categories:
kinematics equations, dynamics equations, and servo model equations.
Thus, the general state vector is given by

𝐱 =
⎡

⎢

⎢

⎣

𝐱𝐊
𝐱𝐃
𝐱𝐒

⎤

⎥

⎥

⎦

(3)

where 𝐱𝐊 ∈ R𝑛𝐾 ×1 denotes the kinematics states, e.g. the missile-target
separation; 𝐱𝐃 ∈ R𝑛𝐷×1 denotes the dynamics states, e.g the missile’s
angular rates; 𝐱𝐒 ∈ R𝑛𝑆 ×1 denotes the servo model states.1

The target dynamics is assumed to be ideal to consider a realistic
scenario where there is no information on its dynamics. In this manner,
by assuming ideal target dynamics, the worst-case scenario is taken into
account. Let 𝑣 ∈ R1 denote the target controller, then

𝑎𝑇𝑁 = 𝑣 (4)

The dynamics and servo equations of the missile are given as follows

⎡

⎢

⎢

⎣

�̇�
𝐃

�̇�
𝐒

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐀
𝐃

[𝟎] 𝐀
𝐒

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐱
𝐃

𝐱
𝐒

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

[𝟎]

𝐁
𝐒

⎤

⎥

⎥

⎦

𝐮
𝐒

(5)

1 The equations of motions take into account the servo dynamics.
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where 𝐮𝐒 ∈ R𝑚𝑆 ×1 is the servo command, and [𝟎] is a matrix of zeros
with appropriate dimensions. The matrix 𝐀𝐃 in Eq. (5) may be rewritten
as follows

𝐀
𝐃
=
[

𝐀
𝐃𝐃

𝐀
𝐃𝐒

]

(6)

where 𝐀𝐃𝐃 ∈ R𝑛𝐷×𝑛𝐷 and 𝐀𝐃𝐒 ∈ R𝑛𝐷×𝑛𝑆 .
Denote the combined dynamics and servo state vector by 𝐱𝐃𝐒 ∈

R(𝑛𝐷+𝑛𝑆 )×1, then the general form of the missile’s normal acceleration
is

𝑎𝑀𝑁 = 𝐂𝐌𝐱𝐃𝐒, 𝐱𝐃𝐒 ≜
[

𝐱𝐃
𝐱𝐒

]

(7)

Substituting Eq. (7) into the kinematics equation (Eq. (2)) and combin-
ing with Eq. (4), the set of kinematics equations is obtained

�̇�
𝐊
=
[

𝐀
𝐊𝐊

𝐀
𝐊,𝐃𝐒

]
⎡

⎢

⎢

⎣

𝐱
𝐊

𝐱
𝐃𝐒

⎤

⎥

⎥

⎦

+ 𝐂
𝐊
𝑣, 𝐱

𝐊
=
[

𝑦 �̇�
]𝑇 (8)

where

𝐀𝐊𝐊 =
[

0 1
0 0

]

, 𝐀𝐊,𝐃𝐒 =
[

[𝟎]
−𝐂𝐌

]

, 𝐂𝐊 =
[

0
1

]

(9)

The general set of equations is obtained by combining the dynamics-
servo equations (Eq. (5)) and the kinematics equations (Eq. (8))

�̇� = 𝐀𝐱 + 𝐁𝐮𝐒 + 𝐂𝑣, 𝐱 =
⎡

⎢

⎢

⎣

𝐱𝐊
𝐱𝐃
𝐱𝐒

⎤

⎥

⎥

⎦

(10)

where

𝐀 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐀
𝐊𝐊

[𝟎]
[𝟎]

𝐀
𝐊,𝐃𝐒

𝐀
𝐃𝐃

𝐀
𝐃𝐒

[𝟎] 𝐀
𝐒

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐁 =

⎡

⎢

⎢

⎢

⎢

⎣

[𝟎]

[𝟎]
𝐁

𝐒

⎤

⎥

⎥

⎥

⎥

⎦

𝐂 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐂
𝐊

[𝟎]
[𝟎]

⎤

⎥

⎥

⎥

⎥

⎦

(11)

Remark 1. In its general form, Eq. (10) is time varying. For the
simplicity of presentation, the time dependency is not explicitly written.

3. Autopilot-guidance design

In this section, the FS-SL and FS-TL guidance laws are provided.
These guidance laws are derived by using the linear equations of
motion presented in Section 2.3 and assuming perfect information of
the states. The FS-SL and FS-TL designs are presented in Section 3.1 and
in Section 3.2, respectively.

3.1. Full-state single-loop guidance law

The FS-SL optimization problem is described in Fig. 2 and given as
follows
min
𝐮𝐒

max
𝑣

𝐽 =𝐱𝑇 (𝑡𝑓 )𝐐𝐟𝐱(𝑡𝑓 )+

∫

𝑡𝑓

𝑡0
(𝐮𝐓𝐒𝐑𝐮𝐒 + 𝐱𝐓𝐐𝐱 − 𝐸𝑣2) 𝑑𝜏

s.t. �̇� = 𝐀𝐒𝐋𝐱 + 𝐁𝐒𝐋𝐮𝐒 + 𝐂𝑣

(12)

where the subscript 𝑆𝐿 denotes the FS-SL optimization problem, and
𝑡0 and 𝑡𝑓 are the initial and final times, respectively. In this case, the
G&C system is designed in a single-loop, thus the open-loop equations
of motion are used (Eqs. (10)–(11)), where 𝐀𝐒𝐋 = 𝐀 and 𝐁𝐒𝐋 = 𝐁. 𝐐𝐟
and 𝐐 are real symmetric positive semi-definite matrices; 𝐑 is a real
symmetric positive definite matrix, and 𝐸 is a positive scalar. The target

Fig. 2. Block diagram of a full-state single-loop guidance law.

