Statistical Calibration Via Gaussianization in Hot-Wire Anemometry

Igal Gluzman, Jacob Cohen & Yaakov Oshman

Gluzman, Cohen & Oshman

Hot-Wire Anemometer

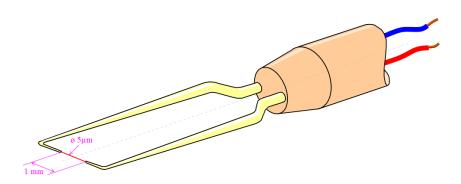


Image source:

 ${\tt https://upload.wikimedia.org/wikipedia/commons/d/d3/{\tt Anemometre_a_fil_chaud\%2C_hot-wire_anemometer.png}$

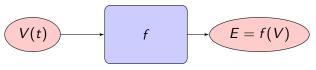
Gluzman, Cohen & Oshman

56th Israel Annual Conference on Aerospace Sciences 9-10 March 2016 2 / 19

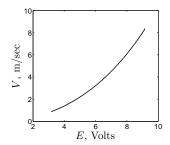
3 / 19

Sensor I/O Mapping

Sensor I/O Mapping



V = g(E) $g = f^{-1}$ - nonlinear mapping function



Techniques to obtain the calibration curve (fitting function) g, (V = g(E)):

- Techniques to obtain the calibration curve (fitting function) g, (V = g(E)):
 - Polynomial fitting (4th order)

$$V_i = \sum_{k=0}^{4} p_k E_i^k, \ i = 1, .., N.$$
 (1)

Error is less than 1%. For polynomial fitting of *n*th order we need at least n + 1 points.

- Techniques to obtain the calibration curve (fitting function) g, (V = g(E)):
 - Polynomial fitting (4th order)

$$V_i = \sum_{k=0}^{4} p_k E_i^k, \ i = 1, .., N.$$
 (1)

Error is less than 1%. For polynomial fitting of *n*th order we need at least n + 1 points.

King's law (power law fitting)

$$E_i^2 = A + B \cdot V_i^n, \ 0.45 \le n \le 0.52, i = 1, .., N.$$
 (2)

Less accurate than polynomial fitting for wide velocity ranges.

Gluzman, Cohen & Oshman

56th Israel Annual Conference on Aerospace Sciences 9-10 March 2016 4 / 19

- Techniques to obtain the calibration curve (fitting function) g, (V = g(E)):
 - Polynomial fitting (4th order)

$$V_i = \sum_{k=0}^{4} p_k E_i^k, \ i = 1, .., N.$$
 (1)

Error is less than 1%. For polynomial fitting of *n*th order we need at least n + 1 points.

King's law (power law fitting)

$$E_i^2 = A + B \cdot V_i^n, \ 0.45 \le n \le 0.52, i = 1, ..., N.$$
 (2)

Less accurate than polynomial fitting for wide velocity ranges.

 $N \ge 7$ data points throughout the desired velocity range.

Gluzman, Cohen & Oshman

Objectives and Motivation

The Goals

Obtain efficient calibration technique.

Gluzman, Cohen & Oshman

56th Israel Annual Conference on Aerospace Sciences 9-10 March

9-10 March 2016 5 / 19

The Goals

Obtain efficient calibration technique.

• Method to obtain $g = f^{-1}$ from sensor output *E*.

The Goals

Obtain efficient calibration technique.

- Method to obtain $g = f^{-1}$ from sensor output *E*.
- Method that requires only N = 2 calibrated data points. Can save time.

The Goals

Obtain efficient calibration technique.

- Method to obtain $g = f^{-1}$ from sensor output *E*.
- Method that requires only N = 2 calibrated data points. Can save time.
- Method that acquires a wider velocity range extending out of the limits of the provided calibrated data.

