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Introduction Background

Hot-Wire Anemometer
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Introduction Background

Sensor I/O Mapping

fV (t) E = f (V )

V = g (E )

g = f −1- nonlinear mapping function
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Introduction Background

Hot-Wire Calibration Techniques

Techniques to obtain the calibration curve (fitting function) g ,
(V = g(E )):

I Polynomial fitting (4th order)

Vi =
4∑

k=0

pkE
k
i , i = 1, ..,N. (1)

Error is less than 1%. For polynomial fitting of nth order we need at
least n + 1 points.

I King’s law (power law fitting)

E 2
i = A + B · V n

i , 0.45 ≤ n ≤ 0.52, i = 1, ..,N. (2)

Less accurate than polynomial fitting for wide velocity ranges.

N ≥ 7 data points throughout the desired velocity range.
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Introduction Objectives and Motivation

Objectives and Motivation

The Goals

Obtain efficient calibration technique.

I Method to obtain g = f −1 from sensor output E .

I Method that requires only N = 2 calibrated data points. Can save
time.

I Method that acquires a wider velocity range extending out of the
limits of the provided calibrated data.
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Statistical Calibration Via Gaussianization The Transformation Method

Mathematical Foundation

Consider the random variable X , having FX as its cdf. Then, the random

variable U
∆
= FX (X ) is uniformly distributed on [0, 1].[Rohatgi, 1976]

Z
∆
= Φ−1(FX (X ))

Φ(u)-the Gaussian cdf (the Laplace function).

⇓

Z ∼ N(0, 1)

Gluzman, Cohen & Oshman 56th Israel Annual Conference on Aerospace Sciences 9-10 March 2016 7 / 19



Statistical Calibration Via Gaussianization The Transformation Method

Mathematical Foundation

Consider the random variable X , having FX as its cdf. Then, the random

variable U
∆
= FX (X ) is uniformly distributed on [0, 1].[Rohatgi, 1976]

Z
∆
= Φ−1(FX (X ))

Φ(u)-the Gaussian cdf (the Laplace function).

⇓

Z ∼ N(0, 1)

Gluzman, Cohen & Oshman 56th Israel Annual Conference on Aerospace Sciences 9-10 March 2016 7 / 19



Statistical Calibration Via Gaussianization The Transformation Method

Mathematical Foundation

Consider the random variable X , having FX as its cdf. Then, the random

variable U
∆
= FX (X ) is uniformly distributed on [0, 1].[Rohatgi, 1976]

Z
∆
= Φ−1(FX (X ))

Φ(u)-the Gaussian cdf (the Laplace function).

⇓

Z ∼ N(0, 1)

Gluzman, Cohen & Oshman 56th Israel Annual Conference on Aerospace Sciences 9-10 March 2016 7 / 19



Statistical Calibration Via Gaussianization The Transformation Method

Statistical Properties of Turbulent Flow

[Tennekes & Lumley, 1972]

Application of central-limit theorem (CLT) [Trotter, 1959],[Lumley, 1976],

V ∼ N(µ, σ)
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Statistical Calibration Via Gaussianization The Transformation Method

Method of Gaussianization

Consider the random variable

Z
∆
= Φ−1(FE (E ))

⇓

Z ∼ N(0, 1)

⇓

Z = aV + b

a, b are determined by two calibration data points.
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Statistical Calibration Via Gaussianization Calibration Procedure

Calibration Procedure Diagram

fV ∼ N(µ, σ) E � N(µ, σ)

Φ−1 ◦ FE

Z ∼ N(0, 1)

Z = aV +b (E ,V )1,2

Vest i = gest (Ei ) =
4∑

k=0

pgest ,kE
k
i , i = 1, 2, ..., 9
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Method Implementation Validation

Validation
I Tungsten wire of 5 µm diameter and 1 mm length.

I CTA configuration.
I Calibrated in the free stream of the wind tunnel using a Pitot-static

tube in the velocity range of 1− 10 m/sec .
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Method Implementation Validation

Signal Generation

Statistical properties of Gaussian signal: γ1 = 0 and γ2 = 3 ( [Krishnan (2006)]).

mean: µX = E [X (t)], std: σV = [E (X − µX )2]0.5,

skewness: γ1(X ) = E
[
(X − µX )3

]
/σ3, kurtosis: γ2(X ) = E

[
(X − µX )4

]
/σ4.
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Method Implementation Validation

Validation
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Method Implementation Validation

Validation
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Method Implementation Validation

Validation
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Method Implementation Validation

Validation
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Validation

2 4 6 8 10
−5

0

5

10

E,V olts

V
,m

/
se
c

V
Z
Vest

µV − 2.5σV

µV + 2.5σV

Z

Vest

V

Gluzman, Cohen & Oshman 56th Israel Annual Conference on Aerospace Sciences 9-10 March 2016 13 / 19



Method Implementation Results and Discussion

Estimation Error

MSE -discrepancy (error) between V = g(E ) and Vest = gest(E ),

MSE =
1

m − l + 1

m∑
i=l

SEi , (3)

SEi - local square error,

SEi = [g (Ei )− gest (Ei )]2, i = l , ...,m. (4)

El =min[E (t)], Em =max[E (t)].

