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The endgame of a linearized endoatmospheric interception scenario between an evading target and a pursuing

missile is considered, in which the adversaries are aerodynamically steered and their controls are bounded and have

arbitrary-order dynamics. The common near head-on or tail-chase assumption is relaxed and a new condition by

which the dimension of the kinematics may be reduced is obtained. Assuming perfect information, the necessary and

sufficient condition for the existence of a “hit-to-kill” capture zone is presented. The existence of such a capture zone is

a necessary condition for guaranteeing point capture against any target maneuver. The condition is expressed as a

function of the adversaries’ arbitrary control dynamics, and explicit conditions are derived for several previously

studied cases, complimenting known results.

I. Introduction

AMISSILE designed for the interception of a maneuvering target
is commonly fitted with a warhead. This guarantees (with some

probability) the destruction of the designated target for a range of
miss distances, giving the missile a nonzero kill radius. However, in
high-speed interception engagements, such as defense against
ballistic missiles, the effectiveness of the warhead is reduced
considerably, raising the need for “hit-to-kill.” It is therefore desired
in such scenarios to be able to ensure the interceptor’s capability to
impact with the target. In an age of intelligent evasive targets this
capability to exactly capture the target (capturability) is difficult to
guarantee and is dependent first and foremost on the maneuver
capabilities and dynamic response of the pursuing missile.
The first work to specifically address the conditions for

capturability of an evading target was presented by Cockayne [1]. It
considered the so-called game of two cars [2]: a 1-on-1 planar
engagement with nonlinear motion in which both adversaries have
constant speeds, bounded lateral accelerations (path curvature
constraints), and ideal control dynamics, and each adversary’s
current and future maneuvers are unknown to its opponent (only their
position and attitude are known). It was proved that the pursuer can
capture the evader (achieve position coincidence) from any initial
state if and only if it has a speed advantage and is at least as
maneuverable as the evader. This theory was later extended in [3] to
address motion in three-dimensional space. It was shown that a
sufficient condition for capturability is the pursuer’s superiority both
in speed and inmaneuverability. In [4] an inverse study toCockayne’s
was presented. It was proved that in the game of two cars the evader
can avoid capture for any initial conditions if and only if one of the
following holds: 1) it has a speed advantage and its maximal
maneuver capability is greater than or equal to that of the pursuer
times the pursuer-to-evader speed ratio; 2) its speed is equal to the
pursuer’s and it has a maneuverability advantage. Based on these
results and those presented by Cockayne it was also deduced that if
the pursuer has a speed advantage but its maximal maneuver
capability is lesser than that of the evader times the evader-to-pursuer
speed ratio, then there exist initial conditions from which it can
guarantee the evader’s capture. Preceding these publications was

Isaacs’ study of pursuit-evasion games [2]. The optimality of the
evading target’s strategy in such games suggests that, in the same
framework, any capturability analysis results must agree with
conditions for the existence of capture regions obtained in the game
solution. Accordingly, Cockayne claimed in [1] that his capture
conditions should coincide with Isaacs’ results in the game of two
cars with zero capture radius. In a recent publication [5] Gutman and
Rubinsky introduced the differential-game-based “vector guidance”
for an accelerating missile in an exo-atmospheric interception
engagement. Under the assumption of ideal adversaries and a greater
acceleration bound of the pursuer, they derived a first-pass
capturability condition as a function of the initial relative geometry.
Any initial conditions fromwhich first-pass capture is impossible are
such that second-pass capture is necessarily possible, as a result of the
pursuer’s maximum acceleration advantage.
In scenarios where during the endgame the adversaries’ motion

is near their respective collision courses, the kinematics of the
engagement can be linearized relative to some fixed frame [6]. The
capturability in such cases is comparable to capture zone existence
conditions derived from the solution of linear games of pursuit.
Existing solutions to linear pursuit-evasion games of a single pursuer
versus a single evaderwith bounded controls also include variations on
the order of the players’ control dynamics. In [7] the solution to a
simplified linear pursuit-evasiongame inwhichbothplayers have ideal
control dynamics was given. A general solution for an arbitrary set of
linear system dynamics was later presented in [8], which also included
an analysis of the specific case of a pursuer with first-order control
dynamics intercepting an ideal evader. This was followed by [9], in
which a game with both players having first-order strictly proper
control dynamics was analyzed. Later on it was shown that in the same
framework point capture is possible if and only if 1) the pursuer does
not have a maneuverability or an agility disadvantage or 2) the pursuer
is only more agile [10,11]. In [12] an analysis of a class of linear time-
varying feedback pursuit strategies in the same framework was
presented, focusing on scenarios in which point capture is guaranteed.
A further extension of the differential-game–based solutions was
presented in [13], which considered a conflict between a pursuer with
biproper control dynamics and an ideal target. Later on, in [14], an
analysis yielding someof thenecessary conditions for capturability in a
two-player game in which both adversaries have biproper control
dynamics were presented. Further interesting results were obtained in
[15,16] for the case of a dual-controlled missile with biproper
dynamics intercepting an evader with first-order control dynamics and
for the case of a missile with second-order control dynamics versus an
evader with first-order control dynamics, respectively. While these
previous studies assumed perfect information, [17] dealt with the
required estimation capabilities of a more maneuverable pursuer in
order to ensure capture.
These previous studies have yielded important conclusions

with regard to the necessary requirements from interceptors in
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engagements where point capture is desired. Additionally, the linear
analyses also considered the influence of the adversaries’ internal
dynamics on their performance, which was previously unaccounted
for. However, their validity is restricted only to scenarios in which the
relative geometry is near head-on or tail-chase. Furthermore, the
currently existing complete capturability conditions encompass a
fairly limited set of specific simple low-order dynamics cases. From a
practical point of view these issues are of considerable importance,
because in reality the relative geometry in interception scenarios may
be far from head-on or tail-chase and the dynamics of aerial vehicles
may be of arbitrary order.Moreover, aswas illustrated byRusnak and
Meir [18], guidance laws that use low-order approximations of high-
order dynamics yield inferior performance relative to guidance laws
that take into account the complete high-order autopilot. Similarly,
any inaccuracies in the dynamic model may lead to wrong
conclusions with regard to capturability. Following the presented
works, it is of interest to examine the necessary conditions for capture
in a wider class of interception scenarios, in which the nominal
collision triangle’s geometry may be far from head-on or tail-chase,
and that include amore generalized representation of the adversaries’
autopilots. In addition, the capability to represent these conditions in
terms of the adversaries’ dynamics parameters is of significant
practical importance.
This paper presents an analytical study of the necessary conditions

for the feasibility of exact capture in a linearized interception
engagement in which the adversaries’ control dynamics may be of
arbitrary order and the relative geometry during the endgame may be
far from head-on or tail-chase. First, a generalization of the
conditions under which the dimensions of the linearized kinematics
may be reduced is performed. Then a general necessary condition,
based on the solution of a perfect information linear differential game
of pursuit, is presented. Later on it is expressed in terms of the
adversaries’ control dynamics parameters, generalizing the currently
existing conditions for only some specific cases of the adversaries’
dynamics. Several examples of previously studied cases are then
given, for which the capture conditions are expressed explicitly and
compared with the known results. Identical results are obtained for
the cases of the adversaries both having either ideal or first-order
strictly proper control dynamics. In the cases of the adversaries
having either first-order biproper or second-order strictly proper
control dynamics and dual-controlled adversaries with first-order
biproper control dynamics, the currently existing conditions are
extended and presented in full. Finally, some numerical results are
shown for the case of dual-controlled adversaries with first-order
biproper control dynamics, validating the obtained existence
conditions.
The remainder of the paper is arranged as follows: In Sec. II a

mathematicalmodel of the interception engagement is presented. The
problem is then formulated as a differential game, the solution of
which is outlined in Secs. III and IVincludes the derivation of general
test by which to determine the existence of a capture zone, as well as
the analysis which enables this test to be expressed in terms of the
adversaries’dynamic parameters. Several examples are given in
Sec. V, followed by numerical simulations in Sec. VI and concluding
remarks in Sec. VII.

