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Introduction 

This project focuses on an aircraft preforming a ground circle. The aircraft flies in the 
presence of wind, therefore its trajectory is circular only relatively to the ground. This 
project attempts to find the optimal flight energy wise.    

 

Approaching the problem 

We will approach this problem assuming the aircraft is a point of mass and assuming its 
thrust is equal to its drag, therefore it flies in a constant airspeed. Figure  1  describes the 
aircrafts flight, the symbols in it represent the following: 

• 𝑣𝑣𝑎𝑎 – The aircrafts velocity in respect to the air. 
• 𝑣𝑣𝑔𝑔 – The aircrafts velocity in respect to the ground. 
• 𝑣𝑣𝑤𝑤 – The winds velocity in respect to the ground. 
• 𝜓𝜓 – The aircrafts angle in the circle.  
• 𝜓𝜓𝑎𝑎 – The angle between the vector 𝑣𝑣𝑎𝑎����⃗  and the dashed line perpendicular to the 

vector 𝑣𝑣𝑤𝑤����⃗ .  
• 𝐿𝐿,𝐷𝐷,𝑇𝑇 – Forces acting on the aircraft in this plane. Lift, Drag and Thrust respectively. 
• 𝜙𝜙 – The aircrafts roll angle. 

 

 

 

Figure  1  



With 𝜓𝜓 measured as shown, it is possible to obtain that 𝜓𝜓 is also the angle between the 
dashed line perpendicular to the wind velocity vector and the aircrafts ground velocity 
vector (which is tangent to the preformed circle). This will be used to obtain geometrical 
relations. 

During the analysis it will be assumed that the aircrafts velocity with respect to the air, 𝑣𝑣𝑎𝑎, is 
much larger than the winds velocity, 𝑣𝑣𝑤𝑤: 

𝑣𝑣𝑎𝑎 ≫ 𝑣𝑣𝑤𝑤 → 𝑣𝑣𝑤𝑤
𝑣𝑣𝑎𝑎
≪ 1        ( 1 ) 

 

The aircrafts dynamics and leading equations 

Since the thrust is equal to the drag: 

𝑇𝑇 = 𝐷𝐷      ( 2 ) 

We can understand that the only force element contributing to the aircrafts’ acceleration is 
𝐿𝐿 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙 . This element causes both the centripetal and tangential accelerations, I will use 
the centripetal equation: 

𝐿𝐿 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜙𝜙) ∙ 𝑐𝑐𝑐𝑐𝑠𝑠(𝜓𝜓 − 𝜓𝜓𝑎𝑎) = 𝑊𝑊
𝑔𝑔
∙ �̇�𝜓 ∙ 𝑣𝑣𝑔𝑔     ( 3 ) 

By the definition of the roll angle, 𝜙𝜙, and assuming the aircraft maintains its altitude: 

𝐿𝐿 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠 (𝜙𝜙) = 𝑊𝑊     ( 4 ) 

Combining ( 3 ),  ( 4 ) to get more useful expressions: 

𝑡𝑡𝑡𝑡𝑠𝑠 (𝜙𝜙) = �̇�𝜓∙𝑣𝑣𝑔𝑔
𝑔𝑔∙𝑐𝑐𝑐𝑐𝑐𝑐 (𝜓𝜓−𝜓𝜓𝑎𝑎)

      ( 5 ) 

𝐶𝐶𝐿𝐿 = 𝐶𝐶𝑊𝑊 ∙ �1 + 𝑡𝑡𝑡𝑡𝑠𝑠2(𝜙𝜙)     ( 6 ) 

As briefly mentioned earlier, geometrical relations are also used in this analysis. They can 
help us find the dependency between the different velocities and angles. Looking at a 
relevant drawing will help finding these relations. 