Fig. 3. Block diagram of a full-state two-loop guidance law.

acceleration command 𝑣 is given by an LQDG guidance law or any other
scalar law (constant, step etc.).

The missile and target optimal controllers are (Ho et al., 1965)

𝐮∗𝐆 = 𝐮∗𝐒 = −𝐑−𝟏𝐁𝐒𝐋
𝐓𝐏𝐱 (13)

𝑣∗ = 𝐸−1𝐂𝐓𝐏𝐱 (14)

where 𝐏 is the solution of the differential Riccati equation

−�̇� = 𝐏𝐀𝐒𝐋 + 𝐀𝐒𝐋
𝐓𝐏 − 𝐏𝐁𝐒𝐋𝐑−𝟏𝐁𝐒𝐋

𝐓𝐏+
+ 𝐸−1𝐏𝐂𝐂𝐓𝐏 +𝐐

(15)

with the terminal boundary condition 𝐏
(

𝑡𝑓
)

= 𝐐𝐟 .

3.2. Full-state two-loop autopilot guidance law

The architecture of a FS-TL autopilot guidance law is depicted in
Fig. 3. In this case, the inner autopilot loop is designed separately of the
outer guidance one, but the guidance law uses information of the entire
state vector (kinematics & dynamics states). 𝐊𝐀 denotes the autopilot
gain matrix that can be expressed as follows

𝐊𝐀 =
[

𝐤𝐃 𝐤𝐒
]

, 𝐤𝐃 ∈ R𝑚𝐺×𝑛𝐷 , 𝐤𝐒 ∈ R𝑚𝐺×𝑛𝑆 (16)

Let �̂� ∈ R𝑚𝑆 ×𝑚𝐺 , then the servo command is given as a function of the
states and guidance command

𝐮𝐒 = �̂�
(

𝐮𝐆 −𝐊𝐀𝐱𝐃𝐒
)

= �̂�
(

𝐮𝐆 −
[

𝐤𝐃 𝐤𝐒
]

[

𝐱𝐃
𝐱𝐒

])

(17)

The equations of motion with respect to the servo command (open-
loop equations) are identical to the FS-SL case

�̇� = 𝐀𝐒𝐋𝐱 + 𝐁𝐒𝐋𝐮𝐒 + 𝐂𝑣 (18)

Then, by substituting Eq. (17) into Eq. (18), the closed-loop equations
of motion are obtained

�̇� = 𝐀𝐓𝐋𝐱 + 𝐁𝐓𝐋𝐮𝐆 + 𝐂𝑣 (19)

where the subscript 𝑇𝐿 denotes the FS-TL optimization problem, and
𝐀𝐓𝐋 and 𝐁𝐓𝐋 are given by

𝐀𝐓𝐋 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐀
𝐊𝐊

[𝟎]
[𝟎]

𝐀
𝐊,𝐃𝐒

𝐀
𝐃𝐃

𝐀
𝐃𝐒

−𝐁
𝐒
�̂�𝐤

𝐃
𝐀

𝐒
− 𝐁

𝐒
�̂�𝐤

𝐒

⎤

⎥

⎥

⎥

⎥

⎦

𝐁𝐓𝐋 =

⎡

⎢

⎢

⎢

⎢

⎣

[𝟎]

[𝟎]
𝐁

𝐒
�̂�

⎤

⎥

⎥

⎥

⎥

⎦

(20)
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To enable a fair comparison between the FS-SL and FS-TL guidance
laws, it is assumed that the cost functions of both optimization problems
are identical with respect to the servo command. Then, by substituting
Eq. (17) into the FS-SL cost function (Eq. (12)), the following FS-TL
optimization problem is obtained

min
𝐮𝐆

max
𝑣

𝐽 =𝐱𝑇 (𝑡𝑓 )𝐐𝐟𝐱(𝑡𝑓 )+

∫

𝑡𝑓

𝑡0

(

𝐮𝐆𝐓𝐑𝐓𝐋𝐮𝐆 + 2𝐱𝐓𝐒𝐓𝐋𝐮𝐆

+ 𝐱𝐓(𝐐𝐓𝐋 +𝐐)𝐱 − 𝐸𝑣2
)

𝑑𝑡

s.t. �̇� = 𝐀𝐓𝐋𝐱 + 𝐁𝐓𝐋𝐮𝐆 + 𝐂𝑣

(21)

where

𝐑𝐓𝐋 = �̂�𝐓𝐑�̂�, 𝐒𝐓𝐋 = −
[

[𝟎]
𝐊𝐀

𝐓

]

𝐑𝐓𝐋

𝐐𝐓𝐋 =
[

[𝟎]
𝐊𝐀

𝐓

]

𝐑𝐓𝐋
[

[𝟎] 𝐊𝐀
]

(22)

Anderson and Moore (1989) introduced the solution of the extended
regulator problem, where the performance index contains cross-product
terms. Following this solution for the current LQDG problem, an equiv-
alent controller is defined as follows

𝐮𝐞 = 𝐮𝐆 + 𝐑𝐓𝐋
−𝟏𝐒𝐓𝐋𝐓𝐱 (23)

Substituting Eq. (23) into the FS-TL optimization problem (Eq. (21)) and
defining

𝐀𝐞 ≜ 𝐀𝐓𝐋 − 𝐁𝐓𝐋𝐑𝐓𝐋
−𝟏𝐒𝐓𝐋𝐓

𝐐𝐞 ≜ 𝐐𝐓𝐋 +𝐐 − 𝐒𝐓𝐋𝐑𝐓𝐋
−𝟏𝐒𝐓𝐋𝐓 (24)