II. Engagement Formulation

Consider the endgame geometry of a planar endoatmospheric
interception engagement between two aerodynamically steered
adversaries in some fixed Cartesian inertial frame X–Y, as shown in
Fig. 1.V and a denote the speed and lateral acceleration, respectively,
and γ and λ (positive in the counterclockwise direction), respectively,
denote the path and line-of-sight (LOS) angles from X. Subscript P
denotes the pursuer andE the evader. Subscript/superscript o denotes
the value at the initial time to. γ

col
j denotes the initial collision path

angle of j, where

γcolE � γoE (1)

and, by definition of the initial collision triangle, γcolP is defined as the
angle maintaining

VP sin�γcolP − λo� � VE sin�γcolE − λo� (2)

The nonlinear kinematics are given by

_x � VE cos�γE − λo� − VP cos�γP − λo�
_y � VE sin�γE − λo� − VP sin�γP − λo� (3)

where x and y are the displacements of P, respectively, along and
normal to its initial LOS, relative to E. The evolution of the path
angles is according to

_γj �
aj
Vj

; j ∈ fP; Eg (4)

Assuming, for simplicity, that the X axis is fixed along the initial
LOS (λo � 0), Eq. (3) becomes

_x � VE cos�γE� − VP cos�γP�
_y � VE sin�γE� − VP sin�γP� (5)

and Eq. (2) becomes

VP sin�γcolP � � VE sin�γcolE � (6)

We also assume the following:
1) The adversaries’ speeds are constant during the endgame phase

and their control inputs are bounded.
2) The adversaries can be represented by point masses with linear

control dynamics.
3) The adversaries’ trajectories can be linearized around their

respective collision paths (Δγj ≜ γj − γcolj ≪ 1, j ∈ fP;Eg).
4) A perfect information structure exists (both adversaries have

complete knowledge of the states at all times).
Remark II.1: The third assumption is in fact practical in high-speed

interceptionengagementswhere themaneuverboundsof the adversaries
are small compared with their respective speeds; that is, their minimum
turn radii are much larger than the distance between them.

A. Kinematics Model

Under the aforementioned assumptions

sin�γj� � sin�γcolj � Δγj� ≈ sin�γcolj � � cos�γcolj � ⋅ Δγj
cos�γj� � cos�γcolj � Δγj� ≈ cos�γcolj � − sin�γcolj � ⋅ Δγj (7)

and the following linearized kinematics of the relative intercept
geometry are obtained:

_x�VE

h
cos�γcolE �− sin�γcolE � ⋅ΔγE

i
−VP

h
cos�γcolP �− sin�γcolP � ⋅ΔγP

i
_y�VE

h
sin�γcolE ��cos�γcolE � ⋅ΔγE

i
−VP

h
sin�γcolP ��cos�γcolP � ⋅ΔγP

i
(8)

where the dynamics of Δγj, j ∈ fP;Eg are given in Eq. (4).
Substituting Eq. (6) and the closing speed between P and E on the
collision triangle alongX,Vcol

c � VP cos�γcolP � − VE cos�γcolE �, yields

X

Y

Pγ

Eγ

λ y
E

EV

P

PV

x

Pa
Ea

PIP

0
Eγγ col

P

Fig. 1 Two-on-one engagement scheme.
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_x � −Vcol
c � VP sin�γcolP � ⋅ ΔγP − VE sin�γcolE � ⋅ ΔγE

_y � VE cos�γcolE � ⋅ ΔγE − VP cos�γcolP � ⋅ ΔγP (9)

In many previous works _x was eliminated from the kinematics by

assuming that the interception scenario is close to either head-on or

tail-chase [6,7,9,19].By examiningEq. (9) it is evident that in order to

eliminate _x we must actually assume that either

jΔγjj ≪ j cot�γcolj �j; j ∈ fP;Eg (10)

in which case j sin�γcolj � ⋅ Δγjj ≪ j cos�γcolj �j, j ∈ fP; Eg, or

ΔγP ≈ ΔγE (11)

in which case, following Eq. (6), VP sin�γcolP � ⋅ ΔγP−
VE sin�γcolE � ⋅ ΔγE ≈ 0.
Whereas Eq. (11) might in many scenarios be an inappropriate

assumption, because in essence it dictates the behavior of one

adversary based on its opponents maneuvers, Eq. (10) poses a more

lenient restriction on the relative engagement geometry, relative to the

previously common near head-on or tail-chase assumption. This

condition allows us to consider a wider range of linear interception
scenarios in which the collision triangle is far from head-on or tail-

chase. Note that for the specific cases of near head-on (γcolP ≈ 0°,
γcolE ≈ 180°), near tail-chase (γcolP ≈ γcolE ≈ 0°), or near head pursuit

(γcolP ≈ γcolE ≈ 180°) Eq. (10) naturally holds (since jΔγjj ≪ 1
and j cot�γj�j → ∞ ∀j ∈ fP; Eg).
Assuming that Eq. (10) holds, Eq. (9) becomes

_x � −Vcol
c

_y � VE cos�γcolE � ⋅ ΔγE − VP cos�γcolP � ⋅ ΔγP (12)

The boundary conditions include the given initial values to,
x�to� � xo, y�to� � 0, ΔγP�to� � γoP − γcolP , and ΔγE�to� � 0, as
well as the terminal condition x�tf� � 0, where tf, the interception
time, is defined as the momentE passesP (x � 0). By differentiating
_y and substituting Eq. (4) we obtain the following well-known linear
kinematics:

_y � v

_v � aE cos�γcolE � − aP cos�γcolP � (13)

Integration of the equation for _x from to to tf yields the familiar

approximated interception time:

tf � to �
xo
Vcol
c

(14)

We define the time-to-go as

tgo � tf − t (15)

B. Control Dynamics Models

Assuming linear arbitrary-order control dynamics of the

adversaries

_ζj � Aj
ζζj � Bj

ζuj
aj � cjζζj � dj

ζuj
; j ∈ fP;Eg (16)

whereAj
ζ ∈ Rnjζ×n

j
ζ , Bj

ζ ∈ Rnjζ×n
j
c , cjζ ∈ R1×njζ , and dj

ζ ∈ R1×njc . ζj is
j’s vector of njζ internal dynamic states and uj is j’s vector of n

j
c

dimensionless control inputs, each of which is bounded by

��uji �� ≤ �uji ; i ∈ Nj
c

By defining

umax
j �

Xnjc
i�1

�uji (17)

we may rewrite

��uji �� ≤ γji ⋅ umax
j

0 ≤ γji ≤ 1
; i ∈ Nj

c (18)

where, by definition,

γji �
�uji

umax
j

(19)

and each Γj � � γj1 γj2 : : : γj
njc
�T satisfies

kΓjk1 �
Xnjc
i�1

γji � 1; j ∈ fP; Eg

In essence, each element in Γj represents the relative level of

effectiveness of its corresponding control input.

C. Linear Engagement Model

Defining the following state vector

ξ�t� �
h
y�t� v�t� ζP�t�T ζE�t�T

i
T
; j ∈ fP;Eg (20)

results in the following linear time-invariant system:

_ξ � Aξ� BPuP � BEuE; ξ�to� � ξo; uj ∈ Uj; j ∈ fP;Eg
(21)

where Uj � fvjv ∈ Rnjc ; jvij ≤ γji ⋅ umax
j ∀i ∈ Nj

cg is j’s set of

admissible controls and

A �

2
6666664

0 1 01×nPζ 01×nEζ

0 0 −cPζ cos�γcolP � cEζ cos�γcolE �
0nPζ ×1 0nPζ ×1 AP

ζ 0nPζ ×nEζ

0nEζ ×1 0nEζ ×1 0nEζ ×nPζ AE
ζ

3
7777775
;

BP �

2
6666664

0

−dP cos�γcolP �
BP

ζ

0nEζ ×1

3
7777775
; BE �

2
666664

0

dE cos�γcolE �
0nPζ ×1

BE
ζ

3
777775 (22)

0p×q denoting a zero matrix of dimensions p × q and njζ the number

of elements in ζj.

D. Order Reduction

Using the terminal projection transformation [20] we reduce the

order of the linear system in Eq. (21) to a single scalar known as the

zero effort miss (ZEM):

z�t� � DΦ�tf; t�ξ�t� (23)

where

D �
h
1 0 0 0 01×nPz 01×nEz

i
(24)

andΦ is the transition matrix associated with Eq. (21). The resulting

reduced order dynamic equations are
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_z�t� � D� _Φ�tf; t�ξ�Φ�tf; t�_ξ� � DΦ�tf; t��BPuP � BEuE�;
z�to� � DΦ�tf; t�ξo � zo (25)

Defining

fP�tf; t� ≜ DΦ�tf; t�BP

fE�tf; t� ≜ DΦ�tf; t�BE (26)

yields

_z � fP�tf; t�uP � fE�tf; t�uE; z�to� � zo (27)

III. Differential Game Solution

Assuming that the evader’s control input is unknown to the pursuer
throughout the engagement, an optimal guidance algorithm can be
obtained from the solution of a linear pursuit-evasion game. The cost
function of the game is chosen to be

J � jy�tf�j (28)

The game cost in terms of the ZEM variables is, by definition,

J � jz�tf�j (29)
The Hamiltonian in this two-sided optimization problem is

H � λz _z � λz
h
fP�tf; t�uP � fE�tf; t�uE

i
(30)

The optimal strategies must satisfy

u�P � argmin
uP∈UP

H � −signfλzfP�tf; t�g ⋅ ΓP ⋅ umax
P

u�E � argmax
uE∈UE

H � signfλzfE�tf; t�g ⋅ ΓE ⋅ umax
E (31)

