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Abstract

The report summarizes a research study on aeroelastic flying wing
configuration, A3TB, using Computational Fluid Dynamics(CFD). Eu-
ler and Navier-Stokes simulation were performed on the rigid and flexible
aircraft configurations to compute the rigid and flexible aerodynamic coef-
ficients due to angle-of-attack and deflected control surfaces.The research
examined the influence of the solver, Euler or Navier-Stokes, on the result
obtained. The main difference noticed is the change in the height of the
boundary layer obtained, due to the low Re number that exists in the
flight condition examined. It also included the effect of the elasticity in
comparison to a rigid configuration in two aspects- the difference in the
lift coefficient obtained, and the effect on flaps efficiency with the increase
of the angle of attack. As expected, the effective angle of attack increases
due to the elastic deformation, which causes higher values of lift coefficient
but also damages the efficiency of the flaps, with the increase of the rigid
angle of attack.

Nomenclature
CD Drag coefficient

CL Lift coefficient

CLα Lift curve Slope

CLδ Flap lift curve Slope

CMX
, CMY

, CMZ
Moment coefficient in X,Y,Z direction
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CN Normal force coefficient

CX , CY , CZ Force coefficient in X,Y,Z direction

KE Generalized stiffness matrix

F Aerodynamic force vector

FE Generalized aerodynamic force vector

g Earth gravity constant

h Altitude

L Change of the temperature at the troposphere

M Mach number

P Pressure [Pa]

PSL Pressure at sea-level [Pa]

q Dynamic pressure [Pa]

Q physical quantities of the Navier-stokes equation [Pa]

R Gas constant

Re Reynolds number

TSL Temperature at sea-level [Pa]

uE Elastic displacements vector

V Velocity [m/s]

X,Y Coordinates

α Angle of attack

αstall Angle of attack at stall

γ Heat capacity ratio

δ Flap deflection angle

ηf Flaps efficiency

ξ Mode deflection

ξE Generalized coordinate

φE Modes matrix
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1 Introduction
The CFD analysis method has become more and more useful and reliable during
recent years. Using both methods allows us to achieve the force applied to the
configuration while updating the deformation obtained from that force, and vice
versa.

In this paper, an investigation of a half flying wing, A3TB, has been per-
formed. The investigation took part in a static aeroelasticity deformation, in
low angles of attack. The topics examined were the difference between Euler
and Navier-Stokes CFD methods, rigid and elastic performance, and the effect
of the elastic wing on flaps efficiency.

2 Mathematical Model
An Euler/Navier-Stokes is used for the fluid dynamics computations. The

flow, in general, is assumed to be compressible, viscous, and turbulent. A
semidiscrete finite volume method using central differencing in space with ex-
plicit multistage time-stepping scheme is employed. A steady-state solution to
the time-dependent Euler/Navier-Stokes equations is obtained by iterating in
time using local time steps and implicit residual smoothing.

The analysis is made on two levels of iterative processes. The first level
contains the CFD analysis for a fixed-shape configuration that, if iterated until
convergence, provides the aerodynamic loads distribution on the rigid aircraft.
The second iterative level introduces the structural elasticity that is combined
with the aerodynamic loading to obtain the corresponding deformed shape. This
level, if iterated until convergence, provides a load distribution that agrees with
the shape of the elastic aircraft.

For computational efficiency, the elastic deformations corrections are intro-
duced during the CFD solution convergence. The user defines a number of
CFD iterations, after which elastic deformations are computed and applied to
the CFD grid. The number of CFD iterations between two successive elastic
deformation was set to be 22% of the number of iterations required for flow-
field convergence. The shape is not updated after each CFD iteration to avoid
excessive computations and numerical instabilities in the flow computations.

The difficulty in that process arises from the difference between the methods.
While the CFD process required computational grid points on the outer body
surface and external to that, the elastic analysis is performed at the internal
elements of the wing, which carry the loads. Moreover, the CFD surface grid
points are usually denser than the structure elements nodes. Therefore, a CFD-
Structures interface has been applied.
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Elastic Deflections
In order to use the scheme, a finite-element free-vibration analysis data, con-

taining a low-frequency set of the free-free elastic vibration modes and a list
of nodes of the elements, was introduced to the CFD analysis included. Data
transfer happened only once, at the start of the simulation. All the elastic
analysis are then computed within the CFD code.

The static aeroelastic equation is

[KE ]{ξE} = {FE} (1)

where [KE ] is the generalized stiffness matrix, and {FE} is the associated gen-
eralized aerodynamic force vector. The generalized forces are obtaining from
summing the aerodynamic forces at the aerodynamic surface grid points ac-
cording to

{FE} = [ΦE ]{F} (2)

where [ΦE ] is the modes matrix, splined to the aerodynamic surface grid
points, and {F} is the aerodynamic force vector at the aerodynamic surface
grid points.