Then, the equivalent LQDG problem is formulated as follows

min
𝐮𝐞

max
𝑣

𝐽 =𝐱𝑇 (𝑡𝑓 )𝐐𝐟𝐱(𝑡𝑓 ) + ∫

𝑡𝑓

𝑡0

(

𝐮𝐞𝐓𝐑𝐓𝐋𝐮𝐞+

+ 𝐱𝐓𝐐𝐞𝐱 − 𝐸𝑣2
)

𝑑𝑡
(25)

s.t. �̇� = 𝐀𝐞𝐱 + 𝐁𝐓𝐋𝐮𝐞 + 𝐂𝑣 (26)

Now, the equivalent problem can be solved with 𝐑𝐓𝐋 being positive
definite and 𝐐𝐞 being nonnegative definite. The missile and target
optimal controllers are

𝐮∗𝐞 = −𝐑𝐓𝐋
−𝟏𝐁𝐓𝐋

𝐓𝐏𝐱 (27)
𝑣∗ = 𝐸−1𝐂𝐓𝐏𝐱 (28)

where the differential Riccati equation is

−�̇� = 𝐏𝐀𝐞 + 𝐀𝐞
𝐓𝐏 − 𝐏𝐁𝐓𝐋𝐑𝐓𝐋

−𝟏𝐁𝐓𝐋
𝐓𝐏+

+ 𝐸−1𝐏𝐂𝐂𝐓𝐏 +𝐐𝐞
(29)

with the terminal boundary condition 𝐏
(

𝑡𝑓
)

= 𝐐𝐟 .
Let us verify that 𝐐𝐞 is nonnegative definite by substituting the

weights in Eq. (22) into 𝐐𝐞 (Eq. (24))

𝐐𝐞 = 𝐐𝐓𝐋 +𝐐 − 𝐒𝐓𝐋𝐑𝐓𝐋
−𝟏𝐒𝐓𝐋𝐓 = 𝐐 (30)

4. Full-state guidance laws equivalence

This section provides theoretical results concerning the equivalence
of the two full-state guidance laws: FS-SL (Section 3.1) and FS-TL
(Section 3.2).

Theorem 1. The necessary and sufficient condition for obtaining identical
solutions to the optimization problems of the full-state single-loop case (Eq.
(12)) and of the full-state two-loop case (Eq. (21)) is that �̂� is nonsingular.

Proof. Following the details of the proof given in Levy et al. (2015),
Theorem 1 can be easily proven, since the target control effort and the
running cost state terms are identical for both the single-loop and two-
loop cases.

Fig. 4. Basic configuration of a dual-control missile.

5. Test case

In this paper, the guidance laws performance and theorem are
demonstrated using a dual-control missile in an exo-atmospheric in-
terception scenario. It should be noted that the end-game scenario is
restricted to head-on aerial interception geometries. In the latter, a
linear set of equations can be obtained under the assumption of small
angles. Two possible autopilot block diagrams are presented based on
the number of inputs to the autopilot. These autopilots are used in the
FS-TL guidance law, solely. The linearized dual-control missile model is
presented next, followed by the autopilot designs.

5.1. Dynamics model

The chosen test case is a dual-control exo-atmospheric missile where
a nose jet device was added to a thrust vector control (TVC) mis-
sile (Levy et al., 2015). The basic configuration of a dual controlled
exo-atmospheric2 missile is depicted in Fig. 4. The missile has two
controllers, a thrust vector controller as well as a nose jet one. Let 𝜃
and 𝛿𝑡 denote the missile’s body angle and its thrust deflection (tail
controller), respectively. 𝑇 is the thrust force and 𝑙𝑡 is the distance from
the center of mass to the nozzle. Let 𝑇𝑛 and 𝑙𝑛 denote the nose jet force
and the distance from the center of mass to the nose jet, respectively.

Assuming first order servo model for both the nose and tail con-
trollers, the state-space formulation of the dynamics model is given as
follows
�̇�𝐃𝐒 = 𝐀𝐌𝐱𝐃𝐒 + 𝐁𝐌𝐮𝐒
𝐱𝐃𝐒 =

[

𝜃 �̇� 𝛿𝑛 𝛿𝑡
]𝑇 , 𝐮𝐒 =

[

𝛿𝑐𝑛 𝛿𝑐𝑡
]𝑇 (31)

where 𝛿𝑐𝑛 and 𝛿𝑐𝑡 are the deflection commands of the nose jet and the
thrust, respectively, and the model matrices

𝐀𝐌 =
⎡

⎢

⎢

⎣

𝐀
𝐃

[𝟎] 𝐀
𝐒

⎤

⎥

⎥

⎦

, 𝐀
𝐃
=
[

0 1 0 0
0 0 𝑀𝛿𝑛 −𝑀𝛿𝑡

]

𝐀
𝐒
=

[

− 1
𝜏𝑛

0

0 − 1
𝜏𝑡

]

, 𝐁𝐌 =
⎡

⎢

⎢

⎣

[𝟎]

𝐁
𝐒

⎤

⎥

⎥

⎦

, 𝐁
𝐒
=

[ 1
𝜏𝑛

0

0 1
𝜏𝑡

]

(32)

Denote the missile’s mass by 𝑚, then the thrust component perpen-
dicular to the initial LOS is given by

𝑎𝑀𝑁 = 𝐂𝐌𝐱𝐃𝐒, 𝐂𝐌 = 𝑇
𝑚

[

1 0 1 1
]

(33)

The parameters of the missile and servo are given as follows: 𝜏𝑛∕𝑡 =
0.1 [s], T∕m = 200 [m∕s2], 𝑀𝛿𝑛∕𝑡 = 330 [1∕s2].

2 Outside the atmosphere, the atmospheric density is sufficiently low, there-
fore the aerodynamic forces and wind can be neglected.
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Fig. 5. Single-input autopilot block diagram.

