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This paper presents an intercept angle guidance law against moving targets in an environment with several static

obstacles. The guidance law is derived based on linearized kinematics model. By minimizing the guidance effort

subjected to the conditions where the target is intercepted at the specified impact angle and the obstacles are avoided

by specified minimum distances, the basic guidance algorithm is obtained. The special cases of one and two obstacles

are separately considered. The proposed guidance law has a form similar to that of augmented proportional

navigation guidance with some additional bias terms. These bias terms correspond to the correction for the impact

angle error and the generation of the required maneuvers to avoid the obstacles. Finally, numerical simulations are

used to illustrate the efficacy of the proposed guidance law.

I. Introduction

T HE ability of a guidance law to enforce an impact angle may

increase the effectiveness of an interceptor, reduce the warhead

size, and consequently reduce the collateral damage. In many

applications, the guidance law also needs to ensure a minimum

distance of the missile from obstacles along its trajectory in addition

to satisfying the terminal constraints. Such situations may arise in

practical scenarios where a missile has to intercept the target while

avoiding collision with some friendly or neutral structures.

One of the early attempts to design guidance laws for controlling

interception angle was made in [1], where Kim and Grider used a

linear quadratic optimal control formulation under the assumption of

a nonmaneuvering target and a negligible angle of attack. Later, in

[2,3], guidance laws were also derived as the solution of a linear

optimal control problem subjected to various performance criteria,

such as minimization of a weighted control effort. Guidance laws in

[1–3]were derived using the linearized engagement dynamics. In [4],

a three-dimensional adaptive guidance approach for a hypersonic

gliding vehicle in proportional navigation (PN) form was proposed

for imposing the impact angle criterion. To ensure higher precision in

the impact angle conditions, the initial selection of the guidance

parameters and its closed-loop and nonlinear adaptation laws were

suggested. In [5], a proportional-navigation-based impact angle

guidance law was proposed that took look angle and acceleration

bounds into account. The PN guidance gain was determined by

solving an optimal control problem as a sequence of convex

optimization problems at every guidance cycle. In [6,7], guidance

lawswere proposed to impose impact angle constraints using variants

of the PN guidance strategy. A guidance law proposed in [8] ensured

interception at a desired impact angle by following a circular arc to

the target. In [9], a guidance concept to impose an impact angle was

proposed using the principle of following a constant inscribed angle

in a circle. Guidance laws based on the inscribed angle concept were
proposed using linear [9,10] as well as nonlinear [11] engagement
kinematics. Nonlinear control techniques, such as sliding-mode
control, were also used for designing impact angle constrained
guidance laws [12–15].
All the guidance laws presented in [1–15] enabled the interceptor

to achieve desired impact angles. But, none of them addressed the
possible presence of obstacles in the engagement scenarios. There
exist three broad classes of methods for collision avoidance,
represented by motion planning methods [16–21], geometric
guidance approaches [22–26], and artificial potential field methods
[27–30].
The first class contains diverse methods such as planning based on

the rapidly exploring random trees (RRTs) algorithm [16,17],
dynamic programming [18], deterministic graph search [19,20], and
probabilistic graph search [21]. These methods work with arbitrarily
complex vehicle dynamics. However, it is difficult to assess their
performance due to their inherent complexity. Thesemethods usually
provide open-loop solutions that require regular updates to account
for new data or modeling errors. Due to the intensive computational
requirements, these methods may not be appropriate for missile
guidance applications.
A second class of methods is based on geometric guidance

approaches [22–26]. In [22], after detecting a possible collision with
an obstacle, an aim point was selected on the boundary of the safety
zone surrounding the obstacle. Finally, PN guidance was used to
change the course of the vehicle to reach the chosen aim point, thus
avoiding obstacles. Guidance laws based on the collision cone
method [23,24] and the velocity obstacle method [25] also share a
similar structure. In the same framework, a minimum-effort path to
the aim point using optimization was proposed in [26]. In this class of
methods, collision detection and collision avoidance are performed
sequentially, which may result in performance degradation.
Another class of methods is based on artificial potential field

methods [27–29]. The guidance command using this method is
obtained by adding the field forces corresponding to the obstacles and
the goal. Unlike the geometric guidance methods, the collision
detection and collision avoidance are integrated in a single operation.
The performance of these guidance laws [27–29] depends on the
choice of the potential field function. Because the relation between
the potential field function and the vehicle performance is not
straightforward, it is difficult to optimize the performance of
guidance law.However, this class ofmethods seemsmost appropriate
for the missile guidance applications. In [30], a multimissile
distributed guidance algorithm was proposed for achieving a salvo
attack with obstacle avoidance. The guidance command consisted of
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terms accounting for target interception, impact time error, and
obstacle avoidance.
It is important to note that the guidance laws in [1–15] did not

consider obstacle avoidance, and those in [17–30] did not take into
account the impact angle constraints. The problem of imposing an
intercept angle while avoiding obstacles has not received much
attention in the missile guidance literature. However, such scenarios
are of paramount importance from the perspective of real-world
scenarios. In [16], an intercept angle guidance law for an obstacle-
rich environment was derived using a variant of the RRTs algorithm.
In this paper, an intercept angle guidance law is proposed against a

moving target. This guidance law enables the missile to achieve its
objective even in the presence of several obstacles along the
trajectory. First, a guidance law is derived for the general case with
multiple obstacles using linearized engagement kinematics and
optimal control theory. Later, the special cases of one and two
obstacles in the engagement scenario are analyzed.Guidance laws for
these cases take the form of augmented PN guidance with some
additional bias terms. These bias terms correspond to the correction
for impact angle error, the detection of obstacles, and subsequently
the generation of required guidance commands to avoid the collision
of missiles with them.
The organization of paper is as follows. In the next section, the

nonlinear and linearized models of the engagement are presented and
the guidance problem of interception while avoiding obstacles is
formulated as an optimal control problem. Section III presents the
derivation of the guidance laws. In Sec. IV, the performance of the
proposed guidance laws is evaluated for different engagement
scenarios. Finally, concluding remarks are given in Sec. V.

II. Problem Formulation

Consider a schematic view of the planar engagement scenario,
shown in Fig. 1, where amissile is launched to intercept a target while
avoiding multiple obstacles along theway. The missile and the target
are assumed to be point mass vehicles.

A. Nonlinear Engagement Kinematics

In this section, the nonlinear kinematics for planar engagements
will be presented. In Fig. 1, the coordinate frame XIOYI represents
the Cartesian inertial coordinate system. The speed and lateral
acceleration of both themissile and the target are denoted by the pairs
�VM; aM� and �VT; aT�, respectively. The distances from the missile
to the target and the ith obstacle are denoted by r and rio, respectively.
Their corresponding line-of-sight (LOS) angles are denoted by λ and
λio, respectively. The speeds of both the missile and the target are
assumed to be constant throughout the engagement. The engagement

kinematics between missile–target and missile–obstacle pairs are

given by

_r � Vr � −�VM cos�γM − λ� � VT cos�γT � λ�� (1a)

r_λ � Vλ � −VM sin�γM − λ� � VT sin�γT � λ� (1b)

_rio � Vrio � −VM cos�γM − λio� (1c)

rio _λio � Vλio � −VM sin�γM − λio� (1d)

for i � 1; : : : ; N, where N is the total number of obstacles. The

flight-path angles of the missile and the target are governed by

_γM � aM
VM

; _γT � aT
VT

(2)

Themissile and the target are assumed to have ideal dynamics. The

impact angle is defined as the angle between the velocity vectors of

missile and target at interception, as shown in Fig. 1. Note that the

impact angle is equal to the final value of variable γ � γM � γT at

the time of interception of the target.