Gluzman, Cohen & Oshman

Overview

Introduction

Background Objectives and Motivation

Statistical Calibration Via Gaussianization

The Transformation Method Calibration Procedure

Method Implementation

Validation Results and Discussion Robustness to Method Assumptions

Concluding Remarks

Gluzman, Cohen & Oshman

Mathematical Foundation

7 / 19

Consider the random variable X, having F_X as its cdf. Then, the random variable $U \stackrel{\Delta}{=} F_X(X)$ is uniformly distributed on [0, 1].[Rohatgi, 1976]

Mathematical Foundation

Consider the random variable X, having F_X as its cdf. Then, the random variable $U \stackrel{\Delta}{=} F_X(X)$ is uniformly distributed on [0, 1].[Rohatgi, 1976]

 $Z \stackrel{\Delta}{=} \Phi^{-1}(F_X(X))$

 $\Phi(u)$ -the Gaussian cdf (the Laplace function).

Mathematical Foundation

Consider the random variable X, having F_X as its cdf. Then, the random variable $U \triangleq F_X(X)$ is uniformly distributed on [0, 1].[Rohatgi, 1976]

 $Z \stackrel{\Delta}{=} \Phi^{-1}(F_X(X))$

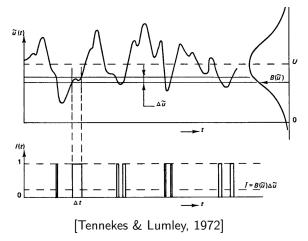
 $\Phi(u)$ -the Gaussian cdf (the Laplace function).

 \downarrow $Z \sim N(0,1)$

Gluzman, Cohen & Oshman

56th Israel Annual Conference on Aerospace Sciences 9-10 March 2016 7 / 19

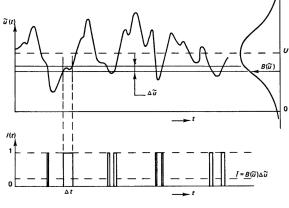
Statistical Properties of Turbulent Flow



Gluzman, Cohen & Oshman

56th Israel Annual Conference on Aerospace Sciences 9-10 March 2016 8 / 19

Statistical Properties of Turbulent Flow



[Tennekes & Lumley, 1972]

Application of central-limit theorem (CLT) [Trotter, 1959],[Lumley, 1976], $V \sim {\it N}(\mu,\sigma)$

Gluzman, Cohen & Oshman

56th Israel Annual Conference on Aerospace Sciences 9-10 March 20

9-10 March 2016 8 / 19

9 / 19

Method of Gaussianization

Consider the random variable

$$Z \stackrel{\Delta}{=} \Phi^{-1}(F_E(E))$$

TECHNION Israel Institute of Technology

9 / 19

Method of Gaussianization

Consider the random variable

STECHNION Israel Institute of Technology

9 / 19

Method of Gaussianization

Consider the random variable

Gluzman, Cohen & Oshman

56th Israel Annual Conference on Aerospace Sciences 9-10 March 2016

TECHNION Israel Institute of Technology

Method of Gaussianization

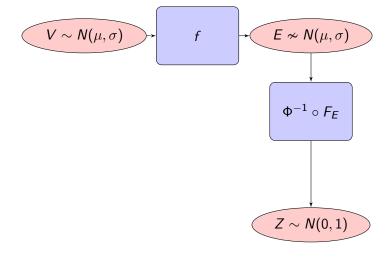
Consider the random variable

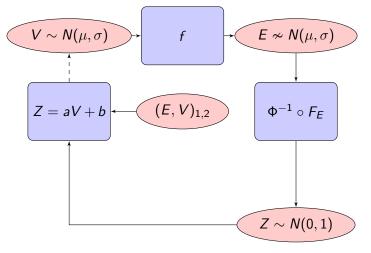
a, b are determined by two calibration data points.

