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1.  Introduction and overview 

Lunar landing is a challenging objective. This research is aimed at 
establishing a new method for accomplishing this goal by vision aided 
navigation. Vision aided navigation (VAN) can use a camera or a set of 
cameras in order to estimate the position and orientation (pose) of the 
spacecraft. Once the pose of the vehicle is known with a sufficiently low 
uncertainty, the actions needed in order to accomplish the landing sequence 
can be achieved (e.g. Belief Space Planning (BSP) in the Model Predictive 
Control (MPC) framework). VAN algorithms can vary from one camera 
set (Mono) algorithms to multiple cameras algorithms, where the 
information acquired from these implementations is different as well. 
Furthermore, the algorithms can vary from pose estimation of the vehicle 
to pose estimation of the vehicle and the environment (SLAM) which can 
contribute to a scenario where the environment is unknown a priori and 
loop closures are necessary. 

2.   Camera geometry  

Camera geometry is vital for understanding the constraints and errors 
which the observation model includes. To model the camera, a pinhole 
camera model is used, which defines the object observed, the film and the 
barrier between them, where the pinhole is placed, as seen in Fig. 1. 

 

Figure 1: Pinhole camera model  

This model yields in a specific projection called a perspective projection. 
Perspective projection preserves straight lines, which helps distinguishing 
between affine geometry and Euclidean geometry. For convenience, the 
image plane is in front of the camera center such that the image preserves 
the same orientation (i.e. not inverted).  
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Figure 2: illustration of the pinhole camera model. (Taken from researchgate.net)  

An illustration of the model is visualized in Figure 2(a), which denotes 
the principal point �� as the point of intersection between the image plane 
and the optical axis (noted as principle axis). Furthermore, a point 
captured by the camera with the global coordinates                                             
� = (�, �, �) is projected into the image plane with image coordinates 
�� = (�, �). In Figure 2(b), the focal length � is the distance on the 
principle axis between the camera and the camera plane. The distance of 
�� from the principle axis in the Z coordinate is � = � ∙ �/� and using 
the same for the Y coordinate yields � = � ∙ �/�. This implies that the 
camera is observing the relative angles of an object and not the relative 
distance. This conclusion is vital, as the information gathered from an 
observation is not enough for three-dimensional pose extraction. 

 

Figure 3: Observations acquired in two different poses. (Taken from researchgate.net) 

Figure 3 depicts two observations �� of the same landmarks �� where 
��,� is the Euclidean transformation matrix between the poses.  
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The projection equations of point �� are given by 
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where �� is the rotation matrix and �� is the translation from world frame 

to the � camera frame, �
��

��

��

� are the point M � coordinates in world frame 

and the matrix � is the calibration matrix of the camera formed by the focal 
lengths ��, �� , the principal point coordinates in the image plane (��, ��), 

and the skew �, which can be taken as 0. Note that the left hand side vector 
contains the augmented coordinates of the pixel, such that the original 
coordinates can be recovered by �� = ���/���, �� = ���/���. The main error 
source in this model is the reprojection error. The reprojection error is 
caused by an error in the pixel coordinates, as the resolution is finite and 
there is noise in the measurements. Note that this error will be embedded 
in every algorithm chosen, as the model will remain the same. The 
reprojection error can be written mathematically as  

� = � − π(�, �)    (3) 

where � is the observation (�, �) and π(�, �) is the prediction of the 
measurement according to the pose of the agent � and the landmark �. 
The error can be visualized as shown in Figure 4. 

 

Figure 4: The reprojection error  
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3.   Proposed algorithms 

In order to understand which algorithm to implement, research in the VAN 
field is required. The algorithms will be introduced and compared by the 
information acquired and their relevancy to the implementation. Note that 
for all the introduced algorithms, a proper camera calibration is needed in 
order to calculate the pose of the agent. 