B. Linearized Engagement Kinematics

In this section, the engagement kinematics are presented using a

linear framework. In order to linearize the engagement model, it is

assumed that the missile and the target have small deviations from

their collision course, and that their flight-path and LOS angles are

relatively small. It is also assumed that the obstacles are located near

the collision course trajectory. The X axis of the coordinate frame

XOY in Fig. 1 is assumed to be aligned with the initial missile–target

LOS. In Fig. 1, the accelerations of the missile and target

perpendicular to the initial target–missile LOS are denoted by aMN

and aTN , respectively. Relative displacements of the target–missile

and the ith obstacle–missile normal to the initial LOS, as shown in

Fig. 1, are denoted by z and zio, respectively. Lateral accelerations of
the missile and the target normal to the initial LOS can be defined as

aMN � aMχM0
; aTN � aTχT0

;

χM0
� cos�γM − λ0�; χT0

� cos�γT � λ0� (3)

where λ0 is the initial LOS angle of missile–target engagement. The

state vector of the missile–target–obstacle engagement is defined as

Fig. 1 Missile–target–obstacle engagement geometry.
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x� �x1 x2 x3 x4 x5 · · · x2N�3 �T
� � z _z γ z1o _z1o; · · · zio _zio; · · · zNo _zNo �T (4)

The equations of motion in this linearized framework can be

written as

_x1 � x2

_x2 � aTN − aMN

_x3 �
aTN
V 0

T

� aMN

V 0
M

_x2i�2 � x2i�3

_x2i�3 � −aMN; ∀i � 1; 2; : : : ; N (5)

where V 0
T � VT cos�γT0

� λ0� and V 0
M � VM cos�γM0

− λ0�. In

matrix form, the engagement dynamics can be written as

_x � Ax� BaMN � CaTN (6)

where

A �
"
A0 �0�
�0� Aob

#
; B �

"
B0

Bob

#
; C �

"
C0

�0�

#

A0 �

2
664
0 1 0

0 0 0

0 0 0

3
775; B0 �

2
664

0

−1

1∕V 0
M

3
775; C0 �

2
664

0

1

1∕V 0
T

3
775

Aob �

2
66666666664

A1o
..
. �0� ..

. �0�
· · · · · · · · · · · · · · ·

�0� ..
.

Aio
..
. �0�

· · · · · · · · · · · · · · ·

�0� ..
. �0� ..

.
ANo

3
77777777775
; Bob �

2
66666666664

B1o

..

.

Bio

..

.

BNo

3
77777777775

Aio �
"
0 1

0 0

#
; Bio �

"
0

−1

#
; ∀i � 1; : : : ; N (7)

where �0� represents a matrix with zeros of the appropriate

dimensions.
The time-to-go (tgo) for missile–target and missile–obstacle

engagements, under small angle assumptions, can be approximated by

tgo �
r

−Vr

(8a)

tgoi �
rio
VM

; ∀i � 1; : : : ; N (8b)

Without loss of generality, it is assumed here that the obstacles are

numbered in such a way that the conditions tgoi < tgo�i�1� ∀i �
1; : : : ; �N − 1� are always true. The differences between the time-to-

go approximations are denoted as

Δi � tf − tfi � tgo − tgoi ; ∀i � 1; : : : ; N (9)

where tf and tfi are the times taken by themissile to intercept the target

and pass the ith obstacle, respectively. To minimize the total control

effort, the cost function Jcost can be defined as

Jcost �
Z

tf

0

a2MN dt (10)

Note that minimizing the control effort helps in reducing the drag
acting on the missile.
For the problem statement, consider a planar engagement with a

target that performs a constant maneuver. The problem is to find the
missile lateral acceleration aMN that minimizes the cost function
given by Eq. (10), subjected to Eq. (5), while avoiding obstacles and
intercepting a moving target at a desired impact angle of γD. These
constraints are expressed mathematically as

x1�tf� � 0; x3�tf� � γD; jx�2i�2��tfi�j ≥ Ri; ∀i � 1; : : : ; N

(11)

where γD is the desired impact angle, and Ri is the desired minimum
distance from the ith obstacle.
Remark 1: For derivation of the guidance law, the obstacle–missile

distance at the time instant when the missile passes the obstacle is
approximated by the distance perpendicular to the LOS. However,
there is a small difference between these two distances that can be
compensated for during the implementation of the guidance
command. This compensation can be done by modifying the desired
distances from the obstacles based on the LOS angle of the missile
with respect to the obstacles.

III. Guidance Law Derivation

In this section, the problem is first converted to a reduced-order
problem using zero-effort transformations [31], and then the
guidance designs are performed to satisfy the objectives.

A. Order Reduction

To reduce the system order, the concept of zero-effort
transformation is used. The zero-effort transformations of the system
states with known target information are given by [3,32]

Z1 � z� �tf − t�_z� 1

2
�tf − t�2aTN ≈ t2goVc

_θ� 1

2
t2goaTN (12a)

Z2 � γ � aTN�tf − t�
V 0
T

≈ γM � γT � tgoaTN
V 0
T

� γM � γT � tgoaT
VT

(12b)

Zio �
�
zio � �tfi − t�_zio ≈ t2goiVM

_θoi t ≤ tfi
Constant � Zio�tfi� t > tfi

; ∀i � 1; : : : ; N

(12c)

The dynamics of these zero-effort quantities can be written as

_Z1 � −�tf − t�aMN (13a)

_Z2 �
aMN

V 0
M

� aM
VM

(13b)

_Zio �
�
−�tfi − t�aMN; t ≤ tfi
0; t > tfi

; ∀i � 1; : : : ; N (13c)

This transformation reduces the system order from �2N � 3�
to �N � 2�.
Regarding the reduced-order problem, the problem of guidance

design stated in Sec. II.B now reduces to a problemwith the same cost
function but reduced-order system dynamics given by Eq. (13). The
terminal conditions written in terms of the new states as

Z1�tf� � 0; Z2�tf� � γD; jZio�tf�j ≥ Ri ∀i � 1; : : : ; N

(14)

must be satisfied.
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B. Solution of Reduced-Order Problem

To find the solution for the reduced-order problem, an auxiliary
problem is presented to determine the missile lateral acceleration,
which minimizes the total control effort and satisfies the constraints

Z1�tf� � 0; Z2�tf� � Zd
2 ; Zio�tf� � Zd

io; ∀i � 1; : : : ; N

(15)

with arbitrary Zd
io considered. By using the system dynamics of

Eq. (13), the constraints of Eq. (15) can be rewritten as

Z1�t0� −
Z

tf

0

�tf − τ�aMN dτ � 0 (16a)

Z2�t0� �
Z

tf

0

aMN

V 0
M

dτ � Zd
2 (16b)

Zio�t0� −
Z

tfi

0

�tfi − τ�aMN dτ � Zd
io ∀i � 1; : : : ; N (16c)

Using Theorem 1, given in Appendix A, if aMN is optimal, then
there exist �N � 2� constants λ1; λ2, and λio ∀i � 1; : : : ; N and such
that the missile lateral acceleration aMN can be written as

aMN �

8>>>>>>><
>>>>>>>:

λ1�tf− t��λ2∕V 0
M�

Xi�N

i�1

λio�tfi − t� t≤ tf1

λ1�tf− t��λ2∕V 0
M�

Xi�N

i�j

λio�tfi − t� tfj ≤ t≤ tfN ∀j�1 : : :N

λ1�tf− t��λ2∕V 0
M t≥ tfN

(17)