Fig. 6. Multi-input autopilot block diagram.

Remark 2. In a TVC missile, the speed, mass, and inertia are time
varying. However, in exo atmospheric scenarios, the speed change is
negligible with respect to the total speed. In addition, the guidance law
is designed for the end-game phase which is sufficiently short, thus the
missile’s speed can be assumed to be nearly constant. This assumption
was relaxed in the nonlinear two-dimensional simulation of the missile’s
lateral dynamics and relative kinematics presented in Section 8.4.

5.2. Autopilot design

Following Levy et al. (2015), two types of autopilot block diagrams
are considered: traditional single-input diagram, and multi-input dia-
gram.

Fig. 5 presents the single-input autopilot diagram. In this case, the
guidance command is scalar and the servo command is given by

𝐮𝐒 = −𝐊𝐀𝐱𝐃𝐒 + 𝐃𝐮𝑢𝐺 (34)

where

𝐃𝐮 = 𝑚
𝑇

[

𝑐𝑛
𝑐𝑡

]

, 𝐊𝐀 =

[

𝑐𝑛 𝑘�̇�𝑛 𝑐𝑛 𝑐𝑛
𝑐𝑡 𝑘�̇�𝑡 𝑐𝑡 𝑐𝑡

]

(35)

The autopilot gains are given as follows: 𝑘�̇�𝑛 = 0.021, 𝑘�̇�𝑡 = −0.025,
𝑐𝑛 = 0.01, and 𝑐𝑡 = 1.

The closed-loop autopilot equation is obtained by substituting Eq.
(34) into the linearized dynamics in Eqs. (31)–(32)

�̇�𝐃𝐒 = 𝐀𝐌𝐜𝐥
𝐱𝐃𝐒 + 𝐁𝐌𝐜𝐥

𝑢
𝐺

(36)

where

𝐀𝐌𝐜𝐥
= 𝐀𝐌 − 𝐁𝐌𝐊𝐀, 𝐁𝐌𝐜𝐥

= 𝐁𝐌𝐃𝐮 (37)

Fig. 6 presents the multi-input autopilot diagram, where there are
two guidance commands that match the number of available controllers.
In this way, the guidance law can control each controller individually,
resulting in two degrees of freedom. This kind of diagram is tailored for
the dual control configuration and therefore may provide the optimal
combination of controls for the end-game scenario (Shima & Golan,

2007). The autopilot gains are given as follows: 𝑘�̇�𝑛 = 0.021, 𝑘�̇�𝑡 =
−0.025, 𝑐𝑛 = 0.0597, 𝑐𝑡 = −0.1126.

In this case, the servo command is given by

𝐮𝐒 = −𝐊𝐀𝐱𝐃𝐒 + 𝐃𝐮𝐮𝐆 (38)

where the gains matrix 𝐊𝐀 is given in Eq. (35) and 𝐃𝐮 is

𝐃𝐮 = 𝑚
𝑇

[

𝑐𝑛 0
0 𝑐𝑡

]

(39)

By substituting Eq. (38) into the linearized dynamics in Eqs. (31)–
(32), the closed-loop autopilot equation is obtained

�̇�𝐃𝐒 = 𝐀𝐌𝐜𝐥
𝐱𝐃𝐒 + 𝐁𝐌𝐜𝐥

𝐮𝐆 (40)

where

𝐀𝐌𝐜𝐥
= 𝐀𝐌 − 𝐁𝐌𝐊𝐀, 𝐁𝐌𝐜𝐥

= 𝐁𝐌𝐃𝐮 (41)

6. Full-state guidance formulation

The general formulations of the FS-SL and FS-TL guidance laws were
presented in Section 3. These formulations will be applied to the dual-
control missile test case presented in the previous section.

6.1. Full-state single-loop formulation

Recall the FS-SL formulation provided in Section 3.1

min
𝐮𝐒

max
𝑣

𝐽 =𝐱𝑇 (𝑡𝑓 )𝐐𝐟𝐱(𝑡𝑓 )+

∫

𝑡𝑓

𝑡0
(𝐮𝐓𝐒𝐑𝐮𝐒 + 𝐱𝐓𝐐𝐱 − 𝐸𝑣2) 𝑑𝜏

(42)

s.t. �̇� = 𝐀𝐒𝐋𝐱 + 𝐁𝐒𝐋𝐮𝐒 + 𝐂𝑣 (43)

This formulation will be applied to the dual-control missile case. The
state vector and controller are

𝐱 =
[

𝑦 �̇� 𝜃 �̇� 𝛿𝑛 𝛿𝑡
]𝑇 , 𝐮𝐒 = 𝐮𝐆 =

[

𝛿𝑐𝑛 𝛿𝑐𝑡
]𝑇 (44)
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and the matrices 𝐀𝐒𝐋 and 𝐁𝐒𝐋 are

𝐀𝐒𝐋 =
[

𝐀𝟏𝟏 𝐀𝟏𝟐
[𝟎] 𝐀𝟐𝟐

]

, 𝐀𝟏𝟏 = 𝐀𝐊𝐊, 𝐀𝟏𝟐 = 𝐀𝐊,𝐃𝐒

𝐀𝟐𝟐 = 𝐀𝐌, 𝐁𝐒𝐋 =
[

[𝟎]
𝐁𝐌

]
(45)

where 𝐀𝐌 and 𝐁𝐌 are given in Eq. (32), the matrices 𝐀𝐊𝐊 and 𝐀𝐊,𝐃𝐒
are given in Eq. (9), and the vector 𝐂 is given in Eq. (11).