The adjoint equations and transversality conditions are

dλz
dt

� −
∂H
∂z

� 0; λ�tf� �
∂J
∂z

����
t�tf

� signfz�tf�g; z�tf� ≠ 0

(32)

Hence, as long as λ is continuous

λ � signfz�tf�g (33)

and

u�P � −signfz�tf�g ⋅ signffP�tf; t�g ⋅ ΓP ⋅ umax
P

u�E � signfz�tf�g ⋅ signffE�tf; t�g ⋅ ΓE ⋅ umax
E (34)

Substituting these open-loop optimal controls in Eq. (27) and
integrating from t to tf yields the candidate optimal trajectories

z��t�� z�tf�− signfz�tf�g ⋅
Z

tf

t
�FE�tf;θ� ⋅umax

E −FP�tf;θ� ⋅umax
P �dθ
(35)

where

Fj�tf; t� �
Xnjc
i�1

γji ⋅
��fji �tf; t���; j ∈ fP;Eg (36)

IV. Capture Zone Existence Conditions

We continue our analysis with the objective of expressing the
conditions for the existence of a capture zone explicitly, in terms of the
dynamic constants of the adversaries. The importance of such

conditions is clearer from a “negative” point of view; that is, if in a

given scenario the dynamic characteristics of the pursuer, relative to

those of the evader, do not maintain the necessary and sufficient

conditions, then, in the present framework, it is clear that the pursuer

cannot guarantee the evader’s capture, regardless of the initial

conditions. If, however, these conditions do hold, then, obviously, both

the structure of the capture region and the optimal pursuer’s strategy,

guaranteeing the capture from this region, are of interest. In such a case

both can be provided by the solution of a linear pursuit-evasion game;

the optimal controls are as derived in [8] and the construction of the

capture zone, if such exists, can be found in [21]. Unlike [5] or [17],

further considerations, such as defining the specific initial conditions

that compose the capture zone or the negative effect of estimation on

capturability, are beyond the scope of this paper.
Definition IV.1 (capture zone): The nonempty set of all initial

conditions from which the pursuer is capable of guaranteeing point

capture is called the capture zone.

f�to; zo�juP � u�P; uE ∈ UE:z�tf�0g

Lemma IV.1: The necessary and sufficient condition for the

existence of a capture zone in a linear 1-on-1 engagement is

∃to < tf: u
max
P FP�tf; t� − umax

E FE�tf; t� ≥ 0 ∀ t ∈ �to; tf� (37)

Proof: Follows the same logic as the proof of Theorem 4.1

in [14]. □

Remark IV.1: This is in fact a generalization for a multi-input case

of known conditions for the existence of a capture zone in differential

games of pursuit with bounded controls [14,21]. Actually, the left-

hand side of Eq. (37) is equal to the negative of the so-called

determining function defined in [21].
Because Eq. (37) is necessary and sufficient for some to > 0, then

as long as its value does not reach or exceed the terminal instant, to
may be arbitrarily large. A valid test to examine whether Eq. (37)

holds is therefore

lim
t→t−

f

h
umax
P FP�tf; t� − umax

E FE�tf; t�
i
≥ 0 (38)

From Eq. (16) the control dynamics can be represented by the

following vector of transfer functions from the control inputs vector

to the lateral acceleration:

Hj�s� �
h
Hj

1�s� Hj
2�s� : : : Hj

njc
�s�

i
T

≜ cjζ�sI −Aj
ζ�−1Bj

ζ � dj
ζ; j ∈ fP; Eg (39)

We assume that each element in the transfer functions vector is of

the form

Hj
i �s� �

Qlji
k�1 �1� sωj

i;k�q
j
i;kQmj

i

k�1 �1� sτji;k�p
j
i;k

; j ∈ fP; Eg; i ∈ Nj
c (40)

where lj
i is the number of distinct zeros and mj

i is the number of

distinct poles in the ith control input transfer function of j. qji;k ≥ 1

and pj
i;k ≥ 1 are the multiplicity of a zero−1∕ωj

i;k and a pole−1∕τ
j
i;k,

respectively.

From this point forward we will assume that ∀j ∈ fP;Eg, i ∈ Nj
c:

1) The poles and zeros of Hj
i �s� (f−1∕τji;kg1≤k≤mj

i
and

f−1∕ωj
i;kg1≤k≤lji , respectively) may be real or appear in complex

conjugate pairs.

2) Hj
i �s� is proper (the order of the denominator polynomial is

greater than or equal to the order of the numerator polynomial)
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Xlj
i

k�1

qji;k ≤
Xmj

i

k�1

pj
i;k

3) The poles ofHj
i �s� (f−1∕τji;kg1≤k≤mj

i
) lie on the open left half of

the complex plane, yielding

Rfτji;1g; : : : ;Rfτj
i;mj

i

g > 0

Remark IV.2: From the complex conjugate root theorem, the first

assumption is equivalent to the supposition that the numerator and

denominator polynomials contain only real coefficients.
Under these assumptions, using partial fraction decomposition, the

control dynamics can always be written as

Hj
i �s� � dji �

Xmj
i

k�1

Xpj
i;k

l�1

λji;k;l
�1� sτji;k�l

; j ∈ fP;Eg; i ∈ Nj
c (41)

where dji represents the normalized direct lift on j produced by the ith

control. For each j and i the constants dji , fλji;k;lg1≤l≤pj
i;k
;1≤k≤mj

i

are the

solution of a �Pmj
i

k�1 p
j
i;k � 1� × �Pmj

i

k�1 p
j
i;k � 1� system of linear

equations, and are functions of the control dynamics constants

τji;1; : : : ; τ
j

i;mj
i

andωj
i;1; : : : ;ω

j

i;lj
i

. Rewriting Eq. (41) with a common

denominator and comparing it with Eq. (40) by equating coefficients,

we deduce the following:

1) dji ∈ R (easily observed, based on Remark IV.2).

2) dji ≠ 0 iff Hj
i �s� is biproper (lj

i � mj
i ).

3) dji � 0 iff Hj
i �s� is strictly proper (lj

i < mj
i ).

4) dji � 1 iff Hj
i �s� ≡ 1 (the dynamics of js ith control are ideal).

Recalling Eqs. (16), (20), and (21) we find, through use of the

Laplace Transform, that ∀j ∈ fP; Eg

DjΦj�tf; t�Bj ≡DjΦj�tf − t�Bj

� L−1

(
cjζ�sI −Aj

ζ�−1Bj
ζ cos�γcolj � � dj

ζ cos�γcolj �
s2

)

≡L−1
�
Hj�s�
s2

�
⋅ cos�γcolj � (42)

and

L−1fHj
i �s�g � djiδ�θ� �

Xmj
i

k�1

Xpj
i;k

l�1

λji;k;l ⋅
θl−1

�τji;k�p�l − 1�! e
−θ∕τj

i;k ;

j ∈ fP;Eg; i ∈ Nj
c (43)

where δ�θ� is a unit impulse at θ � 0. L−1fHj
i �s�∕s2g is obtained

from L−1fHj
i �s�g after replacing the exponent with its Maclaurin

series and double integration:

L−1
�
Hj

i �s�
s2

�
� djiθ�

Xmj
i

k�1

Xpj
i;k

l�1

λji;k;l ⋅
τji;k

�l − 1�! ⋅ ψ
�
θ; τji;k;l

�
;

j ∈ fP;Eg (44)

where

ψ�θ; τ;l� �
X∞
k�0

�−1�k ⋅ �θ∕τ�l�k�1

k!�l� k��l� k� 1� (45)

Since fji �θ� ≡L−1fHj
i �s�∕s2g ⋅ cos�γcolj � is in a fact a function of

the time-to-go, we obtain

Fj�tgo� �
Xnjc
i�1

γji ⋅ jfji �tgo�j; j ∈ fP;Eg (46)

and Eq. (38) becomes

lim
tgo→0�

�umax
P FP�tgo� − umax

E FE�tgo�� ≥ 0 (47)

Remark IV.3: It is important to note that ∀i ∈ Nj
c even though

fji �θ� may contain complex parameters, since Aj
ζ, B

j
ζ, c

j
ζ and d

j
ζ are

real, fji �tgo�, Fj�tgo� ∈ R ∀tgo.
We observe that, since fji �tgo� is obviously smooth and by

definition fji �0� ≡ 0, the first term in the existingMaclaurin series for
each fji �tgo� may be omitted, yielding

Fj�tgo� �
Xnjc
i�1

γji ⋅
����X∞
α�1

�
dαfji �θ�
dθα

�
θ�0

⋅
tαgo
α!