By inserting aMN from Eq. (17) into Eq. (16) and integrating, we
obtain

Z1�t0� � λ1

Z
tf

t0

�tf − τ�2 dτ� λ2
V 0
M

Z
tf

t0

�tf − τ� dτ

�
Xi�N

i�1

λio

Z
tfi

t0

�tf − τ��tfi − τ� dτ

Zd
2 − Z2�t0� �

λ1
V 0
M

Z
tf

t0

�tf − τ� dτ� λ2
�V 0

M�2
Z

tf

t0

dτ

�
Xi�N

i�1

λio
V 0

M

Z
tfi

t0

�tfi − τ� dτ

Zjo�t0� − Zd
jo � λ1

Z
tfj

t0

�tf − τ��tfj − τ� dτ� λ2
V 0
M

Z
tfj

t0

�tfj − τ� dτ

�
Xi�N

i�1

λio

Z
tfij

t0

�tfi − τ��tfj − τ� dτ (18)

where

tfij � min�tfi ; tfj�
and both i; j � 1; : : : ; N. On evaluating the integrals in Eq. (18), it
reduces to

G

�
λI
λo

�
�

�
ZI

Zo − Zd
o

�
; G �

�
G1 G12

GT
12 G2

�
(19)

where

ZI �
�

Z1�t0�
Zd
2 − Z2�t0�

�
; λI �

�
λ1
λ2

�
; G1 �

2
64

t3go
3

t2go
2V 0

M

t2go
2V 0

M

tgo
�V 0

M�2

3
75
(20a)

G12 �

2
64 tgot

2
go1

2
− t3go1

6
· · ·

tgot
2
goi

2
− t3goi

6
· · ·

tgot
2
goN

2
− t3goN

6

t2go1
2V 0

M
· · ·

t2goi
2V 0

M
· · ·

t2goN
2V 0

M

3
75 (20b)

λo � � λ1o · · · λio · · · λNo �T (20c)

Zo � �Z1o�t0� · · · Zio�t0� · · · ZNo�t0� �T (20d)

Zd
o � �Zd

1o · · · Zd
io · · · Zd

No �T (20e)

�G2�ij � �G2�ji �
tgoj t

2
goi

2
−
t3goi
6

∀i ≤ j; i� 1; : : : ;N; j� 1; : : : ;N

(20f)

From Eq. (19), the coefficients λI and λo (also called Lagrange

multipliers) can be obtained as

�
λI
λo

�
� G−1

�
ZI

Zo − Zd
o

�
; G−1 ≜

"
G1I

G12I

GT
12I

G2I

#
(21)

On computing the total control effort, using Eqs. (10) and (17), and

performing some simplifications, we get

Z
tf

0

a2MN dt �
"
λI

λo

#
T

G

"
λI

λo

#

�
"

ZI

Zo − Zd
o

#
T
"
G1I

G12I

GT
12I

G2I

#"
ZI

Zo − Zd
o

#
(22)

Now, the desired zero-effort miss (ZEM) distances corresponding

to all obstacles Zd
o ∈ RN need to be determined such that they

minimize the total control effort under the constraints of collision

avoidance with all the obstacles; that is, jZd
ioj ≥ Ri ∀i � 1; : : : ; N.

This problem can be written mathematically as

Zd⋆
o � arg min

Zd
o∈S

"
ZI

Zo − Zd
o

#
T
"
G1I

G12I

GT
12I

G2I

#"
ZI

Zo − Zd
o

#
(23)

where

S � fZd
o ∈ RN jZd

o�i� ≥ Ri; ∀ 1; : : : ; Ng (24)

This optimization problem reduces to the problem of optimizing a

convex function over the union of several convex domains. By

computing the optimal valuesZd⋆
o , the values of Lagrangemultipliers

can be obtained using Eq. (21).
Proposition 1: The optimization problem, given by Eq. (23), is

equivalent to the reduced form given by

Zd⋆
o � arg min

Zd
o∈S

�Zd
o − Zc�TG2I

�Zd
o − Zc� (25)

where the vector Zc is defined as

Zc � Zo �G−1
2I
GT

12I
ZI (26)

Proof: The proof of this proposition can be found in

Appendix B. □

Now, the optimal solution Zd⋆
o of the optimization problem, given

by Eq. (25), can be expressed in terms of the generalized dead-zone

function, which is defined in Appendix D as

G2I
�Zd⋆

o − Zc� � ΨS;G2I
�Zc� (27)
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On some algebraic manipulations of Eq. (27), we obtain

Zo − Zd⋆
o � −G−1

2I
ΨS;G2I

�Zc� − �Zc − Zo�

� −G−1
2I

h
ΨS;G2I

�Zc� �GT
12I

ZI

i
(28)

Proposition 2: By using the optimal values for the desired zero-

effort miss distances with respect to the obstaclesZd⋆
o in Eq. (21), the

coefficients λI and λo can be obtained, and those are given by

�
λI
λo

�
�

2
4G−1

1 ZI �G−1
1 G12ΨS;G2I

�Zc�
−ΨS;G2I

�Zc�

3
5 (29)

Proof: The proof of this proposition can be found in

Appendix C. □

To derive the expression for the guidance command, these values

of λ can be substituted in Eq. (17). By defining C1 � �tgo1∕V 0
M�

and C2 � �tgo1 : : : tgoi : : : tgoN �, the guidance command can be

expressed as

aMN �C1λI �C2λo

�C1

h
G−1

1 ZI �G−1
1 G12ΨS;G2I

�Zc�
i
−C2ΨS;G2I

�Zc�

�
"

tgo

1∕V 0
M

#
T

2
64

12
t3go

− 6V 0
M

t2go

− 6V 0
M

t2go

4�V 0
M�2

tgo

3
75
"

Z1�t0�
Zd
2 −Z2�t0�

#

�
h
C1G

−1
1 G12 −C2

i
ΨS;G2I

�Zc�

� 6Z1�t0�
t2go

� 2V 0
M�Z2�t0�−Zd

2�
tgo

�
h
C1G

−1
1 G12 −C2

i
ΨS;G2I

�Zc�

(30)

On evaluating C1G
−1
1 G12, we get

C1G
−1
1 G12�

2
4 6

t2go

−2V 0
M

tgo

3
5T

2
64

tgot
2
go1

2
− t3go1

6
· · ·

tgot
2
goi

2
− t3goi

6
· · ·

tgot
2
goN

2
− t3goN

6

t2go1
2V 0

M
· · ·

t2goi
2V 0

M
· · ·

t2goN
2V 0

M

3
75

�
�
t2go1 �2tgo−tgo1 �

t2go
· · ·

t2goi �2tgo−tgoi �
t2go

· · ·
t2goN �2tgo−tgoN �

t2go

�
(31)

from which we can further simplify C1G
−1
1 G12 − C2 as

C1G
−1
1 G12 − C2 � −

�
tgo1Δ

2
1

t2go
: : :

tgoiΔ
2
i

t2go
: : :

tgoNΔ
2
N

t2go

�
(32)

where Δi � tgo − tgoi , ∀i � 1; : : : ; N are the same as those defined

in Eq. (9). On using Eq. (32), the guidance command in Eq. (30) can

be written as

aMN � 6Z1�t0�
t2go

� 2V 0
M�Z2�t0� − Zd

2�
tgo

− aMNo (33)

where

aMNo � 1

t2go

h
tgo1Δ

2
1 : : : tgoiΔ

2
i : : : tgoNΔ

2
N

i
ΨS;G2I

�Zc�

(34)