Gluzman, Cohen & Oshman

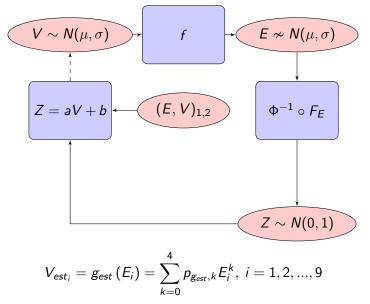
56th Israel Annual Conference on Aerospace Sciences 9-10 March 2016 9 / 19

$$V \sim N(\mu, \sigma)$$
 $f \rightarrow E \not\sim N(\mu, \sigma)$



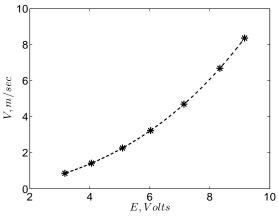


Gluzman, Cohen & Oshman

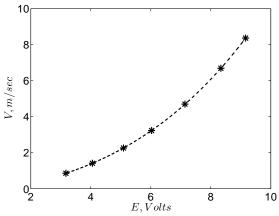


Gluzman, Cohen & Oshman

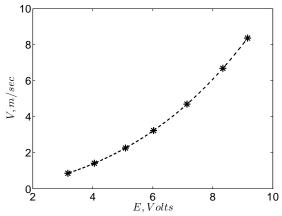
• Tungsten wire of 5 μ m diameter and 1 mm length.



- Tungsten wire of 5 μ m diameter and 1 mm length.
- CTA configuration.



- Tungsten wire of 5 μ m diameter and 1 mm length.
- CTA configuration.
- ► Calibrated in the free stream of the wind tunnel using a Pitot-static tube in the velocity range of 1 - 10 m/sec.



Signal Generation

Statistical properties of Gaussian signal: $\gamma_1 = 0$ and $\gamma_2 = 3$ ([Krishnan (2006)]).

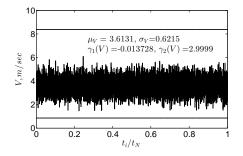
mean:
$$\mu_X = E[X(t)]$$
, std: $\sigma_V = [E(X - \mu_X)^2]^{0.5}$,
skewness: $\gamma_1(X) = E\left[(X - \mu_X)^3\right]/\sigma^3$, kurtosis: $\gamma_2(X) = E\left[(X - \mu_X)^4\right]/\sigma^4$.

Gluzman, Cohen & Oshman

56th Israel Annual Conference on Aerospace Sciences 9-10 March 2016 12 / 19

Signal Generation

Statistical properties of Gaussian signal: $\gamma_1 = 0$ and $\gamma_2 = 3$ ([Krishnan (2006)]).



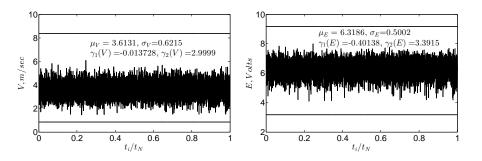
mean: $\mu_X = E[X(t)]$, std: $\sigma_V = [E(X - \mu_X)^2]^{0.5}$, skewness: $\gamma_1(X) = E\left[(X - \mu_X)^3\right]/\sigma^3$, kurtosis: $\gamma_2(X) = E\left[(X - \mu_X)^4\right]/\sigma^4$.

Gluzman, Cohen & Oshman

56th Israel Annual Conference on Aerospace Sciences 9-10 March 2016 12 / 19

Signal Generation

Statistical properties of Gaussian signal: $\gamma_1 = 0$ and $\gamma_2 = 3$ ([Krishnan (2006)]).

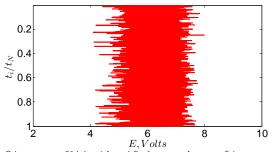


mean: $\mu_X = E[X(t)]$, std: $\sigma_V = [E(X - \mu_X)^2]^{0.5}$, skewness: $\gamma_1(X) = E\left[\left(X - \mu_X\right)^3\right] / \sigma^3$, kurtosis: $\gamma_2(X) = E\left[\left(X - \mu_X\right)^4\right] / \sigma^4$.