����; j ∈ fP; Eg (48)

and that ∀j ∈ fP;Eg, i ∈ Nj
c

dfji �θ�
dθ

����
θ�0

� dji ⋅ cos�γcolj � (49a)

dαfji �θ�
dθα

����
θ�0

�
Xmj

i

k�1

Xpj
i;k

l�1

�−1�α−l−1 ⋅ 1�α;l� ⋅ λji;k;l
�τji;k�α−1

⋅ cos�γcolj �;

α ≥ 2 (49b)

where 1�α;l� is the indicator function defined by

1�α;l� �
�
1; α ≥ l� 1

0; α < l� 1
(50)

We define the following additional parameters ∀j ∈ fP; Eg

δj �
Xnjc
i�1

γji ⋅ jdji j (51a)

σjα �
Xnjc
i�1

γji ⋅
���� dα�1fji �θ�

dθα�1

����
θ�0

; α ≥ 1 (51b)

ρjα;β �
Xnjc
i�1

γji ⋅ sign
��

dβ�1fji �θ�
dθβ�1

�
θ�0

�
⋅
�
dα�1fji �θ�
dθα�1

�
θ�0

;

α ≥ 1; β ≥ 0 (51c)

and nondimensional parameters

μ � umax
P ⋅ j cos�γcolP �j

umax
E ⋅ j cos�γcolE �j (52a)

η � δP
δE

(52b)

ϵα � σPα
σEα

(52c)

να;β �
ρPα;β
ρEα;β

(52d)

which, following Remark IV.3, are all real. In effect δj represents the
maximal possible direct lift on j and η is the pursuer/evader maximal
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possible direct lift ratio. σjα and ρjα;β are generally quite complex

functions of j’s transfer functions’ zeros and poles. In the simple case

of first-order strictly proper control dynamics, which include a single

negative pole −1∕τj, the sizes of σ
j
1 and ρj1;β are equal to that of the

pole (see Sec. V.B). μ represents the ratio between the pursuer’s and

evader’s maneuverability vertical to the fixed reference line.
Lemma IV.2. If δP, δE ≠ 0 then the necessary condition for the

existence of a capture zone is

μη ≥ 1

and a sufficient condition is

μη > 1

Proof: If δP, δE ≠ 0 then for a small-enough tgo

Fj�tgo� ∼
Xnjc
i�1

γji ⋅
���� df

j
i �θ�
dθ

����
θ�0

⋅ tgo; j ∈ fP; Eg

Therefore, the necessary condition to satisfy Eq. (47) is

umax
P

XnPc
i�1

γPi ⋅
���� dfPi �θ�dθ

����
θ�0

≥ umax
E

XnEc
i�1

γEi ⋅
���� dfEi �θ�dθ

����
θ�0

and a sufficient condition is

umax
E

XnPc
i�1

γPi ⋅
���� dfPi �θ�dθ

����
θ�0

> umax
E

XnEc
i�1

γEi ⋅
���� dfEi �θ�dθ

����
θ�0

Substituting Eqs. (49a) and (51a) the necessary and sufficient

conditions become, respectively,

umax
P δP ⋅ j cos�γcolP �j ≥ umax

E δE ⋅ j cos�γcolE �j

and

umax
P δP ⋅ j cos�γcolP �j > umax

E δE ⋅ j cos�γcolE �j

Dividing both sides by the (positive) right-hand-side expression

and substituting Eqs. (52a) and (52b) concludes the proof. □

Remark IV.4: Note that
1) If δE � 0 (fHE

i �s�gi∈NE
c

are all strictly proper), then the
sufficient condition becomes simply δP ≠ 0. From the definition of
δP we may further simplify this to ∃i ∈ NP

c :d
P
i ≠ 0; that is, there

exists a pursuer control that has a nonstrictly proper transfer function.
2) Fixing, for example, the evader’s speed and initial heading, the

pursuerwill benefit from increasing its own speed, thereby increasing
the size of j cos�γcolP �j and, as a result, increasing its maneuverability
relative to the evader’s vertical to the reference line. Hence, a slower
pursuer will require a greater maneuver capability.
3) In terms of increasing their maneuverability vertical to the

reference line, both adversaries benefit from imposing head-on, tail-
chase, or head pursuit (in which case j cos�γcolj �j → 1 ∀j ∈ fP; Eg).
Lemma IV.3: If δP � δE � 0, σPα � σEα � 0 ∀1 ≤ α ≤ c − 1, and

σPc , σ
E
c ≠ 0 for some c ≥ 1, then the necessary condition for the

existence of a capture zone is

μϵc ≥ 1

and a sufficient condition is

μϵc > 1

Proof: Continuing the logic of Lemma IV.2, since in this case

dαfji �θ�∕dtαgojθ�0 � 0 ∀1 ≤ α ≤ c ∀j ∈ fP;Eg, i ∈ Nj
c for some

c ≥ 1, then for a small-enough tgo

Fj�tgo� ∼
Xnjc
i�1

γji ⋅
���� dc�1fji �θ�

dθc�1

����
θ�0

⋅
tc�1
go

�c� 1�!

Therefore, the necessary condition to satisfy Eq. (47) is

umax
P

PnPc
i�1 γ

P
i ⋅

���� dc�1fPi �θ�
dθc�1

����
θ�0

≥ umax
E

PnEc
i�1 γ

E
i ⋅

���� dc�1fEi �θ�
dθc�1

����
θ�0

and a sufficient condition is

umax
P

PnPc
i�1 γ

P
i ⋅

���� dc�1fP�θ�
dθc�1

����
θ�0

> umax
E

PnEc
i�1 γ

E
i ⋅

���� dc�1fE�θ�
dθc�1

����
θ�0

Substituting Eq. (52b) the necessary and sufficient conditions
become, respectively,

umax
P σPc ⋅ j cos�γcolP �j ≥ umax

E σEc ⋅ j cos�γcolE �j

and

umax
P σPc ⋅ j cos�γcolP �j > umax

E σEc ⋅ j cos�γcolE �j

Dividing both sides by the (positive) right-hand-side expression
and substituting Eqs. (52a) and (52c) concludes the proof. □

Remark IV.5: Note that
1) Typically, unless j has ideal dynamics, σjα � 0 ∀1 ≤ α ≤ c − 1

for c > 1will not occur, but it may be the case in some special cases.
2) Similar to Remark IV.4, if σEc � 0 then the sufficient condition

becomes simply σPc ≠ 0.
Lemma IV.4: If δP, δE ≠ 0, μη � 1, and μρPα;0 � ρEα;0 (or μνα;0 � 1

if ρPα;0, ρ
E
α;0 ≠ 0) ∀1 ≤ α ≤ c − 1 for some c ≥ 1, then the necessary

condition for the existence of a capture zone is

signfρPc;0g ⋅ μjνc;0j ≥ signfρEc;0g

and a sufficient condition is

signfρPc;0g ⋅ μjνc;0j > signfρEc;0g

Proof: Since �dαfji �θ�∕dθα�θ�0 is finite ∀α ≥ 1, then for any c ≥ 1
there is an appropriately small tgo such that ∀j ∈ fP; Eg, i ∈ Nj

c

Fj�tgo� ∼
Xnjc
i�1

γji ⋅
����Xc�1

α�1

�
dαfji �θ�
dθα

�
θ�0

⋅
tαgo
α!

����
and

sign

�Xc�1

α�1

�
dαfji �θ�
dθα

�
θ�0

⋅
tαgo
α!

�
� sign

��
dfji �θ�
dθ

�
θ�0

�

Therefore, after substituting Eqs. (49a) and (51c) and noting that,
by definition, j�⋅�j � signf�⋅�g ⋅ �⋅�,

Fj�tgo� ∼
�
δj ⋅ tgo �

Xc�1

α�2

ρjα−1;0 ⋅
tαgo
α!

�
⋅ j cos�γcolj �j; j ∈ fP; Eg

If μη � 1 and μρPα;0 � ρEα;0 ∀1 ≤ α ≤ c − 1, then

umax
P

�
δP ⋅ tgo �

Xc
α�2

ρPα−1;0 ⋅
tαgo
α!

�
⋅ j cos�γcolP �j

� umax
E

�
δE ⋅ tgo �

Xc
α�2

ρEα−1;0 ⋅
tαgo
α!