The first and second components of the guidance command, given

by Eq. (33), correspond to interception of the target and the

achievement of the desired impact angle, respectively. The termaMNo

in Eqs. (33) and (34) is the component of the guidance command

responsible for detecting obstacles and generating corrective

maneuvers for the avoidance of obstacles. It is important to note that

the term aMNo contains a term corresponding to each obstacle.
Furthermore, each obstacle’s contributing terms have a similar
structure with respect to their corresponding time to go.
The guidance command in Eq. (33) can be approximated in terms

of guidance variables as

aMN �−6Vr
_θ�

�
3�2V 0

M

V 0
T

�
aTN �

�
2V 0

M

tgo

�
�γM� γT − γD�−aMNo

(35)

It can also be noted fromEq. (35) that the guidance command has a
form similar to that of the augmented PN guidance law with a
navigation constant equal to six.
Remark 2: For the case where no obstacles are present in the

engagement environment, the term aMNo disappears from Eq. (35);
consequently, the guidance command is the same as that obtained
in [3].
Remark 3:The proposed guidance law given by Eq. (35) is derived

for a general case of multiple obstacles. Its implementation depends
on the computation of the dead-zone function, which in turn relies on
obtaining the optimal solution of the multivariable quadratic
optimization problem. The main computational burden of the
proposed guidance scheme comes from the optimal solution required
to define the dead-zone function in Eq. (34).
Remark 4: It is worthy to note here that, by deriving the guidance

law, there is no restriction imposed on the value of the desired impact
angle. This allows the proposed guidance scheme to remain
applicable for the arbitrary impact angle as long as other assumptions
remain valid.
It is important to note fromEq. (34) that themaneuvers required for

obstacle avoidance depend on the term ΨS;G2I
�Zc�. If the obstacles

are far away from themissile satisfyingZc ∈ S, thenΨS;G2I
�Zc� � 0.

As a result, the missile does not require any maneuver for obstacle
avoidance. On the other hand, if the missile is close enough to the
obstacle (that is, Zc ∈= S), then ΨS;G2I

�Zc� has a nonzero value; and
the required maneuvers for obstacle avoidance can be obtained from
Eq. (34). Therefore, obstacle collision detection depends on the value
ofZc. This analysis clearly shows that both obstacle detection and the
generation of obstacle-avoidance maneuvers are performed by the
dead-zone functionΨS;G2I

�Zc�. This is different from the algorithms
in [22–26], which performed these two actions independently. Due to
the inherent integration of these two steps, the proposed guidance law
avoids a possible performance degradation, which may result from
the decoupled actions of obstacle detection and obstacle avoidance.
Remark 5:The chances of collisionwith obstacles never arise if the

obstacle are sufficiently far from the missile–target collision course.
In such a case, the guidance strategy for the missile needs to focus
only on interception of the target with a desired intercept angle. The
proposed guidance strategy in Eq. (35) has this feature due to the
presence of aMNo. The dead-zone function nullifies the effect of
distant obstacles. The situation becomes critical only when the
obstacle is near and around the collision course of the missile. This
justifies our assumption that the obstacles are close to the collision
course for guidance derivation.

IV. Particular Cases

In this section, the guidance law for the special cases of
engagement scenarios with one and two obstacles is presented.

A. Case of Single Obstacle

In this case, it is assumed that there is only one obstacle present in
the environment, with the minimum distance required to avoid the
obstacle being R1. For this case, the matrices G12 and G2, as well as
the vector C2, reduce to

GT
12 �

�
tgot

2
go1

2
− t3go1

6

t2go1
2V 0

M

�
; G2 �

t3go1
3

; C2 � tgo1 (36)

On substituting the matrices and vector given in Eq. (36) in the
matrix G, we obtain
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G �

2
666664

t3go
3

t2go
2V 0

M

tgot
2
go1

2
− t3go1

6

t2go
2V 0

M

tgo
�V 0

M�2
t2go1
2V 0

M

tgot
2
go1

2
− t3go1

6

t2go1
2V 0

M

t3go1
3

3
777775 (37)

Note that the matrix G2I
and the set SR1

in this case are given by

G2I
� 3t3go

t3go1Δ
3
1

; SR1
�

n
Zd
1o ∈ RjjZd

1oj > R1

o
(38)

The guidance command, for time t ≤ tf1 , with a single obstacle, is
given by

aMN � −6Vr
_θ�

�
3� 2V 0

M

V 0
T

�
aTN �

�
2V 0

M

tgo

�
�γM � γT − γD�

− �tgo1Δ2
1∕t2go�ΨS;G2I

�Z1c�|������������������{z������������������}
aMNo

(39)

where Δ1 � tgo − tgo1 , and the function ΨS;G2I
�Z1c� is defined in

Appendix E. It is important to note that aMNo in Eq. (39) reduces,

using the definition of ΨR1
�Z1c� in Appendix E as

aMNo � −
3tgo
t2go1Δ1

ψR1
�Z1c� (40)

The term Z1c comes from Eq. (26) and, after some algebraic

manipulations, is given by

Z1c � Z1o�t0� −
t2go1�tgo1 � 3Δ1�

t3go
Z1�t0� −

t2go1V
0
MΔ1

t2go
�Z2�t0� − Zd

2�

which can be further expressed in terms of guidance variables as

Z1c � t2go1

�
VM

_θo �
�
1� 2Δ1

tgo

�
Vr

_θ − aTN

�
1

2
� Δ1

tgo

�
1� V 0

M

V 0
T

��

−
V 0
MΔ1

t2go
�γM � γT − γD�

�
(41)

For all time instants t ≥ tf1 , the guidance command reduces to

aMN � 6Vc
_θ�

�
3� 2V 0

M

V 0
T

�
aTN �

�
2V 0

M

tgo

�
�γM � γT − γD� (42)

Remark 6: The guidance command, given by Eq. (39), has a

structure similar to that obtained in [33], with an additional term for

the impact angle error correction. Note that the guidance laws

proposed in [33] address the problems of only target interception and,

with additional constraint on the rendezvous, for an engagement with

a single obstacle. However, in this paper, in addition to target

interception, an intercept angle constraint is imposed. Moreover, this

paper provides a generic derivation of guidance laws in the presence

of multiple obstacles.