Gluzman, Cohen & Oshman

56th Israel Annual Conference on Aerospace Sciences 9-10 March 2016

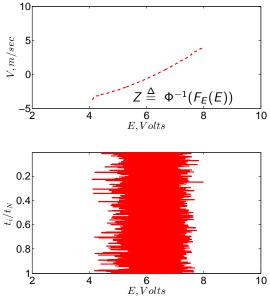
12 / 19



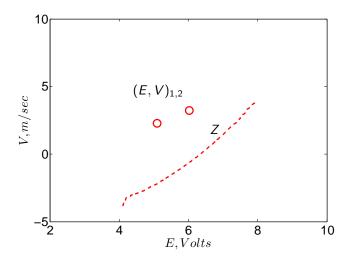
Gluzman, Cohen & Oshman

56th Israel Annual Conference on Aerospace Sciences

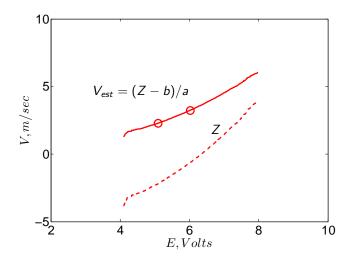
9-10 March 2016 13 / 19



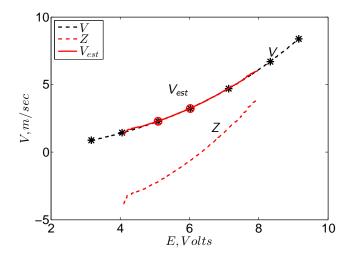
Gluzman, Cohen & Oshman



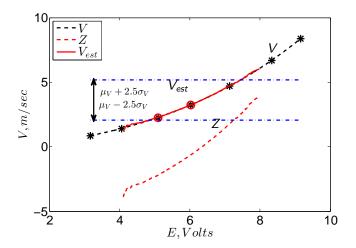
Gluzman, Cohen & Oshman



Validation



Validation



Gluzman, Cohen & Oshman

Estimation Error

MSE-discrepancy (error) between V = g(E) and $V_{est} = g_{est}(E)$,

$$MSE = \frac{1}{m-l+1} \sum_{i=l}^{m} SE_i, \qquad (3)$$

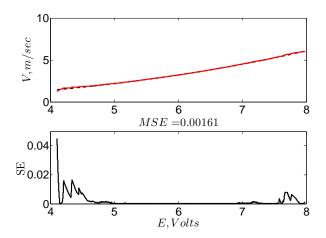
 SE_i - local square error,

$$SE_i = [g(E_i) - g_{est}(E_i)]^2, \ i = 1, ..., m.$$
 (4)

 $E_I = \min[E(t)], E_m = \max[E(t)].$

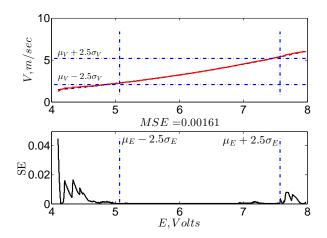
Gluzman, Cohen & Oshman

Estimation Error



Gluzman, Cohen & Oshman

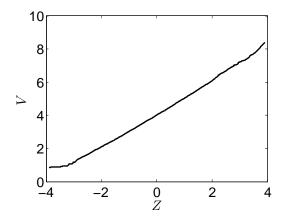
Estimation Error



Gluzman, Cohen & Oshman

Method Implementation Results and Discussion

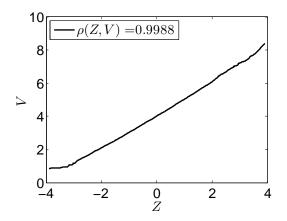
Estimation Performance by Correlation Coefficient



Gluzman, Cohen & Oshman

Estimation Performance by Correlation Coefficient

$$\rho = \frac{\operatorname{cov}(V, Z)}{\sigma_V \sigma_Z} = \frac{E[(V - \mu_V)(Z - \mu_Z)]}{\sigma_V \sigma_Z}, \ |\rho| \le 1.$$
(3)



Gluzman, Cohen & Oshman

Sensitivity of The Method to Gaussian Assumption

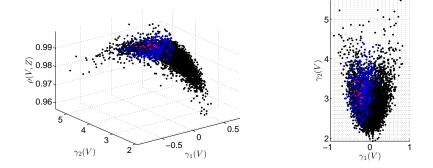
Study the effect of: $\gamma_1(V(t))$, $\gamma_2(V(t))$, V(t). V(t) is generated 5000 times, 100 data points are used.