�
⋅ j cos�γcolE �j ≜ Δc�tgo�

and
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umax
P FP�tgo� ∼ Δc�tgo� � umax

P ρPc;0 ⋅
tc�1
go

�c� 1�! ⋅ j cos�γ
col
P �j

umax
E FE�tgo� ∼ Δc�tgo� � umax

E ρEc;0 ⋅
tc�1
go

�c� 1�! ⋅ j cos�γ
col
E �j

Therefore, the necessary condition to satisfy Eq. (47) is

umax
P ρPc;0 ⋅ j cos�γcolP �j ≥ umax

E ρEc;0 ⋅ j cos�γcolE �j

and a sufficient condition is

umax
P ρPc;0 ⋅ j cos�γcolP �j > umax

E ρEc;0 ⋅ j cos�γcolE �j

Dividing both sides by umax
E jρEc;0j ⋅ j cos�γcolE �j and substituting

Eqs. (52a) and (52d) concludes the proof. □

Remark IV.6: If in a case, such as the one presented in Lemma IV.4,
signfρPc;0g ≠ signfρEc;0g, then the necessary and sufficient conditions
for the existence of a capture zone are

a) nonexistent if signfρPc;0g < signfρEc;0g
b) any μ > 0, jνc;0j ≥ 0 if signfρPc;0g > signfρEc;0g.
Lemma IV.5: If δP � δE � 0, σPα � σEα � 0 ∀1 ≤ α ≤ r − 1, σPr ,

σEr ≠ 0, and μρPβ;r � ρEβ;r (or μνβ;r � 1 if ρPβ;r, ρ
E
β;r ≠ 0) ∀r� 1 ≤

β ≤ c − 1 for some c ≥ r ≥ 1, then the necessary condition for the
existence of a capture zone is

signfρPc;rg ⋅ μjνc;rj ≥ signfρEc;rg

and a sufficient condition is

signfρPc;rg ⋅ μjνc;rj > signfρEc;rg

Proof: The proof follows the logic of the proofs for Lemma IV.3
and Lemma IV.4, treating σjr as δj. □

Remark IV.7: If in a case, such as the one presented in Lemma IV.5,
signfρPc;rg ≠ signfρEc;rg, then the necessary and sufficient conditions
for the existence of a capture zone are
a) nonexistent if signfρPc;rg < signfρEc;rg,
b) any μ > 0, jνc;rj ≥ 0 if signfρPc;rg > signfρEc;rg.

V. Some Examples

We now present some results for several cases in order to examine
and verify the validity of the theory developed in the preceding
section. As previously stated, the optimality of solutions to pursuit-
evasion games suggests that, in the same framework, the capturability
conditions must coincide with conditions for the existence of a
capture zone in the game. For this reason we chose the following
previously studied examples, each with known linear-pursuit-
evasion-games-based results.
The following examples cover different control types, including

variations on the number of control inputs and the modeling of the
direct lift and airframe response as a result of command inputs. In the
present work we will limit ourselves to a maximum of two control
inputs, each of which may be categorized as either forward/canard
control or tail control. A general case including both types of control
inputs is depicted in Fig. 2.We assume that each adversary’s center of
pressure (CP), where the total force Fb is obtained, is located behind
its center of mass (CG), and as a result the airframe itself is statically
stable. As initially stated, any aerodynamic coupling between the
lateral forces (alongZb) produced by the control surfaces is neglected
and it is assumed that the adversaries do not accelerate (the total force
along Xb is zero).

A. Ideal Control Dynamics

As in [7], assume that each adversary has a single control input and
ideal control dynamics. This would represent adversaries for which
the control inputs are immediately translated into direct lift with no
airframe response; that is, the control action takes place at the center
of gravity. In such a case nPc � nEc � 1, lj � mj � 0 ∀j ∈ fP;Eg,

Hj�s� � 1; j ∈ fP; Eg

and from Eq. (44)

fj�θ� � djθ ⋅ cos�γcolj �; j ∈ fP; Eg

As previously deduced, in such a case dj � 1 ∀j ∈ fP;Eg;
therefore,

fj�θ� � θ ⋅ cos�γcolj �; j ∈ fP; Eg

for which

δj � 1

σjα � 0
; α ≥ 1; j ∈ fP; Eg

Substituting into Eq. (52b) we have

η � 1

Following Lemma IV.2 the necessary and sufficient condition for

the existence of a capture zone is simply μ ≥ 1, meaning that relative

to the reference line the pursuer is required to have a maneuverability

advantage over the evader, in accordance with the results presented

in [7].

B. First-Order Strictly Proper Control Dynamics

Now assume, as in [9], that each adversary has a single control

input, the dynamics of which include a single real and positive time

constant. This would be a possible representation of two adversaries

where there exists negligible direct lift from the control surface (tail or

canard); that is, it mainly produces amoment for rotating the airframe

(by being located far from the center of gravity). In this case neither

has direct lift, but their airframe responses are modeled. In this

instance nPc � nEc � 1, lj � 0, mj � 1, pj � 1 ∀j ∈ fP; Eg,

Hj�s� �
1

1� sτj
; j ∈ fP;Eg

and from Eq. (44)

fj�θ� �
h
djθ� τjψ�θ; τj; 1�

i
⋅ cos�γcolj �; j ∈ fP; Eg

In this case, as deduced for proper dynamics, dj � 0 ∀j ∈ fP;Eg
and from Eq. (45)

Fig. 2 Tail- and canard-controlled missile schematic.
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ψ�θ; τj; 1� �
X∞
k�0

�−1�k ⋅ �θ∕τj�k�2

k!�k� 1��k� 2�

�
X∞
m�0

�−1�m ⋅
�θ∕τj�m

m!
− �−1�1 ⋅ θ

τj
− �−1�0 ⋅ 1

� e−θ∕τj � θ

τj
− 1 (53)

Substituting into the expression for fj�θ� yields

fj�θ� � τj

	
e−θ∕τj � θ

τj
− 1



⋅ cos�γcolj �; j ∈ fP;Eg

for which

δj � 0

σjα � 1

�τj�α

ρjα;1 � �−1�α−1 ⋅ 1

�τj�α

; α ≥ 1; j ∈ fP;Eg

Substituting into Eqs. (52c) and (52d) we have

ϵα � να;1 �
	
τE
τP



α

≜ εα; α ≥ 1

where ε is the evader/pursuer time constant ratio. Since δP � δE � 0,
the sufficient condition for the existence of a capture zone, according

to Lemma IV.3 and Lemma IV.5, is in general
a) μϵ1 ≥ 1
b) signfρPc;1g ⋅ μjνc;1j ≥ signfρEc;1g1 if μνα;1 � 1 ∀1 ≤ α ≤ c − 1

∀c ≥ 2,
which in this example becomes
a) με ≥ 1 (denoted by some as an agility advantage)
b) �−1�c−1 ⋅ μεc ≥ �−1�c−1 if μεα � 1 ∀1 ≤ α ≤ c − 1.
Note that ∀c ≥ 3 if μεα � 1 ∀1 ≤ α ≤ c − 1 then ε � 1.

Therefore, from cases c � 1 and c � 2, after substituting με � 1,
we can deduce the following sufficient condition:
a) με > 1
b) ε ≤ 1 if με � 1.
In [10] it was shown that in the framework of this example the

sufficient conditions for the existence of a capture zone are
a) με > 1
b) μ ≥ 1 if με � 1.
In the second case note that since ε � 1∕μ, then μ ≥ 1 and ε ≤ 1

are equivalent.
Furthermore, in accordance with Lemma IV.3, it was shown in [8]

that if τE � 0 (ideal evader) then a capture zone cannot exist

(since 0 � με < 1).

C. First-Order Biproper Control Dynamics

In this case, as in [14], assume that each adversary has a single

control with biproper dynamics, defined by a single real zero and a

single negative pole. This model essentially generalizes the two

previous ones. It could be used to represent adversarieswith either tail

or forward/canard control having both direct lift and airframe

response elements. In this case nPc � nEc � 1, lj � mj � 1,
pj � qj � 1 ∀j ∈ fP;Eg,

Hj�s� �
1� sωj

1� sτj
; j ∈ fP;Eg

and from Eqs. (44) and (53)

fj�θ� �
�
ωj

τj
θ� τj

	
1 −

ωj

τj



ψ�θ; τj; 1�

�
⋅ cos�γcolj �

�
�
ωj

τj
θ� τj

	
1 −

ωj

τj



⋅
	
e−θ∕τj � θ

τj
− 1


�
⋅ cos�γcolj �;

j ∈ fP; Eg

for which

δj �
ωj

τj
≜ dj

σjα � j1 − djj
�τj�α

; α ≥ 1; j ∈ fP; Eg

ρjα;0 � �−1�α−1 ⋅ signfdjg ⋅
1 − dj
�τj�α

Substituting into Eqs. (52b), (52c), and (52d) we obtain

η �
���� dPdE

����
ϵα �

���� 1 − dP
1 − dE

���� ⋅
	
τE
τP



α

; α ≥ 1

να;0 � sign

�
dP
dE

�
⋅
1 − dP
1 − dE

⋅
	
τE
τP



α

Since δP, δE ≠ 0, then, according to Lemma IV.2 and Lemma IV.4,

the sufficient condition for the existence of a capture zone is in

general
a) μη > 1
b) signfρPc;0g ⋅ μjνc;0j ≥ signfρEc;0g if μη � 1, μνα;0 � 1

∀1 ≤ α ≤ c − 1 ∀c ≥ 1,
which in the examined case becomes
a) μη > 1
b) �−1�c−1 ⋅ signfdPg ⋅ signf1 − dPg ⋅ μεcj�1 − dP�∕�1 − dE�j ≥