The chosen weight matrices

𝐑 =
[

𝑑2 0
0 1

]

, 𝐐𝐟 (𝑖, 𝑗) =
{

𝑐2, if 𝑖 = 𝑗 = 1
0, else

𝐐(𝑖, 𝑗) =
{

𝑏2, if 𝑖 = 𝑗 = 3
0, else

(46)

where 1 ≤ 𝑖, 𝑗 ≤ 6, 𝑑 is the nose control effort penalty, 𝑐 is the miss
distance penalty, and 𝑏 is the attitude angle penalty. The target control
effort penalty is set as follows: 𝐸 = 𝑒2.

6.2. Full-state two-loop formulation

Recall that in this case, there is an inner autopilot loop, thus the
servo command is determined by the autopilot diagram and is a function
of the guidance command and states. Two types of autopilot block
diagram were presented in the previous section: single-input diagram
(Fig. 5) and multi-input diagram (Fig. 6). The FS-TL guidance law will
be formulated for both autopilot diagrams, where the chosen weight
matrices are identical to the FS-SL weight matrices in Eq. (46) to enable
future comparison between the two guidance laws.

6.2.1. Single-input autopilot
By using the single-input autopilot diagram (Fig. 5), the guidance

law issues a single command, which is divided into two equivalent com-
mands by a vectorial control law. The corresponding FS-TL optimization
problem is obtained by substituting the servo command from Eq. (34)
into the FS-SL optimization problem (Eqs. (42)–(43))

min
𝑢𝐺

max
𝑣

𝐽 = 𝐱𝑇 (𝑡𝑓 )𝐐𝐟𝐱(𝑡𝑓 ) + ∫

𝑡𝑓

𝑡0

(

𝐃𝐓
𝐮𝐑𝐃𝐮𝑢

2
𝐺+

+ 2𝐱𝐓𝐂𝐓
𝐮𝐑𝐃𝐮𝑢𝐺 + 𝐱𝐓𝐂𝐮

𝐓𝐑𝐂𝐮𝐱+
+ 𝐱𝐓𝐐𝐱 − 𝐸𝑣2

)

𝑑𝑡

(47)

s.t. �̇� = 𝐀𝐓𝐋𝐱 + 𝐁𝐓𝐋𝑢𝐺 + 𝐂𝑣 (48)

where 𝐂𝐮 =
[

𝟎 −𝐊𝐀
]

and the matrices 𝐀𝐓𝐋 and 𝐁𝐓𝐋 are given as
follows

𝐀𝐓𝐋 =
[

𝐀𝟏𝟏 𝐀𝟏𝟐
[𝟎] 𝐀𝐌𝐜𝐥

]

, 𝐁𝐓𝐋 =
[

[𝟎]
𝐁𝐌𝐜𝐥

]

(49)

The matrices 𝐀𝐌𝐜𝐥
and 𝐁𝐌𝐜𝐥

are given in Eqs. (36)–(37).

6.2.2. Multi-input autopilot
By using the multi-input autopilot diagram (Fig. 6), the guidance

command is a two-dimensional vector 𝐮𝐆 =
[

𝑎𝑐𝑀𝑛
𝑎𝑐𝑀𝑡

]𝑇
. The corre-

sponding FS-TL optimization problem is obtained by substituting the
servo command from Eq. (38) into the FS-SL optimization problem (Eqs.
(42)–(43))

min
𝐮𝐆

max
𝑣

𝐽 = 𝐱𝑇 (𝑡𝑓 )𝐐𝐟𝐱(𝑡𝑓 ) + ∫

𝑡𝑓

𝑡0

(

𝐮𝐓𝐆𝐃
𝐓
𝐮𝐑𝐃𝐮𝐮𝐆+

+ 2𝐱𝐓𝐂𝐓
𝐮𝐑𝐃𝐮𝐮𝐆 + 𝐱𝐓𝐂𝐮

𝐓𝐑𝐂𝐮𝐱+
+ 𝐱𝐓𝐐𝐱 − 𝐸𝑣2

)

𝑑𝑡

(50)

s.t. �̇� = 𝐀𝐓𝐋𝐱 + 𝐁𝐓𝐋𝐮𝐆 + 𝐂𝑣 (51)

where the forms of 𝐀𝐓𝐋 and 𝐁𝐓𝐋 are identical to the ones in Eq. (49),
and the matrices 𝐀𝐌𝐜𝐥

and 𝐁𝐌𝐜𝐥
are given in Eqs. (40)–(41).

7. Target evasion strategies

The full-state guidance laws performance analysis will be examined
against two types of target evasion strategies: (1) Linear controller based
on the LQDG solution; (2) ‘‘Bang–Bang’’ controller based on the optimal
evasion solution.

7.1. Linear controller — LQDG based

The LQDG evasion strategy for the FS-SL and FS-TL guidance laws
is given in Sections 3.1 and 3.2, respectively. However, for the sake of
consistency it is presented here also

𝑣∗ = 𝐸−1𝐂𝐓𝐏𝐱 (52)

where 𝐏 is the solution of the corresponding Riccati equation in the
FS-SL case (Eq. (15)) or in the FS-TL case (Eq. (29)).

It can be seen that Eq. (52) is a linear evasion strategy. The
latter originates from the conventional LQDG formulation, where the
cost function is composed of three quadratic terms: miss distance
squared, and the control energy integrals of both the evader and the
pursuer (Turetsky & Shinar, 2003). Such a formulation generates linear
strategies (‘‘soft’’ controls) for both players. These strategies are easy
to implement, but may not be adopted by both players since the LQDG
cost represents a compromise between different objectives rather than
the guaranteed miss distance. Furthermore, the LQDG evasion strategy
is proportional to the entire state vector, including the relative displace-
ment. The latter implies that when both players are on a collision course,
the target will issue no command. Therefore, the LQDG evasion strategy
might not be suitable to represent a realistic evading strategy as shown
in Section 8.2.