 

Figure 2 

 



By trigonometric relations it is simple to obtain: 

𝑣𝑣𝑔𝑔 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠 (𝜓𝜓) = 𝑣𝑣𝑎𝑎 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠 (𝜓𝜓𝑎𝑎)      ( 7 ) 

𝑣𝑣𝑔𝑔 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜓𝜓) − 𝑣𝑣𝑎𝑎 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜓𝜓𝑎𝑎) = 𝑣𝑣𝑤𝑤      ( 8 ) 

Again, making these expressions more useful is necessary: 

𝑣𝑣𝑔𝑔
𝑣𝑣𝑎𝑎

= 𝑣𝑣𝑤𝑤
𝑣𝑣𝑎𝑎
∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜓𝜓) + ��𝑣𝑣𝑤𝑤

𝑣𝑣𝑎𝑎
�
2
∙ (𝑠𝑠𝑠𝑠𝑠𝑠2(𝜓𝜓) − 1) + 1    ( 9 ) 

𝑐𝑐𝑐𝑐𝑠𝑠(𝜓𝜓 − 𝜓𝜓𝑎𝑎) = ��𝑣𝑣𝑤𝑤
𝑣𝑣𝑎𝑎
�
2
∙ (𝑠𝑠𝑠𝑠𝑠𝑠2(𝜓𝜓) − 1) + 1    ( 10 ) 

 

 

Consumed energy  

The whole goal of this analysis is to minimize the consumed energy. The energy can be 
found by integrating the aircrafts power during a whole circle: 

𝐸𝐸 = ∫ 𝐷𝐷 ∙ 𝑣𝑣𝑎𝑎 ∙ 𝑑𝑑𝑡𝑡
𝑇𝑇
0 = ∫  𝐷𝐷∙𝑣𝑣𝑎𝑎

�̇�𝜓
∙ 𝑑𝑑𝜓𝜓2𝜋𝜋

0 = ∫  𝑒𝑒 ∙ 𝑑𝑑𝜓𝜓2𝜋𝜋
0     ( 11 ) 

Notice we are still missing the drag force, 𝐷𝐷, and the angular velocity, �̇�𝜓. We can find them 
by their definitions: 

𝐷𝐷 = 1
2
𝜌𝜌 ∙ 𝑣𝑣𝑎𝑎2 ∙ 𝑠𝑠 ∙ (𝑘𝑘 ∙ 𝐶𝐶𝐿𝐿2 + 𝐶𝐶𝐷𝐷0)     ( 12 ) 

�̇�𝜓 = 𝑣𝑣𝑔𝑔
𝑅𝑅

       ( 13 ) 

The next step is to plug the equations into the energy integrand: 

𝑒𝑒 =
1
2

𝑠𝑠𝑣𝑣𝑎𝑎2𝜌𝜌 𝑅𝑅
𝑣𝑣𝑤𝑤
𝑣𝑣𝑎𝑎

sin(𝜓𝜓) + �𝑣𝑣𝑤𝑤𝑣𝑣𝑎𝑎
2

((sin(𝜓𝜓))2 − 1) + 1
 

�𝐶𝐶𝑊𝑊2 �
�𝑣𝑣𝑤𝑤𝑣𝑣𝑎𝑎

 sin(  𝜓𝜓)+�𝑣𝑣𝑤𝑤𝑣𝑣𝑎𝑎
2

((sin(𝜓𝜓))2−1)+1�
4
𝑣𝑣𝑎𝑎4

𝑅𝑅2𝑔𝑔2�𝑣𝑣𝑤𝑤𝑣𝑣𝑎𝑎
2

((sin(𝜓𝜓))2−1)+1�
+ 1�𝑘𝑘 + 𝐶𝐶𝐷𝐷0�      (  )14   

               

The outcoming expression is very unpleasant, especially if we want to integrate it (and we 
do). In order to make the integration simpler, I derived the integrand into a series at  𝑣𝑣𝑤𝑤

𝑣𝑣𝑎𝑎
= 0 

(recalling  ( 1 )). This derivation is one that can lead to many mistakes, and in order to 
prevent that and make the rest of the mathematical work simpler, I started using Maple. The 
resultant integrand, developing the series up to its 3rd term, is: 

 



𝑒𝑒 = −1
4

   𝑐𝑐𝑣𝑣𝑎𝑎
2𝜌𝜌 

𝑅𝑅 𝑔𝑔2
�𝑣𝑣𝑤𝑤
𝑣𝑣𝑎𝑎

2
�𝑔𝑔2𝑅𝑅2�𝐶𝐶𝑊𝑊2𝑘𝑘 + 𝐶𝐶𝐷𝐷0� + 7 𝐶𝐶𝑊𝑊2𝑘𝑘𝑣𝑣𝑎𝑎4�(cos(𝜓𝜓))2 + 2  𝑣𝑣𝑤𝑤

𝑣𝑣𝑎𝑎
 (𝑔𝑔2𝑅𝑅2(𝐶𝐶𝑊𝑊2 𝑘𝑘 +

𝐶𝐶𝐷𝐷0) − 3 𝐶𝐶𝑊𝑊2 𝑘𝑘𝑣𝑣𝑎𝑎4) sin(𝜓𝜓) + (−2 𝑔𝑔2𝑅𝑅2(𝐶𝐶𝑊𝑊2 𝑘𝑘 + 𝐶𝐶𝐷𝐷0)− 6 𝐶𝐶𝑊𝑊2 𝑘𝑘𝑣𝑣𝑎𝑎4) 𝑣𝑣𝑤𝑤
𝑣𝑣𝑎𝑎