�−1�c−1 ⋅ signfdEg ⋅ signf1 − dEg if μη � 1, μεαj�1 − dP�∕
�1 − dE�j � 1 ∀1 ≤ α ≤ c − 1 ∀c ≥ 1 and signfdP∕dEg �
signf�1 − dP�∕�1 − dE�g
c) nonexistent if μη � 1 and signfdPg ⋅ �1 − dP� < 0 <

signfdEg ⋅ �1 − dE�
d) any μ, ε > 0 if μη � 1 and signfdPg ⋅ �1 − dP� > 0 >

signfdEg ⋅ �1 − dE�,
where ε � τE∕τP is, once again, the evader/pursuer time constant

ratio. Similar to the second example, note that ∀c ≥ 3 if μη � 1,
μεαj�1 − dP�∕�1 − dE�j � 1 ∀1 ≤ α ≤ c − 1 and signfdP∕dEg �
signf�1 − δP�∕�1 − δE�g then ε � 1. Therefore, from cases c � 1
and c � 2, after substituting μεj�1 − dP�∕�1 − dE�j � 1, we can

deduce the following sufficient condition:
a) μη > 1
b) signfdPg ⋅ signf1 − dPgμεj�1 − dP�∕�1 − dE�j > signfdEg⋅

signf�1 − dE�g if μη � 1 and signfdP∕dEg � signf�1 − dP�∕
�1 − dE�g
c) signfdPg ⋅ signf1 − dPgε ≤ signfdEg ⋅ signf1 − dEg if μη � 1,

μεj�1 − dP�∕�1 − dE�j � 1 and signfdP∕dEg � signf�1 − dP�∕
�1 − dE�g
d) nonexistent if μη � 1 and signfdPg ⋅ �1 − dP� < 0 <

signfdEg ⋅ �1 − dE�
e) any μ, ε > 0 if μη � 1 and signfdPg ⋅ �1 − dP� > 0 >

signfdEg ⋅ �1 − dE�.
As an example let us assume that −1 < dP, dE < 1.
Case A: 0 < dP, dE < 1 (forward/canard-controlled adversaries)
In this case the sufficient condition for the existence of a capture

zone is
a) μη > 1
b) μεj�1 − dP�∕�1 − dE�j > 1 if μη � 1
c) ε ≤ 1 if μη � 1 and μεj�1 − dP�∕�1 − dE�j � 1.
Case B: −1 < dP, dE < 0 (tail-controlled adversaries)
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In this case the sufficient condition for the existence of a capture

zone is
a) μη > 1
b) μεj�1 − dP�∕�1 − dE�j < 1 if μη � 1
c) ε ≥ 1 if μη � 1 and μεj�1 − dP�∕�1 − dE�j � 1.
Case C: −1 < dP < 0 < dE < 1 (tail-controlled pursuer, forward/

canard-controlled evader)
In this case the sufficient condition for the existence of a capture

zone is
a) μη > 1
b) nonexistent if μη � 1.
Case D:−1 < dE < 0 < dP < 1 (forward/canard-controlled pursuer,

tail-controlled evader)
In this case the sufficient condition for the existence of a capture

zone is
a) μη > 1
b) any μ, ε > 0 if μη � 1.

where cases A and B present the required advantages of the pursuer

against a similarly controlled evader, cases C and D shed some light

on scenarios with adversaries with different control types. According

to case C a tail-controlled missile cannot hope to capture a forward-

controlled evader unless it has a distinct direct lift advantage.

However, following case D, a forward/canard-controlled missile

could successfully intercept a tail-controlled evader even without a

distinct advantage in direct lift. These results point to the superiority,

with respect to capturability, of forward control over tail control,

supporting existing conclusions [13,14].
These results expand upon those presented in [14], in which it was

shown that for adversaries with first-order biproper dynamics, for

which −1 < dP, dE < 1, μη ≥ 1 is a necessary condition for the

existence of a capture zone and that μη > 1 is a sufficient condition.

D. Second-Order Strictly Proper Control Dynamics

We now consider a scenario in which each adversary has a single

control input, the dynamics of which include a complex conjugate

pair. This once again represents forward/canard-controlled

adversaries that have no direct lift, but the airframe response model

is more elaborate. In this instance nPc � nEc � 1, lj � 0, mj � 2,
pj
1 � pj

2 � 1 ∀j ∈ fP;Eg,

Hj�s� �
1

�1� sτj��1� sτ�j �
; j ∈ fP; Eg

and Eq. (44)

fj�θ� � djθ� λjτjψ�θ; τj; 1� � λ�j τ
�
jψ�θ; τ�j ; 1�; j ∈ fP; Eg

where

λj � −
τj

τ�j − τ

λ�j � τ�j
τ�j − τ

; j ∈ fP;Eg

and dj � 0 ∀j ∈ fP; Eg, as per the deduction for proper dynamics.

Rfτjg � Rfτ�j g ≥ 0 ∀j ∈ fP; Eg and, without loss of generality, we
assume that Ifτjg � −Ifτ�j g ≥ 0. After the substitution of Eq. (53)

in fj�θ� we obtain, after some algebra, ∀j ∈ fP; Eg

fj�θ� � e−θ⋅Rfτjg∕�τj⋅τ�j �

⋅
�
2Rfτjg ⋅ cos

	
Ifτjg
τj ⋅ τ�j

θ



�Rfτjg2 − Ifτjg2

Ifτjg
⋅ sin

	
Ifτjg
τj ⋅ τ�j

θ


�

� θ − 2Rfτjg

for which

δj � σj1 � 0

σjα �
���� τα−1j − �τ�j �α−1
�τjτ�j �α−1�τ�j − τj�

����
ρjα;2 � �−1�α−1 ⋅ sign

�
−

1

τjτ
�
j

�
⋅

τα−1j − �τ�j �α−1
�τjτ�j �α−1�τ�j − τj�

;

α ≥ 2; j ∈ fP; Eg

Using the known general factorization of the difference of two nth
powers [22]

aα − bα � �a − b� ⋅
Xα−1
k�0

aα−1−k ⋅ bk

we get

σjα �
����
P

α−2
k�0 τ

α−2−k
j ⋅ �τ�j �k

�τjτ�j �α−1
����

ρjα;2 � �−1�α−1 ⋅
P

α−2
k�0 τ

α−2−k
j ⋅ �τ�j �k

�τjτ�j �α−1
; α ≥ 2; j ∈ fP; Eg

Substituting into Eqs. (52c) and (52d) we have

ϵα �
����
P

α−2
k�0 τ

α−2−k
P ⋅ �τ�P�kP

α−2
k�0 τ

α−2−k
E ⋅ �τ�E�k

���� ⋅
	
τEτ

�
E

τPτ
�
P



α−1

να;2 �
P

α−2
k�0 τ

α−2−k
P ⋅ �τ�P�kP

α−2
k�0 τ

α−2−k
E ⋅ �τ�E�k

⋅
	
τEτ

�
E

τPτ
�
P



α−1

; α ≥ 2

Since δP � δE � 0 and σP1 � σE1 � 0, the sufficient condition for
the existence of a capture zone, according to Lemma IV.3 and

Lemma IV.5, is in general μϵ2 ≥ 1 and signfρPc;2g ⋅ μjνc;2j ≥
signfρEc;2g if μνα;2 � 1 ∀2 ≤ α ≤ c − 1 ∀c ≥ 3. Unfortunately, a

more simplified representation cannot be easily obtained in this
example. However, by simply checking the cases c � 3 and c � 4
we find that the necessary condition can be written as
a) μ~ε < 1
b) �RfτPg∕RfτEg�~ε > 1 if μ~ε � 1
c) �IfτPg∕IfτEg�~ε ≥ 1 if μ~ε � 1 and �RfτPg∕RfτEg�~ε � 1,

where

~ε � τEτ
�
E

τPτ
�
P

Note that νc;2 can be written as

νc;2 �
P

c−2
k�0 τ

c−2−k
P ⋅ �τ�P�k ⋅ ~εc−2P

c−2
k�0 τ

c−2−k
E ⋅ �τ�E�k

⋅ ~ε

or, since
P

c−2
k�0 τ

c−2−k
P ⋅ �τ�P�k and

P
c−2
k�0 τ

c−2−k
E ⋅ �τ�E�k are symmetric

expressions of RfτPg and IfτPg and of RfτEg and IfτEg,
respectively,

νc;2 �
P

c−2
k�0 ak ⋅ �RfτPg ⋅ ~ε�c−2−k ⋅ �IfτPg ⋅ ~ε�kP

c−2
k�0 ak ⋅ �RfτEg�c−2−k ⋅ �IfτEg�k

⋅ ~ε

where ak is the resulting coefficient of the kth term in the sum.
Therefore, ∀c ≥ 5 if �RfτPg∕RfτEg�~ε � 1 and �IfτPg∕IfτEg�~ε � 1
we necessarily get νc;2 � ~ε, and consequently, if μ~ε � 1 then

μjνc;2j � 1. Finally, since signfρPc;2g � signfρEc;2g we find that

signfρPc;2g ⋅ μjνc;2j � signfρEc;2g ∀c ≥ 5 if μjνc;2j � 1,

�RfτPg∕RfτEg�~ε � 1 and �IfτPg∕IfτEg�~ε � 1.
In [16,23] it was shown that in an engagement between a pursuer

and an evaderwith strictly proper second-order and first-order control

924 HAYOUN AND SHIMA

D
ow

nl
oa

de
d 

by
 T

E
C

H
N

IO
N

 -
 I

SR
A

E
L

 I
N

ST
 O

F 
T

E
C

H
 o

n 
Fe

br
ua

ry
 7

, 2
02

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
30

52
 



dynamics, respectively, a capture zone cannot exist. From the

presented results for first- and second-order control dynamics we

have that in such a case δP � δE � 0, σP1 � 0, and σE1 ≠ 0.
Therefore, according to Lemma IV.3 the necessary capture zone

existence condition is not satisfied for c � 1, in accordance with the
known result. Apart from that, the obtained conditions constitute a

substantial extension to the more general case of both adversaries

having strictly proper second-order control dynamics.