3.1. Localization via known map 

Localization of the agent can be done using a given map by using      
Eq. (1), where the vector of the landmark position is given. Therefore, 
(1) can be written as 
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The matrix needed to be calculated has 6 parameters but Eq. (4) has 2 
constraints. Hence, by sampling more than 3 points the pose can be 
extracted. This algorithm is applicable as a map of the moon is 
available. The problem is to acquire the information needed in order 
to recognize the features sampled, as recognizing the features is 
essential in order to apply the given map coordinates into the 
algorithm. For instance, such recognitions can be done by machine 
learning algorithms and can be proposed as a future research. 

3.2. Image based motion estimation 

Motion estimation can be calculated using only one image by the 
multiple view geometry technique. Consider the scenario in Figure 3, 
where the two frames are obtained from the same camera. Matching 
the features obtained by both poses yields the information of 
corresponding 3D points of the environment, but not the points 
themselves, as the map is not given.  

We introduce the multiple view geometry by using the following 
geometric definitions: Baseline - a line connecting the two poses to 
the camera centers. Epipole - point of intersection between the image 
plane and the baseline. Epipolar Plane - a plane that contains the 
baseline. Epipolar line – a line of intersection between the epipolar 
plane and the image plane. Figure 5 depicts these geometric 
definitions, where π is the Epipole plane and the lines ��, ���� are the 
Epipole lines. 
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Figure 5: Multiple view geometry visualization. Taken from Ref [3]. 

 

Figure 6: Epipolar constraint. Taken from Ref [3].   

Constraining the baseline and the lines of sights of both poses to be 
on the epipolar plane as seen in Figure 6 is called the epipolar 
constraint and can be written as 

��� [�]×����
�

�� = 0 = �� (��)���������������
�

�    (5) 

where [�]× is the matrix cross-product equivalent, � is the rotation 

matrix and ��, ��� are the lines of sight of the involved poses. Note that 

the line of sight can be written as �� = ���� where � is the feature 
coordinates in the image plane. Therefore, by acquiring matched 
features the motion calculation can be done. The algorithm inputs 

are two images with � image correspondences (matched features) 
and the calibration matrix of the camera. The algorithm outputs are 
the motion between the two images, obtained by extracting the 

fundamental matrix �. The extraction of � requires another 
constraint to be introduced. This constraint is named the singularity 
constraint and can be written as: 

���(�) = �    (6) 

Justifying Eq. (6) is done by looking at the epipole point. The epipole 

is in the left and right null space of � and therefore � is singular.        
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� ∈ ��×� has seven degrees of freedom, as a 3x3 homogenous 
matrix has eight independent ratios (there are nine elements, and the 

common scaling is not significant), and the constraint ��� � = 0 
reduces one more. Hence, by using the normalized 8-point 
algorithm, the fundamental matrix can be calculated. Once the 

fundamental matrix is acquired, the essential matrix � can be 

inferred as � = ����, where the calibration matrix � is given. The 
translation can be extracted via SVD (e.g. left singular vector 
corresponds to the least singular value) as 

�� ∙ � = �� ∙ [�]×� = �    (7) 

After the translation is acquired the rotation matrix � can be 
calculated with 4 given solutions. The solution that will satisfy the 
required rotation is the one in which the landmark is in front of both 
cameras, as seen in Figure 7(b). 

 

Figure 7: Four possible solutions for pose extraction. Taken from Ref [3].  

In conclusion, given two images with 8 matched features and the 
calibration matrix of the camera, the motion between the two images 
can be recovered.  

The main issue in image-based motion estimation with one camera 
is that the translation is calculated up to scale. The observations are 
done by a camera which observes only the angles (line of sight) of 
the object as noted in Section 2. This lack of information 
corresponds to the depth loss of the object seen by the camera. 
Another issue arises when accuracy is vital. Image-based motion 
estimation is not accurate as a stand-alone algorithm. The algebraic 
calculation of the fundamental matrix has errors embedded in it 
which cannot be filtered out once the matrix is acquired. 
Furthermore, the pose estimate is calculated in an odometry manner 
which results in dead reckoning effects.  
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3.3 Visual stereo odometry 