2
− 2 𝑔𝑔2𝑅𝑅2(𝐶𝐶𝑊𝑊2 𝑘𝑘 +

𝐶𝐶𝐷𝐷0) − 2 𝐶𝐶𝑊𝑊2 𝑘𝑘𝑣𝑣𝑎𝑎4� + ⋯                        ( 15 ) 

 

Now, finding the energy is simple. Integrating and substituting the definition of the weight 
coefficient: 

𝐶𝐶𝑊𝑊 =
𝑊𝑊
𝑠𝑠

1
2𝜌𝜌𝑣𝑣𝑎𝑎

2       (  )16  

And the energy is: 

𝐸𝐸 = 1
4
 𝜌𝜌 𝑣𝑣𝑎𝑎

2𝑐𝑐𝜋𝜋
𝑅𝑅𝑔𝑔2

�12 
𝑊𝑊
𝑠𝑠

2
𝑅𝑅2𝑔𝑔2𝑘𝑘𝑣𝑣𝑤𝑤𝑣𝑣𝑎𝑎

2

𝜌𝜌2𝑣𝑣𝑎𝑎4
+ 20 

𝑊𝑊
𝑠𝑠

2
𝑘𝑘𝑣𝑣𝑤𝑤𝑣𝑣𝑎𝑎

2

𝜌𝜌2
+ 3 𝐶𝐶𝐷𝐷0 𝑅𝑅2𝑔𝑔2

𝑣𝑣𝑤𝑤
𝑣𝑣𝑎𝑎

2
+ 16 

𝑊𝑊
𝑠𝑠

2
𝑅𝑅2𝑔𝑔2𝑘𝑘

𝜌𝜌2𝑣𝑣𝑎𝑎4
+ 16 

𝑊𝑊
𝑠𝑠

2
𝑘𝑘

𝜌𝜌2
+

4 𝐶𝐶𝐷𝐷0 𝑅𝑅2𝑔𝑔2�                        ( )17   

                          

I found the energy in terms of the aircrafts air velocity, and other parameters that vary 
between different aircrafts and circles. Having found the expression for the energy, I could 
now find the velocity an aircraft must fly in to minimize the energy (by finding the derivative 
and its roots in terms of 𝑣𝑣𝑎𝑎): 

𝑣𝑣𝑎𝑎𝑐𝑐𝑜𝑜𝑜𝑜𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 =
√2 √𝑘𝑘4 �3 𝑣𝑣𝑤𝑤𝑣𝑣𝑎𝑎

2
+4

4
√𝑔𝑔√𝑅𝑅�

𝑊𝑊
𝑠𝑠

�3 �𝑣𝑣𝑤𝑤𝑣𝑣𝑎𝑎
2
+43�𝜌𝜌

2𝑔𝑔2𝑅𝑅2𝐶𝐶𝐷𝐷0+20 𝑘𝑘�
𝑣𝑣𝑤𝑤
𝑣𝑣𝑎𝑎

2
+45�

𝑊𝑊
𝑠𝑠

24
   ( 18 ) 

 

This optimal velocity can also be found in the case of no wind: 

𝑣𝑣𝑎𝑎𝑐𝑐𝑜𝑜𝑜𝑜𝑤𝑤𝑐𝑐 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
=

√2 √𝑘𝑘4
√𝑔𝑔√𝑅𝑅�

𝑊𝑊
𝑠𝑠

�𝐶𝐶𝐷𝐷0 𝑅𝑅2𝑔𝑔2𝜌𝜌2+4 
𝑊𝑊
𝑠𝑠

2
𝑘𝑘

4
   ( 19 ) 

 Dividing the two velocities and developing it into a series (at  𝑣𝑣𝑤𝑤
𝑣𝑣𝑎𝑎

= 0) gives us an interesting 

result:  

𝑣𝑣𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
𝑣𝑣𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

= 1 − 1
8

1

 𝑅𝑅
2∙𝑔𝑔2

𝑣𝑣∗4
+1
∙ �𝑣𝑣𝑤𝑤

𝑣𝑣𝑎𝑎
�
2

+ 𝑂𝑂 ��𝑣𝑣𝑤𝑤
𝑣𝑣𝑎𝑎
�
4
�     ( 20 ) 

 

 

 

 

 



The optimal velocity with the presence of wind is slightly smaller than the optimal velocity 
with no wind.  