Equation (1) is solved to obtaine {ξE},which is the vector generelized dis-
placments. In order to obtain the deformed shape, the elastic displacements
vector at the aerodynamic grid points {uE} is calculated according to -

{uE} = [ΦE ]{ξE} (3)

After the aerodynamics surface grid points have been updated according to
the aeroelastic deflections, the field grid is also updated accordingly.

Flaps Deflections
The flap generator method that is used in the EZNSS code reads an input

file that contains 2 coordinates of the flap hinge, a leading edge or trailing edge
position of the flap and the flap deflection angle δ. A fictitious mesh is built on
the wing surface and the control surface is deflected in this mesh. This mesh
(deformed at the cs location) is then mapped to the CFD surface mesh using
the same spline algorithm that is used for the elastic modes.

3 Test Case
Figure 1 shows the A3TB geometry. The rectangular wings are swept back in
22 deg. The wings are fitted with eight control surfaces that are used for trim,
and fins for lateral stability. Reference dimensions are detailed in table 1 and
table 2.
In this investigation, a half clamped wing was analyzed with symetric boundry
conditions at the root.the fins were not included in the CFD-model. The flaps
are located at the trailing edge at 25% of the chord.
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Figure 1: A3TB geometry

Table 1: A3TB Half-Configuration Dimensions
Property Value
Reference area 0.535(m2)

Reference span 1.5(m)

Reference chord 0.3(m)

Table 2: Control Surfaces Hinge Coordinates
Control surface Root Tip

1 XR = 0.626(m) XT = 0.731(m)

YR = 0.395(m) YT = 0.656(m)

2 XR = 0.731(m) XT = 0.837(m)

YR = 0.656(m) YT = 0.92(m)

3 XR = 0.837(m) XT = 0.942(m)

YR = 0.92(m) YT = 1.178(m)

4 XR = 0.942(m) XT = 1.048(m)

YR = 1.1785(m) YT = 1.439(m)
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Grids
There are 2 types of CFD grids being used in this work. The first one is

more adequate for an inviscid Euler run, and the second is more adequate to
viscous Navier-Stokes run. In a viscous run, it is essential to take into account
the boundary layer phenomena, and therefore the grid is much denser and has
more total grid points. While in the inviscid grid there are about 2 million and
a half grid points, the viscous grid has about 14 million grid points.

Figure 2: Grid comparison- Green-Euler grid, Purple-Navier-Stokes grid

Figure 2 display both grids around the top airfoil shape. The inviscid grid
is shown in green and the viscous grid in purple. As been mention, the Navier-
Stokes grid is much denser than the Euler grid.

Elastic Vibration Modes
In this work, a set of 10 low-frequency elastic vibration modes was used. The

first three modes are presented in table 3 with their natural frequencies.

Figure 3 shows the first bending and Figure 4 shows the first torsion modes.
In green the A3TB surface CFD grid. In blue the input spline. In red the modes
deflections.

Table 3: Elastic Modes
Number of mode Frequency [Hz] Type

1 6.4 First symrtric mode - body pitching and wing bending

2 9.9 Second symetric mode - forward and backwards bending

3 11 Torsion

4 Results
In this section, we will provide the results from the rigid and elastic analysis.

The conditions of flight are sea-level flight in the velocity of 20-30 [m/s]. At this
range, the Mach number obtained is very low where the CFD code is instable.
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Figure 3: First bending mode

Figure 4: First torsion mode

7



Therefore, to achieve similar results using the computational method, we cal-
culate the dynamic pressure and found the level of flight needed to achieve the
same value, where the code is stable, at Mach number of M=0.2. Equations 4
and 5 used for those calculations.

q =
1

2
ρV 2 =

1

2
γPM2 (4)

P

PSL
=
(

1− Lh

TSL

) g
LR−1

(5)

The EZNSS code provides the convergence result after each iteration. The
convergence method used named L2NORM. The method uses equation 6 to
evaluate the difference obtained from the former iteration until convergence
achieved. [∆Q] vector represent the physical quantities of the Navier-stokes
equation, such as ρ, density, or ρ · u ,density multiply the x direction velocity,
etc.

|L2NORM | =

√√√√ n∑
k=1

|∆Qk|2 (6)

4.1 Rigid Analysis - Navier-Stokes versus Euler
A comparison between an inviscid run, Euler method, and a viscous run,

Navier-Stokes method, is presented.