Stereo cameras can solve some of the problems introduced in 
Section 3.2. Since the baseline between the two cameras is known 
by design, an algorithm which uses triangulation at each time step to 
infer the landmark position by Eq. (1) can be applied. Once the 
landmark poses are known, the problem is now solved by the 
algorithm given the known map in Section 3.1. This process is 
depicted in Figure 7. The known map at this "inner layer" of the 
algorithm – where the landmark points are given - is known with 
some uncertainty, as the reprojection error remains. Furthermore, the 
baseline between the cameras can reach a maximum length of 
several meters. This fact alone makes the algorithm impractical at an 
early stage landing sequence, as initially the height of the vehicle is 
larger than the baseline by several orders. Thus, the triangulation 
may not suffice for landmark pose estimation.  

 

Figure 7: Stereo visual odometry. Image from Ref [1]. 

 

Reviewing the proposed algorithms yields the possible implementation of 
image-based motion estimation in early stages, noting the algorithm needs 
to be reinforced with distance measurement (e.g. distance from the moon 
surface). Later stages of the landing can be done by switching to a stereo 
camera system as the baseline length becomes relevant in lower heights, 
and, therefore, the precision of a stereo algorithm is high enough.  

4.  Implementation 

This part of the research is focused at implementing the proposed algorithm 
of a single camera, to estimate the pose of an object from a sequence of 
photos in video format. The main concept is to extract the frames from the 
video in a chronological order and to estimate the motion done between the 
frames. Features extraction is done by Scale Invariant Feature Transform 
(SIFT) algorithm. SIFT algorithm extracts pixels from a frame which can 
be identified in other frames as well. This algorithm uses Difference of 
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Gaussians (DoG) as a tool to find scale space invariant extrema by filtering 
and blurring the image with different Gaussians as seen in Figure 8, 
subtracting them to find the different DoGs as seen in Figure 9. The process 
of filtering and blurring in different scales is made in different octaves 
which in this implementation is set to 3. 

 

Figure 8: Gaussian Blur filter application. Image taken from apple.com  

 

Figure 9: Image's convulsions with different Gaussians (Left), Difference of Gaussian (Right).                             
Image taken from Ref [4]. 

Key point of an image (feature) is a point with large gradients of intensity 
in specific directions, so it can be recognized as a corner or a line. 
Calculating these gradients in different scales can filter out properties of 
the image itself, such as time of the picture being taken (day or night) and 
its orientation. Filtering out these properties makes these points 
comparable from different images, as they will be taken from different 
perspectives and light conditions. In order to compare different features, 
each feature has a vector of values called descriptor. The descriptor vector 
is made of 128 values, which are calculated from 16 squares around the 
pixel with 8 gradient orientations for each square. By calculating descriptor 
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norms between different images (i.e. Euclidean distance) the comparison 
is executed. In this implementation an open code called "vlfeat" was used 
in matlab environment to detect and match the features using 3 levels of 
Gaussians octaves. The feature matching algorithm output is shown in 
Figure 10. 

 

 

 

 

 

 

 

 

Figure 10: Matched features taken from two frames of the moon surface  

Note that the matched features acquired from the algorithm are not 
completely accurate, as they include outliers. In order to tackle this 
problem an algorithm called RANSAC (Random Sample Consensus) is 
used. RANSAC is an algorithm which fits a model to a sample data set and 
checks which points in the data set fits the model (inliers). The model with 
the most inliers is the chosen model, and the points that do not fit are 
assumed to be outliers. In this implementation the RANSAC algorithm 
works with maximum trials of model finding set to 1000 and maximum 
distance of the point check to the model of 10. The concept of RANSAC 
is demonstrated for fitting a line (model) to points (data set) and visualized 
in Figure 11. The output of the implementation is shown in Figure 12.  

 

Figure 11: RANSAC fitted line to a data set. Taken from Wikipedia 
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Figure 12: Matched feature of the frames from figure 9 after RANSAC filtering. 

The matched features shown in Figure 12 are consistent in their direction, 
which implies that the pose calculation can be done with good precision. 