Gluzman, Cohen & Oshman 56th Israel Annual Conference on Aerospace Sciences 9-10 March 2016 14 / 19



Method Implementation Results and Discussion

Estimation Error

4 5 6 7 8
0

5

10

V
,m

/
se
c

4 5 6 7 8
0

0.02

0.04

E,V olts

S
E

MSE =0.00161

Gluzman, Cohen & Oshman 56th Israel Annual Conference on Aerospace Sciences 9-10 March 2016 14 / 19



Method Implementation Results and Discussion

Estimation Error

4 5 6 7 8
0

5

10

V
,m

/
se
c

4 5 6 7 8
0

0.02

0.04

E,V olts

S
E

MSE =0.00161

µV + 2.5σV

µV − 2.5σV

µE − 2.5σE µE + 2.5σE

Gluzman, Cohen & Oshman 56th Israel Annual Conference on Aerospace Sciences 9-10 March 2016 14 / 19



Method Implementation Results and Discussion

Estimation Performance by Correlation Coefficient

ρ =
cov(V ,Z )

σVσZ
=

E [(V − µV )(Z − µZ )]

σVσZ
, |ρ| ≤ 1. (3)
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Method Implementation Robustness to Method Assumptions

Sensitivity of The Method to Gaussian Assumption

Study the effect of: γ1(V (t)), γ2(V (t)), V (t).
V (t) is generated 5000 times, 100 data points are used.

|ρ| − 1 ≤ 1 · 10−3, 1 · 10−3 ≤ |ρ| − 1 ≤ 5 · 10−3,|ρ| − 1 > 5 · 10−3

I Method is sensitive to flow velocity distribution.

I The method can be generalized for other distributions besides
Gaussian one,

Z = F−1
V (FE (E ))

Gluzman, Cohen & Oshman 56th Israel Annual Conference on Aerospace Sciences 9-10 March 2016 16 / 19



Method Implementation Robustness to Method Assumptions

Sensitivity of The Method to Gaussian Assumption

Study the effect of: γ1(V (t)), γ2(V (t)), V (t).
V (t) is generated 5000 times, 100 data points are used.

|ρ| − 1 ≤ 1 · 10−3, 1 · 10−3 ≤ |ρ| − 1 ≤ 5 · 10−3,|ρ| − 1 > 5 · 10−3

−0.5
0

0.5

2
3

4
5

0.96

0.97

0.98

0.99

γ1(V )γ2(V )

ρ
(V

,Z
)

−1 0 1
2

3

4

5

γ1(V )

γ
2
(V

)

I Method is sensitive to flow velocity distribution.
I The method can be generalized for other distributions besides

Gaussian one,
Z = F−1

V (FE (E ))

Gluzman, Cohen & Oshman 56th Israel Annual Conference on Aerospace Sciences 9-10 March 2016 16 / 19



Method Implementation Robustness to Method Assumptions

Sensitivity of The Method to Gaussian Assumption

Study the effect of: γ1(V (t)), γ2(V (t)), V (t).
V (t) is generated 5000 times, 100 data points are used.

|ρ| − 1 ≤ 1 · 10−3, 1 · 10−3 ≤ |ρ| − 1 ≤ 5 · 10−3,|ρ| − 1 > 5 · 10−3

1 2 3 4 5 6
−4

−2

0

2

4

V,m/sec

Z

ρ(Z, V ) =0.99417
ρ(Z, V ) =0.99739
ρ(Z, V ) =0.99908

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

V/Vmax
f V

γ1 =-0.11364, γ2 =2.6628
γ1 =-0.44675, γ2 =3.2099
γ1 =-0.2307, γ2 =3.0302

I Method is sensitive to flow velocity distribution.

I The method can be generalized for other distributions besides
Gaussian one,

Z = F−1
V (FE (E ))

Gluzman, Cohen & Oshman 56th Israel Annual Conference on Aerospace Sciences 9-10 March 2016 16 / 19



Method Implementation Robustness to Method Assumptions

Sensitivity of The Method to Gaussian Assumption

Study the effect of: γ1(V (t)), γ2(V (t)), V (t).
V (t) is generated 5000 times, 100 data points are used.

|ρ| − 1 ≤ 1 · 10−3, 1 · 10−3 ≤ |ρ| − 1 ≤ 5 · 10−3,|ρ| − 1 > 5 · 10−3

I Method is sensitive to flow velocity distribution.

I The method can be generalized for other distributions besides
Gaussian one,

Z = F−1
V (FE (E ))

Gluzman, Cohen & Oshman 56th Israel Annual Conference on Aerospace Sciences 9-10 March 2016 16 / 19



Concluding Remarks

Summary

I Presented a statistical method for hot-wire sensor calibration.

I The method is based on Gaussianization technique, in which the
velocity signal is assumed to be normally distributed.

I The method preforms well in µV ± 2.5σV range of the signal V (t).

I Normal velocity distribution can be achieved if the hot-wire sensor is
placed inside a turbulent flow regime under certain conditions.

I The method is sensitive to flow velocity distribution.

I The method can be modified to accommodate distributions other
than Gaussian and will perform well if the flow distribution is known.
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The End

Acknowledgments,
Oleg Kan and Yafim Shulman.

Gluzman, Cohen & Oshman 56th Israel Annual Conference on Aerospace Sciences 9-10 March 2016 18 / 19



References

V. Krishnan, Probability and Random Processes, Wiley, 2006.

Lumley, J. L. Application of central limit theorems to turbulence problems, Springer
Berlin Heidelberg, 1972.

Rohatgi, V., An introduction to probability theory and mathematical statistics,
Wiley, New York, 1976.

H. F. Trotter, An Elementary Proof of the Central Limit Theorem, Arch. Math. 10,
226-234, 1959.

Tennekes H, Lumley JL. A first course in turbulence. MIT press, 1972.

Gluzman, Cohen & Oshman 56th Israel Annual Conference on Aerospace Sciences 9-10 March 2016 19 / 19



Method Application- Pdf View
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