B. Case of Two Obstacles

The minimum distances required to avoid obstacles 1 and 2 are

denoted by R1 and R2, respectively. For this case, the matrix G1

remains the same, whereas the other matrices in Eq. (19) are given by

G12 �

2
64

tgot
2
go1

2
− t3go1

6

tgot
2
go2

2
− t3go2

6

t2go1
2V 0

M

t2go2
2V 0

M

3
75;

G2 �

2
64 t3go1

3

tgo2 t
2
go1

2
− t3go1

6

tgo2 t
2
go1

2
− t3go1

6

t3go2
3

3
75 (43)

The matrix G then becomes

G �

2
666666664

t3go
3

t2go
2V 0

M

tgot
2
go1

2
− t3go1

6

tgot
2
go2

2
− t3go2

6

t2go
2V 0

M

tgo
�V 0

M�2
t2go1
2V 0

M

t2go2
2V 0

M

tgot
2
go1

2
− t3go1

6

t2go1
2V 0

M

t3go1
3

tgo2 t
2
go1

2
− t3go1

6

tgot
2
go2

2
− t3go2

6

t2go2
2V 0

M

tgo2 t
2
go1

2
− t3go1

6

t3go2
3

3
777777775

(44)

and the components of matrix G−1 are given by

G1I
�

2
64

12�3tgo2Δ2�tgoΔ�
Δ3
2
�3tgo2Δ1�tgoΔ� − 6V 0

M�tgoΔ�tgo2�Δ1�2Δ2�
Δ2

2
�3tgo2Δ1�tgoΔ�

− 6V 0
M�tgoΔ�tgo2�Δ1�2Δ2�
Δ2
2
�3tgo2Δ1�tgoΔ�

4�V 0
M�2�tgoΔ�tgo2�2Δ1�Δ2��
Δ2

2
�3tgo2Δ1�tgoΔ�

3
75

G12I
�

2
664

18t2
go2

tgo1Δ2Δ�3tgo2Δ1�tgoΔ� − 6��tgo�2Δ1��tgoΔ�tgo2Δ2�−t2go2Δ1 �
Δ3

2
Δ�3tgo2Δ1�tgoΔ�

−
6V 0

Mt2
go2

tgo1Δ�3tgo2Δ1�tgoΔ�
6V 0

MΔ1�tgoΔ�tgo2Δ1�
Δ2

2
Δ�3tgo2Δ1�tgoΔ�

3
775

G2I
�

2
64

12tgot
3
go2

t3
go1

Δ2�3tgo2Δ1�tgoΔ� − 6tgo�tgoΔ�2tgo2Δ1�
tgo1Δ2Δ2�3tgo2Δ1�tgoΔ�

− 6tgo�tgoΔ�2tgo2Δ1�
tgo1Δ2Δ2�3tgo2Δ1�tgoΔ�

12tgoΔ3
1

Δ3
2
Δ2�3tgo2Δ1�tgoΔ�

3
75 (45)

where Δ1 � tgo − tgo1 , Δ2 � tgo − tgo2 , and Δ � tgo2 − tgo1 .
For this case, the guidance command for time t ≤ tf1 can bewritten

using Eqs. (33) and (35) in terms of the guidance variables as

a⋆MN � −6Vr
_θ�

�
3� 2V 0

M

V 0
T

�
aTN �

�
2V 0

M

tgo

�
�γM � γT − γD�

− �1∕t2go�
"
tgo1Δ

2
1

tgo2Δ
2
2

#
T

ΨS;G2I
�Zc�|������������������������{z������������������������}

aMNo

(46)

where the set SR1;R2
for this case is defined as

SR1 ;R2
�

n
�Zd

1o Zd
2o �T ∈ R2jjZd

1oj > R1; jZd
2oj > R2

o
(47)

The functionΨS;G2I
�Zc� is a two-dimensional dead-zone function.

Although an explicit formula for the computation of this function

would be extremely complex, inAppendix F,we present an algorithm

for computing this function that requires modest computational

resources. The term Zc ∈ R2, obtained by substituting Eq. (45) in

Eq. (26), is given by

Zc �
"
Z1c

Z2c

#

�

2
664Z1o�t0�− t2go1 �3Δ1�tgo1 �

t3go
Z1�t0�− Δ1V

0
Mt2go1
t2go

�Z2�t0�−Zd
2�

Z2o�t0�− t2go2 �3Δ2�tgo2 �
t3go

Z1�t0�− Δ2V
0
Mt2go2
t2go

�Z2�t0�−Zd
2�

3
775 (48)

Similar to Eq. (41), Zc can be further expressed in terms of the

guidance variables.
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Note that the aMNo term in the guidance command, given by
Eq. (46), is not the same as that of the single-obstacle case. However,
other components of the guidance command are similar to those of
the single-obstacle case. It is also important to note that the guidance
commands for the time intervals tf1 ≤ t ≤ tf2 and t ≥ tf2 remain the
same as those for the cases of the single obstacle and no obstacle,
respectively.

V. Simulation Study

In this section, the performance of the proposed guidance law is
evaluated through numerical simulations using linear as well as
nonlinear engagement kinematics. Two types of simulations are
performed: the first one considers only a single obstacle, and the
second one features two obstacles. In the simulations, both
the missile and target are considered to be of ideal dynamics. In the
subsequent figures, the circle and star markers denote the start
positions of the missiles and the targets, respectively; whereas the
diamond markers represent the positions of the obstacles.

A. Single Obstacle

The effect of four different variations in engagement parameters
on the performance of the proposed guidance law is investigated in
this subsection. These include variations in the desired obstacle-

avoidance distance, the desired impact angle, the target maneuvers,

and the engagement duration.
The single-obstacle engagement scenario has an obstacle located

at the position given by �Xo; Yo� � �1500; 200� m and a desired

impact angle of 60 deg. Simulation parameters and initial conditions
are listed in Table 1. Three simulations are performed with linear

kinematics for different desired distances from the obstacle: that is,

R1 � �0; 200; 400 m�. The results are shown in Fig. 2, which depicts
the trajectories of both the missile and target, the lateral acceleration

of the missile, the variation of the relative course of the missile and
target, and the zero-effort miss with respect to the obstacle.
Figure 2 shows that the missile is able to intercept the target at the

desired impact angle. The missile lateral acceleration profile
presented in Fig. 2b shows a piecewise linear profile with respect to

time. This is mainly due to the initial focus of the guidance law on

obstacle avoidance, and then later toward target interception at the
desired impact angle. This change occurs at the time instant when

the missile passes the obstacle. It can also be observed that the
acceleration demand increases as the required minimum distance

from obstacle becomes larger. Consequently, the relative course of

the missile and the target, as shown in Fig. 2c, changes fast for a large
obstacle-avoidance distance. Also, the constraints on the intercept

angle and the desired distance from the obstacle are satisfied as shown
in Figs. 2c and 2d, respectively.
To evaluate the performance for different impact angles,

simulations were performed with the desired impact angles of 0,
30, 60, and 90 deg. The results for these cases are shown in Fig. 3,

depicting the trajectories of the missiles and their lateral

accelerations. The obstacle is located in the same position as in
Fig. 2, with a desired minimum distance of 400 m. The impact angle

criterion is satisfied for all cases. An interesting phenomenon occurs

when γ � 90 deg. Due to the requirement of maintaining a
minimum missile–obstacle distance, the missile passes the obstacle

on a different side as compared to the trajectories corresponding to the
other impact angles.