 

We are also interested in the “price paid”, the ratio between the optimal energy with wind 
to that without wind. In order to do so, both energies will be found, using the optimal 
velocities found ( 18 ), ( 19 ) and plugging them into the energy  ( )17  : 

 

𝐸𝐸𝑐𝑐𝑜𝑜𝑜𝑜𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 =
𝑊𝑊
𝑠𝑠  𝑐𝑐𝜋𝜋�3 �

𝑣𝑣𝑤𝑤
𝑣𝑣𝑎𝑎

2
+43�𝜌𝜌

2𝑔𝑔2𝑅𝑅2𝐶𝐶𝐷𝐷0+20 𝑘𝑘�
𝑣𝑣𝑤𝑤
𝑣𝑣𝑎𝑎

2
+45�

𝑊𝑊
𝑠𝑠

2
√𝑘𝑘�3 𝑣𝑣𝑤𝑤𝑣𝑣𝑎𝑎

2
+4

𝜌𝜌 𝑔𝑔
  ( 21 ) 

𝐸𝐸𝑐𝑐𝑜𝑜𝑜𝑜𝑤𝑤𝑐𝑐 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
= 4 

𝑊𝑊
𝑠𝑠 𝜋𝜋 𝑐𝑐

�𝐶𝐶𝐷𝐷0𝑅𝑅2𝑔𝑔2𝜌𝜌2+4 
𝑊𝑊
𝑠𝑠

2
𝑘𝑘√𝑘𝑘

𝜌𝜌 𝑔𝑔
   ( 22 ) 

Therefore, the price is: 

𝑝𝑝 =
𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
= 1

4
 
�3 �𝑣𝑣𝑤𝑤𝑣𝑣𝑎𝑎

2
+43�𝜌𝜌

2𝑔𝑔2𝑅𝑅2𝐶𝐶𝐷𝐷0+20 𝑘𝑘�
𝑣𝑣𝑤𝑤
𝑣𝑣𝑎𝑎

2
+45�

𝑊𝑊
𝑠𝑠

2
�3 𝑣𝑣𝑤𝑤𝑣𝑣𝑎𝑎

2
+4

�𝐶𝐶𝐷𝐷0 𝑅𝑅2𝑔𝑔2𝜌𝜌2+4 
𝑊𝑊
𝑠𝑠

2
𝑘𝑘

  ( 23 ) 

Developing this price to a series at  𝑣𝑣𝑤𝑤
𝑣𝑣𝑎𝑎

= 0: 

𝑝𝑝 = 1 +
�3 𝐶𝐶𝐷𝐷0 𝑅𝑅2𝑔𝑔2𝜌𝜌2+16 

𝑊𝑊
𝑠𝑠

2
𝑘𝑘�𝑣𝑣𝑤𝑤𝑣𝑣𝑎𝑎 

2

4 𝐶𝐶𝐷𝐷0 𝑅𝑅2𝑔𝑔2𝜌𝜌2+16 
𝑊𝑊
𝑠𝑠

2
𝑘𝑘

+ 𝑂𝑂 �𝑣𝑣𝑤𝑤
𝑣𝑣𝑎𝑎 

4
�   ( 24 ) 

Now we can address to extreme cases: 

1) The circle goes to infinity: 

 

𝑝𝑝𝑅𝑅→∞ = 1 + 3
4
�𝑣𝑣𝑤𝑤
𝑣𝑣𝑎𝑎
�
2

+ 𝑂𝑂 �𝑣𝑣𝑤𝑤
𝑣𝑣𝑎𝑎

4
�    ( 25 ) 

2) The circle is very small: 

𝑝𝑝𝑅𝑅→0 = 1 + �𝑣𝑣𝑤𝑤
𝑣𝑣𝑎𝑎
�
2

+ 𝑂𝑂 �𝑣𝑣𝑤𝑤
𝑣𝑣𝑎𝑎

4
�    ( 26 ) 

In both cases the price is, as expected, larger than 1, however it is very small. The wind is 
taking its toll but in a very modest way.  