Gluzman, Cohen & Oshman

Robustness to Method Assumptions

Sensitivity of The Method to Gaussian Assumption

$$|
ho|-1 \le 1 \cdot 10^{-3}$$
, $1 \cdot 10^{-3} \le |
ho|-1 \le 5 \cdot 10^{-3}$, $|
ho|-1 > 5 \cdot 10^{-3}$

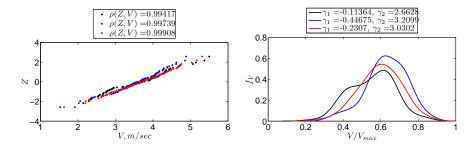


Gluzman, Cohen & Oshman

Robustness to Method Assumptions

Sensitivity of The Method to Gaussian Assumption

 $|\rho| - 1 \le 1 \cdot 10^{-3}, \ 1 \cdot 10^{-3} \le |\rho| - 1 \le 5 \cdot 10^{-3}, |\rho| - 1 > 5 \cdot 10^{-3}$



Method is sensitive to flow velocity distribution.

Gluzman, Cohen & Oshman

Robustness to Method Assumptions

Sensitivity of The Method to Gaussian Assumption

- Method is sensitive to flow velocity distribution.
- The method can be generalized for other distributions besides Gaussian one,

$$Z = F_V^{-1}(F_E(E))$$

Gluzman, Cohen & Oshman

> Presented a statistical method for hot-wire sensor calibration.

- Presented a statistical method for hot-wire sensor calibration.
- The method is based on Gaussianization technique, in which the velocity signal is assumed to be normally distributed.

- Presented a statistical method for hot-wire sensor calibration.
- The method is based on Gaussianization technique, in which the velocity signal is assumed to be normally distributed.
- The method preforms well in $\mu_V \pm 2.5\sigma_V$ range of the signal V(t).

Summary

- Presented a statistical method for hot-wire sensor calibration.
- The method is based on Gaussianization technique, in which the velocity signal is assumed to be normally distributed.
- The method preforms well in $\mu_V \pm 2.5\sigma_V$ range of the signal V(t).
- Normal velocity distribution can be achieved if the hot-wire sensor is placed inside a turbulent flow regime under certain conditions.

Summary

- Presented a statistical method for hot-wire sensor calibration.
- The method is based on Gaussianization technique, in which the velocity signal is assumed to be normally distributed.
- The method preforms well in $\mu_V \pm 2.5\sigma_V$ range of the signal V(t).
- Normal velocity distribution can be achieved if the hot-wire sensor is placed inside a turbulent flow regime under certain conditions.
- The method is sensitive to flow velocity distribution.

Summary

- Presented a statistical method for hot-wire sensor calibration.
- The method is based on Gaussianization technique, in which the velocity signal is assumed to be normally distributed.
- The method preforms well in $\mu_V \pm 2.5\sigma_V$ range of the signal V(t).
- Normal velocity distribution can be achieved if the hot-wire sensor is placed inside a turbulent flow regime under certain conditions.
- The method is sensitive to flow velocity distribution.
- The method can be modified to accommodate distributions other than Gaussian and will perform well if the flow distribution is known.

The End

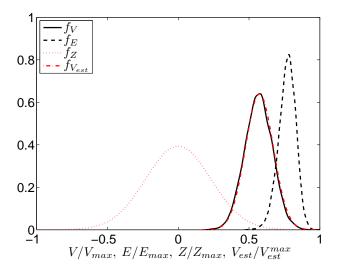
Acknowledgments, Oleg Kan and Yafim Shulman.

Gluzman, Cohen & Oshman

References

- V. Krishnan, Probability and Random Processes, Wiley, 2006.
- Lumley, J. L. Application of central limit theorems to turbulence problems, Springer Berlin Heidelberg, 1972.
- Rohatgi, V., An introduction to probability theory and mathematical statistics, Wiley, New York, 1976.
- H. F. Trotter, An Elementary Proof of the Central Limit Theorem, *Arch. Math.* **10**, 226-234, 1959.
- Tennekes H, Lumley JL. A first course in turbulence. MIT press, 1972.

Method Application- Pdf View



Gluzman, Cohen & Oshman