Table 1 Simulation parameters

Parameters Symbols Values

Missile speed VM 400 m∕s
Target speed VT 400 m∕s
Target acceleration aT 2g
Initial missile–target distance r 10 km
Initial line-of-sight angle θ 0 deg
Missile flight-path angle γM 0 deg
Target flight-path angle γT 0 deg

a) Trajectories of adversaries

c) Variation of relative course of missile and target

b) Missile lateral acceleration

d) Zero-effort miss with regard to obstacle
Fig. 2 Interception at an impact angle of 60 deg with a target maneuver of 20 m∕s2 using linear dynamics in the presence of a single obstacle.
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Simulations have also been carried out for different levels of target
maneuvers with a desired impact angle of 45 deg, and the results are
shown in Fig. 4. In this case, the target performs maneuvers of
aT � 1g, 2g, 3g, and 4g. The obstacle position and desiredminimum
distance are identical to the values used in Figs. 2 and 3. Themissile is
able to achieve the objective in all cases, as shown in Fig. 4a. Note
that, for the cases of target maneuvers of 1g, 2g, and 3g, the missile
first focuses on obstacle avoidance before aiming for target
interception at the desired impact angle. In the case of 4g, the missile
satisfies the constraints of the specified distance from the obstacle;
thus, it only maneuvers for interception at the desired impact angle.
This can be seen in Fig. 4b because themissile lateral acceleration for

aT � 4g is linear in time, unlike the other three cases where the slope
of the lateral acceleration profile changes.
To obtain the performance of the proposed guidance law for

various times of flight, simulations were performed for different
initial missile–target distances. The results are plotted in Fig. 5,
showing the miss distance from the obstacle and the required total
control effort. Five different obstacle-avoidance distances of 200,
300, 400, 500, and 600 m are considered. It can be seen that the
desired distance is achieved for all the cases and the required control
effort increases as the flight time decreases. This is because the
missile has to change its coursewithin a small time, and thus needs to
perform large maneuvers.

a) Trajectories of adversaries b) Missile lateral accelerations

Fig. 3 Performance of proposed guidance for different desired impact angles.

a) Trajectories of adversaries b) Missile lateral accelerations
Fig. 4 Performance of proposed guidance for different levels of target maneuvers with a desired impact angle of 45 deg.

a) Miss distances with respect to obstacle b) Total control efforts of missile

Fig. 5 Performance of proposed guidance with respect to time of flight in the presence of one obstacle.
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Simulations were also performed with nonlinear kinematics, and

the results are shown in Fig. 6. Results with the nonlinear simulation

are similar to those with the linear simulation. The major change can

be noticed in the missile lateral acceleration profile shown in Fig. 6b.

The jump in missile lateral acceleration is due to changing the focus

of the guidance command from obstacle avoidance to target

interception with a desired impact angle; this is before the actual time

to go corresponding to the obstacle becomes zero. The deviation in

the missile lateral acceleration profile from its linear behavior can

also be seen toward interception in Fig. 6b.

Remark 7: It is important to note here that the problem formulation

for guidance derivation is based on small angle deviations for both the

missile and target from the collision course. The proposed guidance

scheme enables the missile to achieve its objective if the underlying

assumptions are valid for the considered engagement scenario.
However, if the actual engagement geometry is very far from the one
assumed for guidance derivation, the proposed guidance schememay
not perform as expected. If the missile is launched in a direction with
a high heading error or the target has a large heading error, then the
performance of the guidance strategy degrades.

B. Two Obstacles

This subsection focuses on investigating the effect of the positions
of obstacles and the different desired obstacle distances on the
performance of the proposed guidance law. First, the engagement
scenarios with two obstacles, located at the positions given by
�X1o; Y1o� � �1500; 200� m and �X2o; Y2o� � �2500; 500� m,
unless specified otherwise, are considered. Simulation parameters

a) Trajectories of adversaries b) Missile lateral acceleration
Fig. 6 Interception at an impact angle of 60 deg with a target maneuver of 20 m∕s2 using nonlinear dynamics in the presence of a single obstacle.

a) Trajectories of adversaries

c) Variation of relative course of missile and target

b) Missile lateral acceleration

d) Zero-effort miss with respect to obstacle
Fig. 7 Interception at an impact angle of 60 deg with a target maneuver of 20 m∕s2 using linear dynamics in the presence of two obstacles.
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and initial conditions are assumed to be the same as those listed in
Table 1. A desired impact angle and the desired distances from
obstacles (R1 andR2) are considered to be 60 deg, 400m, and 500m,
respectively. Simulation results with linear kinematics are shown
in Fig. 7.
With the proposed guidance law, the missile is able to perform

interception of the target at the desired impact angle, as shown in
Fig. 7. Results for the scenario, where the missile focuses only on
interception with a desired impact angle, are also plotted in Fig. 7 for
the clear visualization of the effect of the proposed algorithm. It can
be seen from Fig. 7a that the missile violates the boundary of both
obstacles if it does not take into account obstacle avoidance. The
profile of the missile lateral acceleration, as shown in Fig. 7b, is also
piecewise linear with respect to time. Similar to the single-obstacle
case, the slope of the missile’s lateral acceleration profile changes
twice due to the presence of the two obstacles. Lastly, Fig. 7d
confirms that the desired minimum separation of the missile from
both obstacles is maintained.
To investigate the effectiveness of the proposed guidance law,

simulations are carried out for three different scenarios, listed in
Table 2. The desired minimum distances from the obstacles and the
desired impact angle are considered as �R1; R2� � �400; 500� m and

0 deg, respectively. The results for this case are shown in Fig. 8. The
missile is able to achieve its objectives in all the cases. From Fig. 8a,
we see that the missile orients its trajectory from a single side of both
obstacles for scenarios 2 and 3. But, the trajectory of the missile for
scenario 1 is more interesting because it passes between both
obstacles. This behavior is due to the optimization of the total control
effort. For scenario 2, the missile does not need to perform an
additional maneuver to avoid the second obstacle after it has passed
the first obstacle. Similarly, for scenario 3, the missile does not
require any extra effort for the first obstacle. However, for scenario 1,
the missile has to perform maneuvers to avoid both obstacles as
shown in Fig. 8b.
To understand the effect of the desired minimum distances from

both obstacles, simulations are carried out with different desired
distances from one obstaclewhile keeping the other fixed. The results
with different distances from the first and second obstacles are plotted
in Figs. 9 and 10, respectively. It can be observed from Fig. 9 that the
missile has to apply a large maneuver to overcome the large required
distance from the obstacle. As the obstacle radius increases, the
missile also changes its course and passes along the other side. As
shown in Fig. 10, the missile shows a similar behavior when the
distance from the second obstacle is changed.
To observe the effect of the flight time, simulations are performed

with different initial missile–target distances, and the results are
plotted in Fig. 11. The performance for two obstacles is similar to that
for the single-obstacle case. The distances from both obstacles are
maintained, and the total control effort increases for the smaller
flight time.
Simulation results with nonlinear kinematics are presented in

Fig. 12, where trajectories for intercept angle guidance are also

Table 2 Positions of obstacles

Engagements Obstacle 1�X; Y� Obstacle 2�X; Y�
Scenario 1 (1500, 800) m (2500, 700) m
Scenario 2 (1500, 500) m (2500, 1000) m
Scenario 3 (1500, 200) m (2500, 1800) m

a) Trajectories of adversaries b) Missile lateral accelerations
Fig. 8 Performance of proposed guidance for different positions of obstacles with an impact angle of 0 deg.

a) Trajectories of adversaries b) Missile lateral accelerations
Fig. 9 Performance of proposed guidance for different desired distances with respect to the first obstacle while that with the second obstacle is fixed to

R2 � 400 m.
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shown. The behavior is similar to the single-obstacle case, as shown
in Fig. 6. Due to the presence of two obstacles, two jumps can be
noticed in the missile lateral acceleration profile, as shown in
Fig. 12b.