  

 

 

 

 

 



Optimization parameters 

In this problem I optimized the consumed energy. I did so by expressing all the non-constant 
flight parameters with the aircrafts’ velocity and finding the optimal one. Therefore, finding 
this optimal velocity determines these non-constant flight parameters, the optimization 
parameters.   

Most parameters will be described in a non-dimensional manner. I normalized each 
parameter to make it non-dimensional and expressed it with some non-dimensional 
quantities. 

A non-dimensional quantity that found its way to all the optimization parameters 
expressions and has a physical meaning is: 

𝐺𝐺 = (𝑣𝑣∗)2

𝑅𝑅𝑔𝑔
       ( 27 ) 

While: 

𝑣𝑣∗ = �
2𝑊𝑊
𝜌𝜌𝜌𝜌𝐶𝐶𝐿𝐿

∗     ( 28 ) 

And: 

𝐶𝐶𝐿𝐿∗ = �𝐶𝐶𝐷𝐷0
𝑘𝑘

     ( 29 ) 

𝐺𝐺 describes the normalized centripetal acceleration with no wind travelling at 𝑣𝑣∗. 
Considering an aircraft preforming a regular circle without wind, 𝐺𝐺 will be equal to the 
tangent of the roll angle. Using equation ( 3 ) for the no wind case (𝜓𝜓 = 𝜓𝜓𝑎𝑎) and substituting 
( 4 ), ( 13 ) in: 

𝑣𝑣2

𝑅𝑅𝑔𝑔
= 𝑡𝑡𝑡𝑡𝑠𝑠 (𝜙𝜙)     ( 30 ) 

While 𝑣𝑣∗ is used instead of the regular velocity in order to make the analysis generic. 

• The velocity: The velocity is the parameter we used in order to find the optimal 
energy. In order to see how it changes throughout the circle, we need to manipulate 

equation ( 18 ). Initially, multiplying and dividing the RHS by �√𝑘𝑘 ∙ 𝑊𝑊𝑐𝑐   : 

𝑣𝑣𝑎𝑎𝑐𝑐𝑜𝑜𝑜𝑜𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 =
√2 �3 𝑣𝑣𝑤𝑤𝑣𝑣𝑎𝑎

2
+4

4
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2
+43�
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2
+45�

4
  ( 31 ) 

Substituting ( 27 ), ( 28 ) and ( 29 ) in and dividing both sides by 𝑣𝑣∗: 

𝑣𝑣𝑎𝑎𝑐𝑐𝑜𝑜𝑜𝑜𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
𝑣𝑣∗

=
√2�3  𝑣𝑣𝑤𝑤𝑣𝑣𝑎𝑎

2
+ 4

4
�1/𝐺𝐺

�3  �𝑣𝑣𝑤𝑤𝑣𝑣𝑎𝑎
2

+ 4
3�4 �1

𝐺𝐺�
2

+ 20  �𝑣𝑣𝑤𝑤𝑣𝑣𝑎𝑎
2

+ 4
5�

4

 



This expression is non dimensional and is only dependent in two non-dimensional 
quantities. One can now see how the optimal (normalized) velocity changes with 
respect to the wind and the circle accelerations preformed: 

 

Figure 3 

 

Figure 4 



As shown, the optimal velocity was found with and without the presence wind. The 
wind does not seem to affect the optimal velocity too much in this case. The ratio 
between the two will tell us how big a change a pilot or a control system must make 
in order to maintain an optimal circle. 
 