Besides the results being shown later in the section, a significant difference
between the methods is the time for a single run. Because of the difference
between the CFD grids used, a single Euler iteration is much faster than one
Navier-Stokes iteration. As a result, 6000 iterations in Euler method take about
6-7 hours, while 6000 iterations in the Navier-Stokes method take about 48
hours.

4.1.1 3D Analysis

Figure 5 shows lift coefficient computed for angles of attack between 0 and 5
using Euler and Navier-Stokes simulations. The values in the Euler method are
a bit higher than the Navier-Stokes values. The lift curve slopes, CLα , been
obtained are -
CLeulerα

=4.6814[1/rad]
CLαNavier−Stokes=4.2808[1/rad]
The difference is 9.35%

Figure 6 shows Drag coefficient computed for these angles of attack with
the two methods. As expected, there is a significant difference between the
Navier-Stokes and Euler results when comparing the drag coefficient. The Euler
method is inviscid, and thus does not take into consideration the boundary layer
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Figure 5: Lift Coefficient versus Angle of Attack, M=0.2, q=226.1[pa], h =
17584[m]

Figure 6: Drag Coefficient versus Angle of Attack, M=0.2, q=226.1[pa], h =
17584[m]
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phenomenon. As a result, in the Euler method we received low values of drag
coefficient, while in the Navier-Stokes method, we receive realistic values.

Figure 7: Lift Coefficient Convergence, α = 5◦, M=0.2, q=226.1[pa], h =
17584[m]

Figure 7 shows the lift coefficient convergence with the raise of the number of
iterations. It appears that after 2000 iterations, the lift coefficient has converged
at both methods. The Navier-Stokes curve oscillated through larger values at
first, but then start to converge around the same time as the Euler method.

Figure 8 shows the L2NORM convergence method .From figure 8 we observe
that both curves have almost the same behavior. The Euler curve reaches a
higher value at the beginning, but also, at the end converged sooner than the
Navier-Stokes curve.

4.1.2 2D NACA0012 Analysis

A possible source for the difference in the lift coefficient computed with the
two methods (5) could be the Reynolds number at the analysis flight condition.
At sea-level flight in velocity of 25 [m/s], we obtained Re = 1.225·25·0.3

1.789·10−5 = 5.1·105.
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Figure 8: L2Norm Convergence, α = 5◦, M=0.2, q=226.1[pa],h = 17584[m]

At this low Re number, we expect to have a thick boundary layer and therefore,
the significant differences between viscous and inviscid analysis.

In order to examine this hypothesis, 2D CFD runs were peformed to a NACA0012
airfoil. At each run, the same flow condition were considered. The chordwas
varied leading to different Re numbers.

The results for sea-level standart atmosphere condition at a Mach number
of 0.2 and 5◦ AOA, are:

Table 4: NACA0012 comparison
type Chord[m] Re CL

Euler 1 − 0.6118

Navier-
Stokes

0.1 4.66e05 0.529

0.5 2.33e06 0.546

1 4.66e06 0.554

2 9.32e06 0.56

10 4.66e07 0.57
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From table 4, as the Re number increases, at Navier-Stokes runs, the value of
CL is getting closer to value predicted by the Euler run.

Figure 9: NACA0012 Velocity Profile

In figure 9, 3 velocity profiles show the difference in the boundary layer height.
The left side is the Navier-Stokes run at Re=1e07, in the middle is the Euler
run, and at the right side is the Navier-Stokes run at Re=1e05. At the Euler
run, there is a small boundary layer due to numerical error. At the Navier-
Stokes runs, the bigger the Re number, the smaller the boundary layer. Those
differences show the effective airfoil shape. Where there is a bigger boundary
layer, the effective airfoil shape is much thicker, and thus generates a lower lift
coefficient value.

4.2 Elastic Analysis - Navier-Stokes
All the simulations in this section performed in the altitude of h=14030.4

[m], in a dynamic pressure of q=394.8 [pa], at Mach number of M=0.2, which
represents the dynamic pressure at sea-level flight in the velocity of 25[m/s].