The next step is to use the features that are left after the RANSAC filtering 
to calculate the fundamental matrix from the epipolar constraint as 
discussed in Section 3.2 and shown in Eqs. (5) and (6). In order to calculate 
the fundamental matrix the calibration matrix is needed. In order to test the 
algorithm in different scenarios my phone's camera was calibrated using 
the calibration toolbox from Caltech university and a chess board. This 
procedure is made by the algorithm discussed in Section 3.1 with different 
inputs and outputs. In this part, the algorithm is used to output the 

calibration matrix � given the 3D points and pixels as shown in Eq. (4). 
The procedure is demonstrated in Figures 13,14,15. 

 

Figure 13: Chess board photo as seen in the calibration toolbox. The framework is marked with green line.  
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Figure 14: Corners are being marked by hand with [dx,dy] increments.  

 

Figure 15: The final step of calibration matrix extraction. 

The calibration matrix is used to calculate the essential matrix � from the 

fundamental matrix � as seen in Eq. (5). The fundamental matrix is 
achieved first, as the camera's sample is the pixel coordinates of the feature. 
Once the essential matrix is calculated, the translation is calculated as 
shown in Eq. (7) and the rotation needs to be calculated with respect to 
Figure 7(b). In this implementation the computer vision toolbox is used to 
calculate the rotation and translation given the fundamental matrix, the 
calibration matrix and the matched features (after RANSAC filter) as input. 



13 
 

The output is the matrix � as the rotation matrix and the vector � as the 

translation matrix. The transformation matrix � is 

��
� = �

��
�

0�

��→�
�

1
�    (8) 

The inner layer of the algorithm is now complete with the result of the 

transformation matrix �. 

The outer layer of the algorithm achieves the inner layer output only when 
an indicator of the sample precision is valid. By default, the outer layer 
works with a constant increment of 0.3 seconds => 10 frames (30 Hz). The 
default increment can change due to bad precision of the current sample 
which is noted by the inner layer. The precision quality of the sample is 
determined inside the inner layer and a notation variable is sent as an 
additional output to the outer layer (i.e. the indicator). In case the precision 
is not good enough, the outer layer does not include the sample, but instead 
it increases the increment between the frames while the first frame is fixed, 
to acquire a new sample. The first frame must be fixed as the estimation of 
the pose is done in an odometry matter, and therefore, must be relative to 
the last sample. If the increment passes a threshold the process is aborted 
due to low chances of obtaining enough matching features (40 frames in 
this implementation). 

5.   Experiments 

Experiments were done in order to test the algorithm in three different 
scenarios: Circular motion around an object with noticeable texture, 
straight line motion in a corridor with repeating patterns in the 
environment, and random walk which includes turns and straight line 
motions. The experiments were done in a constant height and with my 
phone's camera. Note that the orientation of the body (phone) is marked 
with a cartesian frame colored by red, green and blue. 
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5.1 Results 

 

Figure 16: Circular motion estimation. view from above. 

 

Figure 17: Circular motion estimation. up - east view. 
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Figure 18: Corridor walk. view from above. 

 

 

Figure 19: Corridor walk. up - east view. 

 



16 
 

  

Figure 20: Random walk. view from above. 

 

Figure 21: Random walk. up – east view. 

5.2 Results analysis 

First, the trajectory is estimated up to scale, and therefore, the spatial 
numbers have no meaning and cannot contribute to the analysis of 
the results. Nevertheless, trends in the spatial numbers can contribute 
to the consistency and error analysis. Second, ground truth trajectory 
of the tests is not available. Therefore, the tests were chosen in a way 
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that the analysis is still possible by spotting bias errors and random 
noises. 

Looking at the circular motion estimation in Figures 16,17, the 
estimated trajectory seems noisy but consistent. The movement is 
estimated as a spiral from the north-east view (Figure 16), which 
implies to some bias error and a drift due to the odometry estimation. 
The trajectory from the up-east perspective (Figure 17) is circular 
but inconsistent and noisy, while the up axis numbers should remain 
at zero, as all the tests were done in constant height (approximately). 
Both views have estimation jumps in random directions which are 
due to noise.  