E. Dual-Controlled Adversaries with First-Order Biproper Control
Dynamics

In [15] the case of a dual-controlled pursuer with first-order

biproper control dynamics versus a forward/canard-controlled evader

with first-order strictly proper control dynamics was examined.

Assume in this example a slightly more general case in which each

entity has two control inputs, the dynamics of which are described by

two biproper transfer functions, each with a single real zero and both

with a common single negative pole. This represents two adversaries

with both tail and forward/canard control, each of which includes a

direct lift component and the airframe response. In this case

nPc � nEc � 2, lj
i � mj

i � 1,pj
i � qji � 1 ∀j ∈ fP;Eg ∀i ∈ f1; 2g,

Hj
i �s� �

1� sωj
i

1� sτj
; j ∈ fP; Eg; i ∈ f1; 2g

and from Eqs. (44) and (53) ∀j ∈ fP; Eg

fji �θ� � djiθ� τj�1 − dji �ψ�θ; τj; 1�

� djiθ� τj�1 − dji � ⋅
	
e−θ∕τj � θ

τj
− 1



; i ∈ f1; 2g

where

dji �
ωj
i

τji
; j ∈ fP;Eg; i ∈ f1; 2g

and for which

δj � γj1 ⋅ jdj1j � γj2 ⋅ jdj2j

σjα � γj1 ⋅ j1 − dj1j � γj2 ⋅ j1 − dj2j
�τj2�α

ρjα;0 � �−1�α−1 ⋅ signfd
j
1g ⋅ γj1 ⋅ �1 − dj1� � signfdj2g ⋅ γj2 ⋅ �1 − dj2�

�τj2�α

;

α ≥ 1; j ∈ fP;Eg

Substituting into Eqs. (52b), (52c), and (52d) yields

η � γP1 ⋅ jdP1 j � γP2 ⋅ jdP2 j
γE1 ⋅ jdE1 j � γE2 ⋅ jdE2 j

εα � γP1 ⋅ j1 − dP1 j � γP2 ⋅ j1 − dP2 j
γE1 ⋅ j1 − dE1 j � γE2 ⋅ j1 − dE2 j

⋅
	
τE
τP



α

να;0 �
signfdP1 g ⋅ γP1 ⋅ �1 − dP1 � � signfdP2 g ⋅ γP2 ⋅ �1 − dP2 �
signfdE1 g ⋅ γE1 ⋅ �1 − dE1 � � signfdE2 g ⋅ γE2 ⋅ �1 − dE2 �

⋅
	
τE
τP



α

;

α ≥ 1

In general, according to Lemma IV.2 and Lemma IV.4, since δP,
δE ≠ 0, the sufficient condition for the existence of a capture zone is
a) μη > 1
b) signfρPc;0g ⋅ μjνc;0j ≥ signfρEc;0g if μη � 1, μνα;0 � 1 ∀1 ≤ α ≤

c − 1 ∀c ≥ 1,
which in this example can be written as
a) μη > 1

b) �−1�c−1 ⋅signfφPg ⋅μϵcjφP∕φEj≥ �−1�c−1 ⋅signfφEg if μη � 1,
μεαjφP∕φEj � 1 ∀1 ≤ α ≤ c − 1 ∀c ≥ 1 and signfφPg � signfφEg
c) nonexistent if μη � 1 and φP < 0 < φE

d) any μ, ε > 0 if μη � 1 and φP > 0 > φE,
where

φj � signfdj1g ⋅ γj1 ⋅ �1− dj1� � signfdj2g ⋅ γj2 ⋅ �1− dj2�; j ∈ fP;Eg

and recall that ε � τE∕τP is the evader/pursuer time constant ratio.
Note that ∀c ≥ 3 if μη � 1, μεαjφP∕φEj � 1 ∀1 ≤ α ≤ c − 1, and
signfφPg � signfφEg, then ε � 1. Therefore, from cases c � 1 and
c � 2, after substituting μεjφP∕φEj � 1, we can deduce the
following sufficient condition:
a) μη > 1
b) signfφPgμεjφP∕φEj > signfφEg if μη � 1 and signfφPg �

signfφEg
c) signfφPgε ≤ signfφEg if μη � 1, μεjφP∕φEj � 1 and

signfφPg � signfφEg
d) nonexistent if μη � 1 and φP < 0 < φE

e) any μ, ε > 0 if μη � 1 and φP > 0 > φE.
As an example let us assume that 0 < dP1 , d

E
1 < 1 and −1 < dP2 ,

dE2 < 0 (such would be the case in an engagement between two dual-
controlled missiles, where each couplet dj1 and dj2 represented the
direct lift of the canard and tail controls of j, respectively [15]). In this
case �1 − dj2� > �1 − dj1� > 0 ∀j ∈ fP; Eg, i ∈ Nj

c and

φj � γj1 ⋅ �1 − dj1� − γj2 ⋅ �1 − dj2�; j ∈ fP;Eg

Case A: 1 < �1 − dj2�∕�1 − dj1� < γj1∕γ
j
2 ∀j ∈ fP; Eg (strictly

greater canard/forward control influence for both adversaries)
In this case the sufficient condition for the existence of a capture

zone is
a) μη > 1
b) μεjφP∕φEj > 1 if μη � 1
c) ε ≤ 1 if μη � 1 and μεjφP∕φEj � 1.
Case B: �1 − dj2�∕�1 − dj1� > γj1∕γ

j
2 ∀j ∈ fP;Eg (nonstrictly

greater canard/forward control influence for both adversaries)
In this case the sufficient condition for the existence of a capture

zone is
a) μη > 1
b) μεjφP∕φEj < 1 if μη � 1
c) ε ≥ 1 if μη � 1 and μεjφP∕φEj � 1.
Case C: �1 − dP2 �∕�1 − dP1 � > γP1 ∕γP2 ; 1 < �1 − dE2 �∕�1 − dE1 � <

γE1 ∕γE2 (nonstrictly greater pursuer canard/forward control influence,
strictly greater evader canard/forward control influence)
In this case the sufficient condition for the existence of a capture

zone is
a) μη > 1
b) nonexistent if μη � 1.
Case D: �1− dP2 �∕�1− dP1 � < γP1 ∕γP2 ; �1− dE2 �∕�1− dE1 � > γE1 ∕γE2

(strictly greater pursuer canard/forward control influence, nonstrictly
greater evader canard/forward control influence)
In this case the sufficient condition for the existence of a capture

zone is
a) μη > 1
b) any μ, ε > 0 if μη � 1.
Interestingly, if γj1 � γj2 � 0.5 then φj � −δj. Therefore, if γ

j
1 �

γj2 � 0.5 ∀j ∈ fP; Eg thenφP∕φE � η. In such a case, if additionally
μη � 1 we find that μεjφP∕φEj � ε and both conditions (b) and (c)
may be replaced by ε ≥ 1 in case A and ε ≤ 1 in case B, respectively.
Cases A and B present the sufficient capturability conditions in an

engagement between adversaries with a similar type of relative
influence of their control inputs. Case C reveals that a missilewithout
a strictly greater canard/forward control influence will be incapable
of intercepting an evader with a strictly greater canard/forward
control influence unless it has a distinct direct lift advantage. Case D
shows that a missile with a strictly greater canard/forward control
influence could be capable of capturing an evader without a strictly
greater canard/forward control influence even if it does not have a
distinct advantage in direct lift. These results point once again to the
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fact that, with respect to capturability, a greater forward control

influence is more advantageous than a greater tail control influence,

supporting previous conclusions [14].
In [15] the case when 0 < dP1 < 1, −1 < dP2 < 0, nEc � 1, and

δE � 0 was examined (evader with first-order strictly proper control

dynamics). In accordance with Remark IV.4, it was shown that a

capture zone exists for δP ≠ 0. In addition, the presented results

generalize the case analyzed in [15] to the case in which both

adversaries are dual-controlled with first-order biproper dynamics.