Figure 10 shows the lift coefficient computed for the flexible aircraft in several
AOA values using a Navier-Stokes simulation. All of the elastic simulation
computed at dynamics pressure of 394.8[Pa] which corresponds to 25 [m/s]
at sea-level. From figure 10 we can obtain the lift line slope of the elastic
configuration, the stall angle, and the maximum lift coefficient.
CLα = 5.6875[1/rad]
αstall = 8◦

CLmax = 0.8
CLα was computed for the linear region, based on lift values at 0◦ and 8◦ AOA.
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Figure 10: Lift Coefficient versus Angle of Attack, flexible configuration

Figure 11: Navier-Stokes Convegence, flexible configuratio, α = [0◦, 5◦, 8◦, 10◦]
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Figure 11 shows the convergence of both the lift coefficient and the overall
solution. While in the lower angles of attack both cases converged rapidly, at
the higher angles of attack there are fluctuations in the lift coefficient value even
after many iterations. At 10◦ AOA, the aircraft is stalled and the flow-field does
not converge.

4.3 Rigid vs Elastic Analysis - Euler
All the simulations in this section performed in the altitude of h=14030.4

[m], in a dynamic pressure of q=394.8 [pa], at Mach number of M=0.2, which
represents the dynamic pressure at sea-level flight in the velocity of 25[m/s].

4.3.1 Angle of Attack Comparison

Inviscid Euler analysis at several AOA values were conducted to understand
the effect of wing elasticity on the aerodynamic coefficient. The deformed shape
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of the wing is represented as combination of modal deformations (Eq. 3). Table
5 presents modal displacements at the first three elastic modes computed at
AOA of 0,1,3 and 5 degrees. The largest participation is of the first bending
mode. The modal deformation increases with the AOA. Figures 12 and 13 show
the rigid and elastically deformed wings at 0◦ and 5◦ AOA, respectively. At 5◦
AOA, the wing tip is twisted nose-up by 3.91◦. This contributes to increased
local AOA at outboard wing sections and therefor increased lift (aeroelastic
efficiency greater than 1).

Table 5: Elastic Modes Participation - ξ
AOA Mode 1 Mode 2 Mode 3
0◦ −1.498e−5 −1.13e−4 −4.41e−5

1◦ −0.0013 5.77e−4 0.0018

3◦ −0.004 0.0019 0.0057

5◦ −0.0061 0.0031 0.0094

Figure 12: Wing Shape At AOA=0◦,
Grey-undeformed, Cyan-deformed

Figure 13: Wing Shape At AOA=5◦,
Grey-undeformed, Cyan-deformed

At zero AOA the aerodynamic load, and hence the elastic deformation should
be zero. Due to a slight asymmetric of the airfoil there are small forces even
at zero AOA, which result in slight nose-down pitch and downward bending of
the wing. To evaluate the aerodynamic coefficient of each angle of attack, the
zero-angle value of the has been subtracted. As expected, with the increase of
the angle of attack the elastic configuration generates more lift than the rigid
configuration, as seen in figure 14.

In figure 15, the convergence of the lift coefficient is presented. As been men-
tioned in section 2, an elastic shape update is computed every (approximately)
22% of the total number of iterations which in this case is 500. The elastic
convergence trend in figure 15 shows that until convergence is achieved, there
is a sharp increase (a jump) at the CL value every 500 iterations, followed by
small oscillations while maintaining a converging trend. In both the rigid and
elastic cases, the lift coefficient converges - in the rigid configuration after 1500
iteration, and in the elastic configuration after 3000 iterations.
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Figure 14: Lift Coefficient versus Angle of Attack, Elastic versus Rigid

Figure 15: Lift Coefficient Convergence, Elastic versus Rigid, α = 5◦
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Figure 16: L2Norm Convergence, Elastic versus Rigid, α = 5◦
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Figure 16 shows the L2Norm covergence of the two cases. Until the first
aeroelastic correction, both cases have the same behvior. Afterward, we can see
the same behavior as in figure 15. After 5000 iterations, both cases have almost
the same convergence trend, and after 6000 iterations both cases converged in
almost 3 orders of magnitude.

Figure 17: CN Distribution Along Span, Elastic versus Rigid, α = [0◦, 1◦, 3◦, 5◦]

Figure 17 shows the normal force distribution along the span for the rigid and
elastic configurations, in different angles of attack. With increase of the angle
of attack, the differences between the rigid and elastic configurations increase as
well. In the elastic configuration, due to the nose-up pitch of the loaded wing,
more lift is generated in outboard sections. The most significant differences can
be found in about 60%− 80% of the span.

4.3.2 Flap Comparison at 0◦ Angle of Attack

Figure 18 and table 6 show the lift coefficients and slope for each flap, for the
rigid and flexible cases.