7.2. ‘‘Bang–Bang’’ controller — optimal control based

The optimal evasion strategy against an LQDG guided missile is
obtained by substituting the missile’s guidance command into the
equations of motion. The FS-SL and FS-TL guidance commands are given
in Eq. (13) and Eqs. (23), (27), respectively. These commands can be
represented by the following feedback law

𝐮∗ = 𝐍∗(𝑡𝑔𝑜)𝐱 (53)

Substituting Eq. (53) into the appropriate equation of motion and taking
the absolute value of the miss-distance as the payoff, the following
optimal control problem can be formulated

max
𝑣

𝐽 = |𝑦(𝑡𝑓 )| (54)

s.t. �̇� = 𝐀𝐂𝐋(𝑡𝑔𝑜)𝐱 + 𝐂𝑣 (55)

|𝑣| ≤ 𝜌𝑣 (56)

where 𝐀𝐂𝐋 is the closed loop matrix and 𝜌𝑣 is the target acceleration
bound. Denote the adjoint vector by 𝝀𝒙, then the Hamiltonian is

𝐻 = 𝝀𝒙𝑻
(

𝐀𝐂𝐋(𝑡𝑔𝑜)𝐱 + 𝐂𝑣
)

(57)

The adjoint variable has to satisfy the following Euler–Lagrange equa-
tion

�̇�𝒙 = − 𝜕𝐻
𝜕𝐱

= −𝐀𝐓
𝐂𝐋(𝑡𝑔𝑜)𝝀𝒙 (58)

and the transversality condition

𝝀𝒙(𝑡𝑓 ) =
𝜕𝐽
𝜕𝐱

|

|

|

|𝑡𝑓
=
[

sign 𝑦(𝑡𝑓 ) 𝟎𝟏×𝟓
]𝑇 (59)

Candidate optimal strategies are obtained by direct minimization of the
Hamiltonian in Eq. (57)

𝑣∗ = 𝜌𝑣 sign(𝝀𝑻𝒙𝐂) (60)
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The optimal strategy in Eq. (60) is of ‘‘bang–bang’’ type. It is noteworthy
that the optimal evasion strategy against a proportional navigation
guided missile, while considering a bounded target command, has also
a ‘‘bang–bang’’ structure (Gutman & Goldan, 2009; Shinar & Steinberg,
1977). It is shown in Section 8.3 that such nonlinear evasion strategy
generates a non-zero miss-distance against an LQDG guided missile.

8. Simulation results

In this section, the performance of the two full-state guidance laws
(FS-SL and FS-TL) is exemplified using the dual-control missile model
(Section 5.1) in linear and nonlinear settings. Simulations were made
for two types of target acceleration commands: (1) LQDG based linear
controller (Eq. (52)); (2) Optimal ‘‘bang–bang’’ controller (Eq. (60)).

The FS-SL optimization problem formulation is specified in Sec-
tion 6.1. The FS-TL optimization problem has a different formulation
for each of the autopilot diagrams: single-input diagram and multi-input
diagram. The FS-TL single-input case is denoted by FS-TL (SI), where
its formulation is given in Section 6.2.1. The FS-TL multi-input case is
denoted by FS-TL (MI), where its formulation is given in Section 6.2.2.

First, the linear and nonlinear test scenarios are outlined in Sec-
tion 8.1. Then, the performance of the guidance laws is analyzed using
the linear test case for each of the target strategies in Sections 8.2–8.3.
Finally, nonlinear simulation results are presented in Section 8.4.

8.1. Linear and nonlinear test scenarios

The performance of the guidance laws is evaluated using linear and
nonlinear test scenarios.

The linear test case is used for demonstrating the guidance laws
performance against the two types of target acceleration commands. In
this setting, the next initial conditions are used: 𝑦0 = 200 [m], �̇�0 = 0
[m/s], 𝜃0 = 𝛿𝑛0 = 𝛿𝑡0 = 0 [deg], �̇�0 = 0 [deg/s]. It can be seen that the
scenarios are initiated close to the collision course, following the design
assumptions (see Section 2.1).

The nonlinear test case is used for investigating and comparing
the FS-SL and FS-TL guidance laws performance in a more realistic
setting. In this setting, a nonlinear two-dimensional simulation of the
missile’s lateral dynamics and relative kinematics is used, where the
target applies the optimal ‘‘bang–bang’’ evasion strategy against the
LQDG guided missile. Such an evasion strategy will be shown to be more
suitable to represent the target maneuver than the LQDG one. The initial
conditions are given as follows: 𝑟0 = 9000 [m], 𝑉𝑀0 = 𝑉𝑇 0 = 1500 [m/s],
𝛾𝑀0 = 0 [deg], 𝛾𝑇 0 = 2 [deg], 𝜆0 = 2 [deg], 𝜃0 = 𝛿𝑛0 = 𝛿𝑡0 = 0 [deg],
�̇�0 = 0 [deg/s].

Remark 3. It is noteworthy that in the nonlinear case, the final time
was obtained iteratively. At each iteration, the final time was updated
with the current range and range rate and the Riccati equations were
recalculated for the updated final time.

8.2. LQDG based target maneuver

In this case, both adversaries use an LQDG guidance law, and the
penalties on the attitude angle and nose control effort are fixed: 𝑏 = 0.3,
and 𝑑 = 1. The FS-SL cost function is

𝐽 = 𝑐2𝑦2(𝑡𝑓 ) + ∫

𝑡𝑓

𝑡0
{𝑑2𝛿𝑐𝑛

2 + 𝛿𝑐𝑡
2 + 𝑏2𝜃2 − 𝑒2𝑣2}𝑑𝜏 (61)

In Ho et al. (1965) and Ben-Asher and Yaesh (1998) it was shown
that the existence of a solution to the corresponding Riccati equation
(the nonexistence of a conjugate point) is a sufficient condition for the
existence of a saddle point solution. The Riccati Eqs. of the FS-SL and
FS-TL guidance laws are given in Eq. (15) and Eq. (29), respectively.
Fig. 7 presents the boundary curves of both full-state guidance laws as a
function of the penalties 𝑐 and 𝑒. A conjugate point does not exist to the

Fig. 7. Conjugate point conditions (LQDG target maneuver, linear simulation).

