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Introduction Background

Sensor I/O Mapping

fV E = f (V )
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N ≥ 6 (Common)

N ≥ 10 (Recommended)
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Introduction Objectives and Motivation

Objectives and Motivation

Obtain efficient calibration technique

I Only N = 2 calibration data points.

I Relies on statistical properties of velocity signal.
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Statistical Calibration Via Gaussianization

Statistical Properties of Turbulent Flow

[Tennekes & Lumley, 1972]

Application of central-limit theorem (CLT)

V ∼ N(µ, σ)
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Statistical Calibration Via Gaussianization The Transformation Method

Mathematical Foundation

X, FX (cdf). Then, U = FX (X ) is uniformly distributed on [0, 1].

X = F−1
X (U)⇒ X ,FX

Φ(u)-cdf of standard Gaussian r.v (the Laplace function).

Z
∆
= Φ−1(FX (X ))⇒ Z ∼ N(0, 1)
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Statistical Calibration Via Gaussianization Calibration Procedure

Calibration Procedure: Method of Gaussianization

fV ∼ N(µ, σ) E � N(µ, σ)

Φ−1 ◦ FE

Z ∼ N(0, 1)

Z = aV +b (E ,V )1,2
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Method Implementation Experimental Validation

Desired Signal Properties

I Should be as close to Gaussian as possible.

I Should possess a sufficiently large standard deviation.

ac= 20 mm. U = 5,7,9 m/s. i.e., Re=acU
ν =6,400–11,500
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Method Implementation Experimental Validation

Wake statistical properties

µX = E [X (t)] σV = [E (X − µX )2]0.5

γ1(X ) = E
[
(X − µX )3

]
/σ3 γ2(X ) = E

[
(X − µX )4

]
/σ4

For Gaussian signal: γ1 = 0 and γ2 = 3
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Method Implementation Experimental Validation

Wake statistical properties

Re=6,400 (U=5 m/s)
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Method Implementation Experimental Validation

Wake statistical properties

Re=6,400 (U=5 m/s) y = 0.25ac , z = −0.25ac
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Method Implementation Experimental Validation

Application of the method

x = 3.75ac , y = 0.25ac , z = −0.25ac
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Method Implementation Experimental Validation

Validation
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Z
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= Φ−1(FE (E ))

(E ,V )1,2
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Method Implementation Experimental Validation

Validation
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V̂ = (Z − b)/a
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Concluding Remarks

Conclusions

I Statistical method for hot-wire sensor calibration.

I Based on Gaussianization.

I Requires only two calibration data points.

I Can provide an extended calibration range.

I Performs well in µV ± 2.5σV range of the signal V (t).

I Performs well even for signals that are only approximately Gaussian.

I Can be modified to accommodate other distributions.
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Hot-Wire Anemometer

Image source:
https://upload.wikimedia.org/wikipedia/commons/d/d3/Anemometre_a_fil_chaud%2C_hot-wire_anemometer.png
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Experimental Validation
I Tungsten wire (5 µm diameter; 1 mm length).
I CTA configuration.
I Freestream (1− 10 m/sec) of the wind tunnel; Pitot-static tube.
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Method of Gaussianization

Consider the random variable

Z
∆
= Φ−1(FE (E ))

⇓

Z ∼ N(0, 1)

⇓

Z = aV + b

a, b are determined by two calibration data points.
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Wake statistical properties
Re=6,400 (U=5 m/s)

µX = E [X (t)] σV = [E (X − µX )2]0.5

γ1(X ) = E
[
(X − µX )3

]
/σ3 γ2(X ) = E

[
(X − µX )4

]
/σ4

o - V × - E
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Wake statistical properties
Re=6,400 (U=5 m/s) y = 0.25ac , z = −0.25ac
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Wake statistical properties
Re=6,400 (U=5 m/s) y = 0.25ac , z = −0.25ac
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Results and Discussion

Estimation Error between V and V̂
SEi - local square error,

SEi = [g (Ei )− ĝ (Ei )]2, i = l , ...,m,

El = min[E (t)], Em = max [E (t)].

MSE -mean-squared error,

MSE =
1

m − l + 1

m∑
i=l

SEi .

Gluzman, Cohen & Oshman 69th Annual Meeting of the APS/DFD November 21, 2016 5 / 5



Results and Discussion

Estimation Error between V and V̂
Re=6,400 (U= 5 m/s)

µV ± 2.5σV

µE ± 2.5σE
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Results and Discussion

Estimation Error between V and V̂
Re=8,900 (U= 7 m/s)

µV ± 2.5σV

µE ± 2.5σE
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Results and Discussion

Estimation Error between V and V̂
Re=11,500 (U= 9 m/s)

µV ± 2.5σV

µE ± 2.5σE
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