VI. Simulations

For the sake of illustration we will now show some numerical

results in the specific case of dual-controlled adversaries with first-

order biproper control dynamics. We examine the following three

scenarios, defined by the parameters given in Table 1.
Using the known optimal strategies in the 1-on-1 pursuit-evasion

game (see [8]) we may construct the capture zone, if one exists, by

backward integration of the dynamic system (21) from the final time

tf, at which z�tf� � 0, to the initial time to. To simplify this

procedure we will normalize the ZEM by τ2Pu
max
E :

Z�t� � z�t�
τ2Pu

max
E

(54)

The resulting nondimensional dynamic system is

dZ

dtgo
� 1

τ2Pu
max
E

h
fP1 �tgo�uP1 �t� � fP2 �tgo�uP2 �t� − fE1 �tgo�uE1 �t�

− fE2 �tgo�uE2 �t�
i

(55)

for which the terminal condition of each optimal trajectory

originating in the capture zone is simply Z�tgo � 0� � 0. If we

consider a cost function that penalizes only the miss distance

(J � jZ�tgo � 0�j, as is usually done, the optimal controls are easily

found to be

u�P�t� � signfZ�0�gumax
P ⋅ �signffP1 �tgo�g ⋅ γP1 signffP2 �tgo�g ⋅ γP2 �T

u�E�t� � signfZ�0�gumax
E ⋅ �signffE1 �tgo�g ⋅ γE1 signffE2 �tgo�g ⋅ γE2 �T

(56)

After substituting these in Eq. (61) and integrating from Z�0� at
time-to-go 0 (from tf) to tgo (to t) we obtain the following closed form
expression for the candidate optimal trajectories:

Z�tgo� �Z�0�� signfZ�0�g
τ2P

⋅
�
μγP1 ⋅

Z
tgo

0

jfP1 �θ�jdθ

�μγP2 ⋅
Z

tgo

0

jfP2 �θ�jdθ	 γE1 ⋅
Z

tgo

0

jfE1 �θ�jdθ− γE2 ⋅
Z

tgo

0

jfE2 �θ�jdθ
�

Since fPi �tgo�∕τP � fPi �tgo∕τP� and fEi �tgo�∕τP �
fEi ��tgo∕τP�∕ε� ∀i ∈ f1; 2g, we may rewrite this as a function of the

normalized time-to-go tgo∕τP:

Z�tgo∕τP��Z�0��signfZ�0�g⋅μ

⋅
�
γP1 ⋅

Z
tgo∕τP

0

jfP1 �θ�jdθ�γP2 ⋅
Z

tgo∕τP

0

jfP2 �θ�jdθ
�

	signfZ�0�g⋅ε⋅
�
γE1 ⋅

Z
tgo∕τP

0

jfE1 �θ∕ε�jdθ�γE2 ⋅
Z

tgo∕τP

0

jfE2 �θ∕ε�jdθ
�

Finally, since any couple of trajectories emanating from Z�0� and
−Z�0� is symmetrical with respect to the Z � 0 axis, if one intersects
this axis at some instant, so will the other. Such intersections

constitute conjugate points, fromwhich point on (in reverse time) the

intersecting trajectories cease to be optimal (see Sec. 4.3.2 in [21]).

Therefore, we may conclude that as long as a trajectory is optimal,

signfZ�tgo∕τPg � signfZ�0�g and

jZ�tgo∕τP�j � jZ�0�j

� μ

�
γP1 ⋅

Z
tgo∕τP

0

jfP1 �θ�j dθ� γP2 ⋅
Z

tgo∕τP

0

jfP2 �θ�j dθ
�

	 ε

�
γE1 ⋅

Z
tgo∕τP

0

jfE1 �θ∕ε�j dθ� γE2 ⋅
Z

tgo∕τP

0

jfE2 �θ∕ε�j dθ
�

(57)

Examples of the obtained capture zones, defined simply in terms

of the normalized ZEM, are given for the different scenarios in

Figs. 3–5. For each complete set of parameters the boundary of the

capture zone is defined by the optimal trajectory emanating from

Zj�0�j � 0� (depicted in bold). The shaded areas under these lines

constitute the capture zones. Note that, since in all three scenarios

�1 − dj2�∕�1 − dj1� > 1 ≥ γj1∕γ
j
2 ∀j ∈ fP; Eg, we refer to case B in

Sec. V.E for the sufficient conditions.
In Fig. 3 several zone are shown for the first scenario when the

condition μη > 1 is met, in accordance with condition (a) in case B.

For large enough values of dP1 we obtain an open capture zone

(in blue and red), which extends, in reverse time, to all tgo > 0.
Otherwise, the capture zone is closed (in green), meaning that it

extends only to some finite value 0 < tcgo < ∞ along the Z � 0 axis,
at which point the boundary trajectories meet to create a

conjugate point.
Figure 4 shows examples of open (blue) and closed (red) capture

zones in the second scenario when the condition μη � 1,
μεjφP∕φEj < 1 is met, in accordance with condition (b) in case B.
Similarly, in Fig. 5 examples of open (blue) and closed (red)

capture zones are presented for the third scenario when the condition

μη � 1, μεjφP∕φEj < 1, ε ≥ 1 is met, in accordance with condition

(c) in case B. For the limit case in which ε � 1 the capture zone is

reduced to Z�tgo� � 0 ∀tgo > 0 (green). Essentially, in this case the

pursuer’s and the evader’s maneuver capabilities are identical, and so

Table 1 Simulation parameters

Parameter Scenario 1 Scenario 2 Scenario 3

μ 1.1 1∕η 1∕η
ε 0.5 1.25 1∕�μjφP∕φEj�
dP2 −0.1 −0.1 −0.1
γP1 0.5 0.45 0.25

γP2 0.5 0.55 0.75

dE1 0.2 0.2 0.2

dE2 −0.1 −0.1 −0.1
γE1 0.5 0.15 0.15

γE2 0.5 0.85 0.85

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

Fig. 3 Capture zone: scenario 1 (μη > 1).
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the pursuer is able tomaintain only the initial ZEM (ideally, assuming
that it can react instantaneously to the evader’s maneuvers).
Therefore, the only initial conditions that may lead to point capture
are the points along the horizontal line Z � 0.

VII. Conclusions

The endgame of a perfect information linear planar endoatmo-
spheric interception engagement was examined. A new condition by
which the dimension of the kinematics may be reduced was derived.
It was shown that this condition extends the stricter common
assumption of near head-on or tail-chase to allow the consideration of
a larger variety of scenarios, in which the nominal collision triangle
may be far from head-on or tail-chase.
A study of the necessary and sufficient conditions for the

existence of a “hit-to-kill” capture zone in a linear interception
engagement between adversaries with arbitrary-order control
dynamics was presented. The existence of such a capture zone is a
necessary condition for guaranteeing point capture against any
target maneuver. A general condition was obtained through the
solution of a linear pursuit-evasion game and an appropriate test was
presented.
Based on the transfer function representation of the general control

dynamics, explicit expressions of the conditions for the existence of a
capture zone were derived in terms of the control dynamics

characteristics of the pursuers relative to those of the evader. Such
conditions are known to have been obtained in several linear pursuit-
evasion games with specific adversaries’ dynamics. Our results
constitute an extension of the currently existing conditions to the
general case of arbitrary dynamics of the adversaries.
Explicit expressionswere derived from the obtained conditions for

several previously studied cases. In each case the outcome was
comparedwith known results from solutions of linear pursuit-evasion
games in the same framework. This comparison was chosen because
it was suggested that due to the optimality of the game solution
(in particular that of the evader’s strategy), any conditions for the
existence of a capture zone in the gamemust coincidewith otherwise
obtained capturability conditions. Furthermore, the derived
conditions included some substantial additions to what currently
exists in the literature, since the developed theory enabled us to obtain
the conditions for the existence of a capture zone in full, whereas in
most previous studies the presented existence conditions are only
partial. This is very likely because the derivation of these conditions
from the game solution requires a thorough investigation of the game
space structure for various combinations of the adversaries’dynamics
parameters. For high-order control dynamics that include more than
one or two parameters (i.e., anything beyond ideal or first-order
strictly proper dynamics) this process becomes cumbersome. In
comparison, the presented theory constitutes a straightforward
approach to deriving the capture zone existence conditions.
An examination of the results obtained for the presented examples

yielded some insight into the advantages of some dynamic properties.
Mainly, they emphasize the importance of the direct lift (obtained for
biproper control dynamics as opposed to strictly proper control
dynamics) and the superiority of forward/canard control over tail
control, supporting existing conclusions.
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