Fig. 8. Relative displacement and servo commands (LQDG target maneuver,
linear simulation).

right of each boundary curve. It can be seen that the curves of the FS-SL
and of the FS-TL (MI) overlap. The curve of the FS-TL (SI) appears to
the right of the FS-SL curve, thus implying that for a given miss distance
penalty (c), a less maneuverable target is allowed (larger e). The gray
area indicates the additional area of allowed penalties offered by using
FS-SL, or equivalently using FS-TL (MI).

Figs. 8–9 present the results of the FS-SL and FS-TL guidance laws
for the following penalties: 𝑒 = 0.1, 𝑐 = 0.5 (see the purple circle in
Fig. 7). It can be seen that the results of the FS-SL case and FS-TL
(MI) overlap, as expected. The attitude angle is kept within its physical
domain (Fig. 9) due to the addition of an appropriate running cost
term to the cost function. Furthermore, it is apparent that the miss
distance is approximately zero 𝑦(𝑡𝑓 ) ∼ 0 and the target hardly maneuvers
throughout the entire scenario. It is obvious that a rational target will
try to maximize the miss distance rather than stay on a collision course
till interception and therefore will not adopt the LQDG strategy. To
emphasize this point, the optimal evasion strategy against an LQDG
maneuvering missile is derived in the next section.

8.3. Optimal ‘‘Bang–Bang’’ evasion strategy

In this section, the optimal evasion strategy against an LQDG guided
missile while assuming a known target acceleration bound is presented.
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Fig. 9. Attitude angle and target acceleration command (LQDG target maneu-
ver, linear simulation).

Fig. 10. Relative displacement and servo commands (‘‘Bang–Bang’’ target
maneuver, linear simulation).

It is shown that such a strategy renders non zero miss distance as
opposed to the LQDG one. The results are computed for the penalties
chosen in the previous section: 𝑏 = 0.3, 𝑑 = 1, 𝑒 = 0.1, and 𝑐 = 0.5

Figs. 10–11 present the results of the full-state guidance laws for
a fixed target acceleration bound: 𝜌𝑣 = 20 [m∕s2]. It can be seen that
the results of the FS-SL and FS-TL(MI) are identical, thus implying
their equivalence. In this case, the attitude angle and servo commands
were kept at reasonable values due to appropriate penalization in the
cost function, where |𝜃(𝑡𝑔𝑜)| < 31[deg] and |𝛿𝑐𝑛(𝑡𝑔𝑜)|, |𝛿

𝑐
𝑡 (𝑡𝑔𝑜)| ≤ 10[deg]

∀𝑡𝑔𝑜 ∈ [0, 𝑡𝑓 ]. However by using the FS-TL (SI) architecture, the attitude
angle exceeded beyond its physical domain where its maximal value
is 41 [deg]. In the FS-SL case (or FS-TL (MI) case), the obtained miss
distance is acceptable (𝑦(𝑡𝑓 ) = 0.16 [m]), whereas in the FS-TL (SI) case,
the obtained miss distance is much higher 𝑦(𝑡𝑓 ) = 0.45 [m].

8.4. Nonlinear test case

In this section, the two full-state guidance laws performance is
analyzed using a two-dimensional nonlinear simulation of the missile’s
lateral dynamics and of the relative kinematics. The missile dynam-
ics and relative kinematics equations are presented in Appendix. In
addition, the missile’s servo commands are bounded by 𝛿𝑚𝑎𝑥 = 20 [deg]

Fig. 11. Attitude angle and target acceleration command (‘‘Bang–Bang’’ target
maneuver, linear simulation).

as follows
|

|

|

𝛿𝑐𝜒
|

|

|

= 𝛿𝑚𝑎𝑥, 𝜒 = {𝑛, 𝑡} (62)

In this case, the target is assumed to apply the optimal evasion
strategy against an LQDG guided missile, where its acceleration bound
is assumed to be known and equal to 20 [m∕s2]. The target’s speed is
assumed to be constant throughout the entire scenario. It is noteworthy,
that the optimal evasion strategy is calculated separately for each of the
three full-state guidance laws, i.e FS-SL, FS-TL(MI), and FS-TL(SI).

The results are obtained for the following penalties: 𝑏 = 0.5, 𝑑 = 1,
𝑐 = 0.5, and 𝑒 = 0.1. The existence of a saddle point solution (the
nonexistence of a conjugate point) was verified by checking that the
solution of the corresponding Riccati equation exist (see Section 8.2).

Figs. 12–15 present the results of the three different guidance laws:
FS-SL, FS-TL(MI), FS-TL(SI). The results of the FS-SL case and FS-TL
(MI) overlap, as expected. Therefore, from this point onwards, only the
FS-TL(MI) and the FS-TL(SI) guidance laws are discussed.

Fig. 12 presents the trajectories of the missile and target (note the
different scaling in the 𝑋 and 𝑍 axis). The missile trajectories are in
blue, where the target trajectories are in red. It can be seen that the
FS-TL(MI) guided missile reached the target before the FS-TL(SI) guided
missile. The miss distance obtained by using FS-TL(MI) is 0.1 [m], where
the miss distance obtained in the FS-TL(SI) guidance law is 0.92 [m].
These results imply the superiority of the FS-TL (MI) architecture over
the FS-TL (SI) one.