For both the rigid and elastic configurations, the inboard flap (1) is the most
efficient (as indicated by its highest lift slope) and the outboard flap (4) is
the least efficient. Besides flap-2, the lift slope curve is higher for the elastic
configuration than for the rigid one. Flap 4 is influenced the most from the
configurations differences, while flap 2 is influenced the least, with an opposite
trend (becoming less effective).
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Figure 18: Lift Coefficient versus Angle of Attack, Elastic versus Rigid Flaps
Comparison

Table 6: Flaps Lift Slope Curve - CLδ
Flap Rigid CLδ Elastic CLδ η

[1/rad] [1/rad]
1 0.4293 0.4411 2.75%

2 0.4077 0.3997 −1.96%

3 0.2945 0.3009 2.17%

4 0.2719 0.2894 6.44%
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Moreover, there is a particularly large difference at the lift slope curve, CLα
between flaps 1,2 and flaps 3,4.

Figure 19: Convergence at α = 0◦,δ = 5◦, Elastic versus Rigid Flaps 1,4 Com-
parison

In figure 19 we can see the convergence of both the lift coefficient and the
overall solution. Unlike in figures 15 or 16, the fluctuations here are much
smaller, due to smaller deformations, which create a smoother convergence line.

Figure 20 shows the normal force coefficient distribution over the span for the
four deflected flaps, for the rigid and elastic configurations. In figure 20 we can
see that the rigid configuration generates greater normal force along the span
than the elastic configuration. The trend of the rigid and elastic spanwise loads
is almost identical for the different flaps. Flaps 1,2 achieve almost the same max
CN values, which is higher than the CN value at flaps 3,4.
Also, there are sharp changes in the values of CN along the span. These may be
due to the combination of the grid density and the process by which the flaps
are being deflected.

Flaps efficiency
The efficiency of the flaps, was calculated as follows:

ηf =
CelasticLδ

− CrigidLδ

CrigidLδ

· 100 (7)
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Figure 20: CN Distribution Along Span, Elastic versus Rigid Flaps Comparison
at α = 0◦, δ = 5◦

Figure 21: Flap Efficiency Comparison at AOA=0
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At an angle of attack of 0◦, and deflection of flaps 1,4 in angles of δ = [1◦, 3◦, 5◦],
we obtain the efficiency of 2.74% for flap1, and 6.4% for flap4, in favor of elastic
configuration.

4.3.3 Flap Comparison at 5◦ Angle of Attack

Figure 22: CN Distribution Along Span, Elastic versus Rigid Flaps 1,4 Com-
parison at α = 5◦

Figure 22 shows the normal force coefficient distribution over the span for the
four deflected flaps, for the rigid and elastic configurations at 5◦ AOA. In figure
22 we can see that the differences in values of CN are mainly because of the
angle of attack α = 5◦, while the contribution of flaps is much lower than the
α = 0◦ case. Moreover, the flaps contribution of the elastic configuration is less
than the rigid configuration, as will be specified in the efficiency of the flaps.

Flaps efficiency
Using the same process as used in α = 0◦, we obtained the efficiency of the

flaps for α = 5◦ for an elastic configuration, in comparison to the rigid one. In
this case, when the deflection of the flap is δ = 1◦, the efficiency obtained is the
lowest for flap 1: −12.6% and is the greatest for flap 4:−6.9%. For deflections
of δ = [3◦, 5◦], the efficiency of flaps is around − 8.5%. It follows, that the
flaps lose their efficiency in the elastic configuration, in comparison of the rigid
configuration, as expected.
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Figure 23: Flaps Efficiency Comparison at AOA=5

5 Conclusions
This report summarizes results of an aeroelastic investigation of a half flying-
wing configuration, using the EZNSS CFD code. Comparing results of the Euler
and Navier-Stokes models, we found that due to the low Reynolds number and
its effect on the boundary layer’s thickness, the Euler-computed lift coefficient
is slightly higher than that from the Navier-Stokes. The Euler simulation time
is much shorter than Navier-Stokes; Although the Euler model is less accurate,
it provides a good approximation of the aerodymanic coefficients for the rigid
and deformed configurations, in a short time.

the study examined the effect of wing elasticity on the aerodynamic coeffi-
cient, focusing on the lift. From the Navier-Stokes simulations, we found that
the stall angle for the elastic configuration is about 8◦ due to stall of the out-
board sections. A positive AOA causes positive wing twist which increases the
effective AOA, and as a result, a larger value of lift coefficient obtained in com-
parison to the rigid configuration. The convergence trend is maintained in both
configurations, inspite of small oscillations due to the aeroelastic corrections
following every 500 iterations.

Investigation of the deflected flaps shows that with increase of the AOA, the
efficiency of the flap of the elastic wing is decreasing. While in 0◦ AOA there
is an improvement of 2-6% at the efficiency of the flaps, in AOA 0f 5◦ the rigid
configuration efficiency is better by 8%.
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