VI. Conclusions

In this paper, an optimal control-based intercept angle guidance
law was derived for a multiple-obstacle environment. The proposed

guidance law not only achieves desired terminal constraints but also
guarantees a minimum, prespecified separation from the obstacles
along the trajectory.
The guidance command takes a form similar to that of augmented

proportional navigation guidance with some bias terms. The bias
terms correct for the impact angle error and generate maneuvers to
avoid the obstacles.
An interesting feature of the derived guidance law is its generic

nature. The term in the guidance command corresponding to obstacle

a) Trajectories of adversaries b) Missile lateral accelerations
Fig. 10 Performance of proposed guidance for different desired distances with respect to the second obstacle while that with the first obstacle is fixed to

R1 � 100 m.

a) Miss distances with respect to obstacle b) Total control efforts of missile
Fig. 11 Performance of proposed guidance with respect to time of flight in the presence of two obstacles.

a) Trajectories of adversaries b) Missile lateral acceleration
Fig. 12 Interception at an impact angle of 60 deg with a target maneuver of 20 m∕s2 using nonlinear dynamics in the presence of two obstacles.
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avoidance has an intuitive structure, which highlights the

contributions of each obstacle. Due to the simple structure, the

proposed guidance law can be implemented for many obstacles,

provided the solution of a finite-dimensional constrained

optimization problem is computed. However, the computational

burden increases for a large number of obstacles. Simulation results

for one and two obstacles are presented to evaluate the effectiveness

of the proposed guidance law for different positions of the obstacles,

impact angles, and target maneuvers.

In the proposed guidance law, the obstacle detection and

generation of required guidance commands are performed in a single

step. This advantage may prove interesting for the practical

implementation of the guidance law.

Although the derivation of the guidance law assumed linear

kinematics and “close to collision course” trajectories, the

simulation results on nonlinear kinematics and realistic planar

trajectories indicated that the proposed guidance law worked and

provided similar performance when these simplifying assumptions

did not hold. How far the assumptions can be relaxed without

deteriorating the expected performance will be part of future

research efforts.

Appendix A: Existence of Lagrange Multipliers

The following result is Theorem 2.0 in Section 3.10 of [34].
Theorem 1: Let H be a Hilbert space and y1; y2; : : : ; yN a set of

linearly independent vectors inH. Among all vectors ofH satisfying

�x; yi� � ci, i � 1; : : : ; N, where ci are arbitrary scalars, the one that
has the minimum norm is given by

xmin �
XN
i�1

βiyi; i � 1 (A1)

where the coefficients βi satisfy the linear system of equations

XN
i�1

�yi; yj�βi � cj; j � 1; : : : ; N (A2)

In the paper, we use this result for the Hilbert spaceH � L2�t0; tf�
with the inner product defined as

�f; g� �
Z

tf

0

f�t�g�t� dt (A3)

Appendix B: Proof of Proposition 1

Byusing the Schur decomposition [35], thematrix inverseG−1 can

be factorized as

G−1 �
"
I G12I

G−1
2I

0 I

#"
G1I

−G12I
G−1

2I
GT

12I
0

0 G2I

#"
I 0

G−1
2I
GT

12I
I

#

(B1)

By substituting Eq. (B1) in Eq. (23), we obtain

Zd⋆
o � arg min

Zd
o∈S

"
ZI

Zo − Zd
o

#
T
"
I G12I

G−1
2I

0 I

#"
G1I

−G12I
G−1

2I
GT

12I
0

0 G2I

#"
I 0

G−1
2I
GT

12I
I

#"
ZI

Zo − Zd
o

#

� arg min
Zd
o∈S

"
ZI

G−1
2I
GT

12I
ZI � �Zo − Zd

o�

#
T
"
G1I

− G12I
G−1

2I
GT

12I
0

0 G2I

#"
ZI

G−1
2I
GT

12I
ZI � �Zo − Zd

o�

#

� arg min
Zd
o∈S

ZT
I

	
G1I

−G12I
G−1

2I
GT

12I



ZI �

h
G−1

2I
GT

12I
ZI � �Zo − Zd

o�
i
T
G2I

h
G−1

2I
GT

12I
ZI � �Zo − Zd

o�
i

� arg min
Zd
o∈S

�Zd
o − Zo�TG2I

�Zd
o − Zo� − 2ZT

I G12I
�Zd

o − Zo� � ZT
I

	
G1I

−G12I
G−1

2I
GT

12I



ZI � ZT

I G12I
G−1

2I
GT

12I
ZI (B2)

By decomposing �Zd
o − Zo� as �Zd

o − Zc� � �Zc − Zo� and using
the definition of Zc, Eq. (B2) can be reduced after some algebraic
manipulations to

Zd⋆
o � arg min

Zd
o∈S

�Zd
o − Zc�TG2I

�Zd
o − Zc� − 2ZT

I G12I
�Zc − Zo�

� �Zc − Zo�TG2I
�Zc − Zo� � ZT

I

	
G1I

−G12I
G−1

2I
GT

12I



ZI

� ZT
I G12I

G−1
2I
GT

12I
ZI

� arg min
Zd
o∈S

	
Zd
o − Zc



T
G2I

	
Zd
o − Zc



� ZT

I

	
G1I

− G12I
G−1

2I
GT

12I



ZI (B3)

Because the last term does not depend on Zd
o, we obtain Eq. (25).

Appendix C: Proof of Proposition 2

Using Zd⋆
o in Eq. (19), the Lagrange multipliers are

�
λI
λo

�
�

"
G1I

ZI �G12I
�Zo − Zd⋆

o �
GT

12I
ZI �G2I

�Zo − Zd⋆
o �

#
(C1)

On substituting for �Zo − Zd⋆
o � from Eq. (28) in Eq. (C1) and

performing some simplifications, we get

"
λI

λo

#
�

2
4G1I

ZI −G12I
�G−1

2I
�ΨS;Q�Zc� �GT

12I
ZI��

−ΨS;G2I
�Zc�

3
5

�
"
G1I

−G12I
G−1

2I
GT

12I

0

#
ZI −

"
G12I

G−1
2I

I

#
ΨS;G2I

�Zc� (C2)
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Note that the matrix inverse of G can be written in the block matrices form as [35]

"
G1I

G12I

GT
12I

G2I

#
�

2
4 �G1 − G12G

−1
2 GT

12�−1 −G−1
1 G12�G2 −GT

12G
−1
1 G12�−1

−�G2 −GT
12G

−1
1 G12�−1GT

12G
−1
1 �G2 −GT

12G
−1
1 G12�−1

3
5 (C3)

provided the matrices G1; G2; G1 − G12G
−1
2 GT

12 and
G2 − GT

12G
−1
1 G12 are invertible. Also, it is known from the

Woodbury matrix identity [36] that

�G1 − G12G
−1
2 GT

12�−1
� G−1

1 �G−1
1 G12�G2 −GT

12G
−1
1 G12�−1GT

12G
−1
1 (C4)

subjected to the condition that the inverse of the matrices in Eq. (C4)
exists.
Now, simplifying G1I

−G12I
G−1

2I
GT

12I
after substituting for the

matrices G1I
; G12I

, and G2I
from Eq. (C3), and using the Woodbury

matrix identity [Eq. (C4)], we obtain

G1I
−G12I

G−1
2I
GT

12I

� �G1 − G12G
−1
2 GT

12�−1 −G−1
1 G12�G2 −GT

12G
−1
1 G12�−1GT

12G
−1
1

� G−1
1 (C5)

By using Eq. (C5), the expressions for the Lagrange multipliers
[Eq. (C2)] reduce to"

λI

λo

#
�

"
G−1

1 ZI −G12I
G−1

2I
ΨS;G2I

�Zc�
−ΨS;G2I

�Zc�

#

�
"
G−1

1 ZI �G−1
1 G12ΨS;G2I

�Zc�
−ΨS;G2I

�Zc�

#
(C6)

which is the same as those given in Eq. (29).