Fig. 13 presents the servo deflections and attitude angle. The FS-
TL(MI) servo deflections did not reach saturation throughout the entire
scenario. The FS-TL(SI) tail servo deflection reached saturation close to
interception at 𝑡𝑔𝑜 = 0.16 [s]. The latter had a dramatic influence on the
miss distance as it is 9 times bigger than the FS-TL(MI) miss distance.
In addition, it can be seen that the attitude angle obtained by using FS-
TL(SI) law is much higher than the one obtained by using FS-TL (MI).

The path angles and missile’s speed are presented in Fig. 14. It
can be seen that by using an FS-TL(MI) guidance law, the missile’s
speed is higher than by using an FS-TL(SI) law. The target’s speed and
optimal evasion maneuver are constant (see Fig. 15), hence its path
angle variation is linear and identical for all three guidance laws.

9. Conclusions

In this paper, the conditions for obtaining an equivalence relation be-
tween the full-state single-loop and the full-state two-loop guidance and
control architectures were derived under a linear quadratic differential
game formulation. It was proven that the two full-state guidance laws
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Fig. 12. Missile and target trajectories (nonlinear simulation, missile traj.- blue,
target traj.- red). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 13. Servo deflections and attitude angle (nonlinear simulation).

Fig. 14. Missile speed and path angles (nonlinear simulation).

Fig. 15. Target acceleration command (nonlinear simulation).

are identical if and only if the number of guidance commands matches
to the number of available controllers.

The guidance laws performance was illustrated by using a dual-
control missile in an exo-atmospheric scenario in linear and nonlinear
settings. Two types of autopilot block diagrams were used in the full-
state two-loop case: single-input diagram and a multi-input diagram.
In the multi-input diagram, there are two guidance commands that
match the number of available controllers, whereas in the single-input
diagram, the guidance law issues a single acceleration command. It
was shown that by using a multi-input autopilot, the full-state two-loop
guidance law was able to achieve the same results as the full-state single-
loop guidance law. The advantage of using a multi-input diagram over
a single-input one was most noticeable in the nonlinear test case. In this
case, the tail servo deflection of the single-input case reached saturation
close to interception thus resulting a miss distance increase. In addition,
it was shown that the attitude angle may be kept at reasonable values
by proper penalization, while still obtaining the required miss distance.

It was shown that it is impractical to use a linear quadratic dif-
ferential game based evasion strategy represent the target maneuver.
Using such a strategy, the target appears to stay on a collision course till
interception rather than maximize the miss-distance. As a consequence,
the guidance laws performance was investigated for the optimal ‘‘bang–
bang’’ evasion maneuver against a linear quadratic differential game
maneuvering missile. It was shown that by using such a strategy, non
zero miss distance is rendered, and hence it may represent a rational
target maneuver.
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Appendix. Nonlinear simulation models

This appendix presents the nonlinear models of the relative kine-
matics and missile lateral dynamics. These models were used in the
nonlinear test case, presented in Section 8.4.

First, the relative kinematics equations are presented, followed by
the missile dynamics model

A.1. Nonlinear relative kinematics

A schematic view of the planar end-game geometry is presented in
Fig. 1. Let 𝑉𝑟 and 𝑉𝜆 denote the speeds along and perpendicular to the
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LOS. Then, the kinematics equations3 expressed in a polar coordinate
system (𝑟, 𝜆) attached to the missile, are

�̇� = 𝑉𝑟 (A.1)
�̇� = 𝑉𝜆∕𝑟 (A.2)

where

𝑉𝑟 = −
[

𝑉𝑀 cos
(

𝛾𝑀 − 𝜆
)

+ 𝑉𝑇 cos
(

𝛾𝑇 + 𝜆
)]

(A.3)
𝑉𝜆 = −𝑉𝑀 sin

(

𝛾𝑀 − 𝜆
)

+ 𝑉𝑇 sin
(

𝛾𝑇 + 𝜆
)

(A.4)

The time to go is approximated by the following expression

𝑡𝑔𝑜 = −𝑟∕𝑉𝑟 (A.5)

During the end-game, the target dynamics is assumed to be ideal
to consider a realistic scenario where there is no information on its
dynamics. In this manner, by assuming that the target speed is constant
during the endgame, the target lateral maneuver is given by

�̇�𝑇 =
𝑎𝑇
𝑣𝑇

(A.6)

where 𝑎𝑇 is given by a linear controller based on the LQDG solution or
a ‘‘bang–bang’’ controller based on the optimal evasion solution.

A.2. Nonlinear missile lateral dynamics

The basic configuration of a dual-control exo-atmospheric missile is
presented in Fig. 4. The planar missile dynamics can be expressed as

�̇�𝑀 = 𝑇
𝑚

cos(𝜃 + 𝛿𝑡 − 𝛾𝑀 ) −
𝑇𝑛
𝑚

sin(𝜃 − 𝛾𝑀 ) (A.7)

�̇�𝑀 =
[

𝑇
𝑚

sin(𝜃 + 𝛿𝑡 − 𝛾𝑀 ) +
𝑇𝑛
𝑚

cos(𝜃 − 𝛾𝑀 )
]/

𝑉𝑀 (A.8)

�̈� = 𝑀𝛿𝑛𝛿𝑛 −𝑀𝛿𝑡 sin(𝛿𝑡) (A.9)

where 𝑇𝑛
𝑚 ≜ 𝑇

𝑚 𝛿𝑛 and first order servo model is assumed for both the
nose and tail controllers

�̇�𝜒 =
(

𝛿𝑐𝜒 − 𝛿𝜒
)

∕𝜏𝜒 , 𝜒 = {𝑛, 𝑡} (A.10)
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