The corridor walk motion estimation is consistent in the south-west 
direction except for some random jumps (Figure 18), noting that the 
overall direction after the random jumps, as the estimation is 
relative. The up-east view looks consistent as well except for some 
random jumps. The "up" direction seems biased in a constant error 
that cause drift. This effect of drift in the up direction had no 
influence on the circular motion and seen in this test for the first 
time. 

The random walk motion estimation is noisy with overall movement 
in the "west" direction. The noise here seems more dominant, but 
cannot be analyzed due to the scale being unavailable. In this test, 
similarly to the corridor walk test, the "up" direction is biased and 
drifts with time.  

In conclusion of the results, the algorithm works in a consistent and 
systematic operation but includes many errors due to bias and 
random noise. Bias error might occur due to imperfect calibration of 
the camera or from numerical errors in the fundamental matrix 
calculation, as homogeneity cannot be precisely written which 
makes the calculations being done in a least square sense. The 
random noise errors might occur due to the reprojection error 
described in Eq. (3), and due to the outliers filtering done by the 
RANSAC. These random errors can theoretically be modeled as 
Gaussians with proper first and second moments and summed with 
the projection model to define the random process of the observation 

� as               � = π(�, �) + ν where ν ~ �(μ, Σ). 
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6.  Future Work 

The work of this research is a step towards lunar landing via vision aided 
navigation but there is still much work to be done in order to integrate the 
system towards accomplishing the goal. The work can be divided into two 
main subjects. The future research and the future experiments. 

6.1. Future research 

This report tackled the measurement problem of an early stage 
landing where the late stage was not discussed. The algorithm 
proposed is using mono set of cameras because having a stereo set 
with a baseline in the scales of the vehicle is useless in the early stage 
of the landing (kilometers above the sampled features). As discussed, 
the algorithm estimates the trajectory up to scale, and, therefore, more 
sensors must be introduced for complete trajectory estimation (e.g. 
IMU, LIDAR). Therefore, integrating these sensors into the system is 
another topic for further research. Moreover, further research is 
necessary to tackle the late stage of the landing, as stereo cameras are 
relevant, but other alternatives might be better in the aspects of 
implementation and precision. 

Note that this report framework is deterministic and should be 
expanded to the stochastic framework to increase the precision and 
accuracy drastically. 

Moreover, this report offered a solution for the measurement model, 
but the motion model was not discussed. For instance, in order to 
design a Kalman filter, having the measurement model is important 
just as the prediction model, which is modeled by the dynamics of the 
vehicle. Therefore, future research in the field of the motion of the 
vehicle, both in the early stage and the late stage of the landing is vital 
for achieving a complete and accurate navigation model. Expanding 
the latter, in order to have a complete motion model, the control 
system must be considered as the inputs (e.g. thrusters) directly 
influence the motion model through the dynamics of the vehicle. (i.e. 

matrix �). Moreover, stepping into the control theory must consider 
the design of the system such that the system is stabilizable and 
detectable. (i.e. the unstable modes are controllable and observable 
respectively). 
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For final stage of the research, autonomous decision making can be 
implemented by the Model Predictive Control (MPC) framework by 
planning in the Belief Space Planning (BSP) domain. Optimizing the 
relevant costs can yield optimized trajectories and the landing can be 
robust to any unexpected disturbances and events. In my opinion, 
implementing an autonomous decision making algorithm is a true 
breakthrough and is not far from being done, given all of the above 
are completed. 

6.2. Future experiments 

The experiments done in this report were basic and their goal was to 
check the consistency and the operation of the algorithm in different 
basic scenarios. Future experiments should include tests of the 
robustness of the algorithm, ground truth trajectory for proper 
comparison and with available scale, a proper error estimation. 
Moreover, with future research being done as noted above, relevant 
experiments should take place such as simulations, landing in 
different zones with different initial conditions, robustness analysis, 
different algorithms and implementations comparisons in aspects of 
calculation time, feasibility of the solutions and more.  
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