Appendix D: Generalized Dead-Zone Function

The generalized dead-zone function ΨS;Q�⋅� [37], associated with
subset S ∈ RN and positive definite matrix Q ∈ RN×N , is defined as
the mapping ΨS;Q:R

N → RN such that

ΨS;Q�Z� � Q�z⋆ − Z� (D1)

where z� �zd1o : : : zdio : : : zd2o �T , Z� �Z1c : : : Zic : : : ZNc �T ,
and the minimizer z⋆ ∈ RN is given by

z⋆ � argmin
z∈S

�z − Z�TQ�z − Z� (D2)

Due to the positive definiteness of the matrixQ, the solution of the
problem specified inEq. (D2) always exists. In caseswhere the subset
S is convex, the minimum value z⋆ is unique and can be used to
define the dead-zone function. Unfortunately, the subset S in our
problem is not even connected, and there may exist many solutions.
One of these possible solutions is used to define the dead-zone
function in Eq. (D1).
It is important to note that, if the vector Z belongs to the subset S,

then z⋆ � Z. As a result, ΨS;Q�Z� � 0, which makes the subset S a
dead zone, and it justifies the name of function ΨS;Q�⋅�.

Appendix E: One-Dimensional Generalized
Dead-Zone Function

In the guidance derivation for an engagement scenario with one
obstacle, the one-dimensional generalized dead-zone function with a
nonconnected dead zone of the form

SR1
�

n
Zd
1o ∈ RjjZd

1oj > R1

o
(E1)

is used. To obtain the optimumvalue of the problem given in Eq. (D2)
for one-obstacle cases, consider an optimization problem with the
cost function as

Jopt�Zd
1o� � �Zd

1o − Z1c�TQ�Zd
1o − Z1c� (E2)

On minimizing Eq. (E2) while satisfying the constraints
jZd

1oj > R1, we obtain

Zd⋆
1o �

�
Z1c jZ1cj ≥ R1

R1sign�Z1c� jZ1cj < R1
(E3)

From Eq. (E3), it can be shown that

Zd⋆
1o − Z1c � −ψR1

�Z1c� (E4)

where the function ψR�p�, represented graphically in Fig. E1, is
defined as [38]

ψR�p� �
8<
:

0 jpj ≥ R
p − R 0 ≤ p ≤ R
p� R −R < p < 0

(E5)

On using the definition of the dead-zone function [Eq. (D1)] and
Eq. (E4), we obtain

ΨS;Q�Z1c� � Q�Zd⋆
1o − Z1c� � −QψR1

�Z1c� (E6)

Appendix F: Two-Dimensional Generalized
Dead-Zone Function

In the derivation of the proposed guidance for two obstacles, a two-
dimensional generalized dead-zone function with a nonconnected
dead zone of the form

SR1 ;R2
�

n
�Zd

1o Zd
2o �T ∈ R2jjZd

1oj > R1; jZd
2oj > R2

o
(F1)

is used. Because the set SR1;R2
consists of four convex sets, the

optimal solution to the constrained optimization problem can be
obtained numerically by using iterative methods. This method will
find a minimum solution in every convex set, and the one among
these solutions can be chosen as the optimal solution. Because this

Fig. E1 Graphical representation of the function ψR�p�.
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function has a direct use in the guidance law, this appendix presents

an efficient way to compute the optimal solution.
To obtain the optimum value of the problem given in Eq. (D2) for a

two-obstacle engagement scenario, consider an optimization

problem with the cost function as

Jopt�Zd
1o; Z

d
2o� �

"
Zd
1o − Z1c

Zd
2o − Z2c

#
T
"

q1 −q3
−q3 q2

#"
Zd
1o − Z1c

Zd
2o − Z2c

#

(F2)

subjected to the conditions jZd
1oj ≥ R1 and jZd

2oj ≥ R2. Note that

q1; q2 > 0, q1q2 > q23, and q3 is assumed to be positive for the time

instant. Following the technique in [37], let us first optimize with

respect to Zd
2o while keeping Z

d
1o arbitrary; that is, solve the problem

min
jZd

2oj≥R2

Jopt�Zd
1o; Z

d
2o�

The solution to this problem is

Zd⋆
2o �Zd

1o�

�

8>>>><
>>>>:
Z2c�

q3
q2

�Zd
1o −Z1c�;

����Z2c�
q3
q2

�Zd
1o −Z1c�

����≥R2

R2sign

�
Z2c �

q3
q2

�Zd
1o −Z1c�

�
; otherwise

(F3)

On defining the notations

�Z1o � Z1c −
q2
q3

Z2c; �Z1� � Z1c �
q2
q3

�R2 − Z2c�;

�Z1− � Z1c −
q2
q3

�R2 � Z2c� (F4)

we can rewrite the solution of the preceding problem as

Zd⋆
2o �Zd

1o� �

8>>>><
>>>>:
Z2c �

q3
q2

�Zd
1o − Z1c�; Zd

1o ≤ �Z1− or Zd
1o ≥ �Z1�

R2; �Z1− ≤ Zd
1o ≤ �Z1o

−R2; �Z1o ≤ Zd
1o ≤ �Z1�

(F5)

Now, the expression for Jopt�Zd
1o; Z

d⋆
2o � becomes

Jopt�Zd
1o�� Jopt

n
Zd
1o;Z

d⋆
2o �Zd

1o�
o

�

8>>>>>>>>><
>>>>>>>>>:

q1q2−q23
q2

�Zd
1o−Z1c�2; Zd

1o ≤ �Z1− orZ
d
1 ≥ �Z1�

�Zd
1o−Z1−�2�

q1q2−q23
q2

�R2−Z2c�2; �Z1− ≤Zd
1 ≤ �Z1o

�Zd
1o−Z1��2�

q1q3−q23
q2

�R2�Z2c�2; �Z1o ≤Zd
1 ≤ �Z1�

(F6)

where

Z1� � Z1c �
q3
q1

�R2 − Z2c�; Z1− � Z1c −
q3
q1

�R2 � Z2c� (F7)

To obtain the minimum of function Jopt�Zd
1o� satisfying

jZd
1oj ≥ R1, the following points can be considered:

Zd
11;2

� �R1; Zd
13;4

� Z1�; Zd
15;6

� Z1c;o; Zd
17;8

� �Z1� (F8)

Note that Zd
1o1;2

always satisfies jZ1oj ≥ R1, but the other points

need to be checked for this condition. The optimumvalue of Jopt�Zd
1o�

can be obtained on the point Zd⋆
1o such that it satisfies

Jopt�Zd⋆
1o � � min

jZd
1o j≥R1

Jopt�Zd
1o� (F9)

and the minimum of Jopt�Zd
1o; Z

d
2o� will be achieved at the point

�Zd⋆
1o ; Z

d⋆
2o �Zd⋆

1o ��.
For the cases ofq3 < 0, we have �Z1− > �Z1�; and the expression for

Zd⋆
2o will be changed to

Zd⋆
2o �Zd

1o� �

8>>>><
>>>>:
Z2c �

q3
q2

�Zd
1o − Z1c�; Zd

1o ≤ �Z1� or Zd
1o ≥ �Z1−

R2; �Z1� ≤ Zd
1o ≤ �Z1o

−R2; �Z1o ≤ Zd
1o ≤ �Z1−

(F10)

Consequently, in the formula for Jopt�Zd
1o�, the terms �Z1− and �Z1�

change their places without affecting the rest of the expressions.
After computing the optimal solution of the optimization problem

[Eq. (F2)], the dead-zone function in this case is given by

ΨS;Q

�
Z1c

Z2c

�
� Q

"
Zd⋆
1o − Z1c

Zd⋆
2o − Z2c

#
(F11)
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