 

Figure 5 

• The lift coefficient: In this problem the aircraft maintains constant altitude. 
Therefore, the vertical lift component must balance the weight. However, this 
component changes as the roll angle changes throughout the circle (as we will see 
later), thus the lift coefficient changes as well.  
In order to find a suitable expression for the lift coefficient I plugged equations ( 5 ), 
( 9 ), ( 10 ), ( 13 ) and (  )16  into equation  ( 6 ): 

𝐶𝐶𝐿𝐿 = 2  𝑊𝑊/𝑐𝑐
𝜌𝜌 𝑣𝑣𝑎𝑎2

�
�𝑣𝑣𝑤𝑤𝑣𝑣𝑎𝑎

 𝑐𝑐𝑤𝑤𝑤𝑤(𝜓𝜓)+�𝑣𝑣𝑤𝑤𝑣𝑣𝑎𝑎
2

((𝑐𝑐𝑤𝑤𝑤𝑤(𝜓𝜓))2−1)+1�
4
𝑣𝑣𝑎𝑎4

�𝑣𝑣𝑤𝑤𝑣𝑣𝑎𝑎
2

((𝑐𝑐𝑤𝑤𝑤𝑤(𝜓𝜓))2−1)+1�𝑅𝑅2𝑔𝑔2
+ 1  ( 32 ) 

𝐶𝐶𝐿𝐿 = 2 
𝑊𝑊
𝑠𝑠

𝜌𝜌 𝑣𝑣𝑎𝑎2
(𝑣𝑣∗)2

(𝑣𝑣∗)2   �
�𝑣𝑣𝑤𝑤𝑣𝑣𝑎𝑎

 𝑐𝑐𝑤𝑤𝑤𝑤(𝜓𝜓)+�𝑣𝑣𝑤𝑤𝑣𝑣𝑎𝑎
2

((𝑐𝑐𝑤𝑤𝑤𝑤(𝜓𝜓))2−1)+1�
4
𝑣𝑣𝑎𝑎4

�𝑣𝑣𝑤𝑤𝑣𝑣𝑎𝑎
2

((𝑐𝑐𝑤𝑤𝑤𝑤(𝜓𝜓))2−1)+1�𝑅𝑅2𝑔𝑔2
(𝑣𝑣∗)4

(𝑣𝑣∗)4  + 1  ( 33 ) 

  

Using ( 28 ) and ( 27 ): 

𝐶𝐶𝐿𝐿
𝐶𝐶𝐿𝐿
∗ = 1

𝑣𝑣𝑎𝑎2

(𝑣𝑣∗)2

�
�𝑣𝑣𝑤𝑤𝑣𝑣𝑎𝑎

 𝑐𝑐𝑤𝑤𝑤𝑤(𝜓𝜓)+�𝑣𝑣𝑤𝑤𝑣𝑣𝑎𝑎
2

((𝑐𝑐𝑤𝑤𝑤𝑤(𝜓𝜓))2−1)+1�
4

�𝑣𝑣𝑤𝑤𝑣𝑣𝑎𝑎
2

((𝑐𝑐𝑤𝑤𝑤𝑤(𝜓𝜓))2−1)+1�
 𝐺𝐺2 �𝑣𝑣𝑎𝑎

𝑣𝑣∗
�
4

+ 1  ( 34 ) 



This expression is now non-dimensional and uses only 3 non dimensional numbers – 
only 2 of them are nondependent. As shown, 𝑣𝑣𝑎𝑎

𝑣𝑣∗
 is a function of 𝐺𝐺 and 𝑣𝑣𝑤𝑤

𝑣𝑣𝑎𝑎
. With this 

expression obtained I could find different (normalized) lift coefficients for different 
wind speeds and different circle accelerations preformed.  
 

 

Figure 6 

 

Figure 7 

 



The optimal lift coefficient was found for optimal circles with wind and without 
wind. This figure describes the ratio between the lift coefficient with wind to that 
without, it describes the change a pilot or a control system will have to perform in a 
case of a gust of wind coming by.   

 

Figure 8 

 

Figure 9 

 



Aircrafts have a maximal lift coefficient that can be smaller than the optimal lift 
coefficient for certain cases. In this situation the aircraft will have to remain at the 
smaller lift coefficient. In case like this the aircraft will not be able to perform the 
desired circle. 

 

• The load factor/roll angle: Instead of showing these two parameters I will show only 
the roll angle remembering that 𝑠𝑠 = 1

cos(𝜙𝜙). In order to find a suitable expression for 

the tilt angle I plugged equations ( 9 ), ( 10 ) and ( 13 ) into equation ( 5 ): 

𝑡𝑡𝑡𝑡𝑠𝑠(𝜙𝜙) =
�𝑣𝑣𝑤𝑤𝑣𝑣𝑎𝑎

 𝑐𝑐𝑤𝑤𝑤𝑤(𝜓𝜓)+�𝑣𝑣𝑤𝑤𝑣𝑣𝑎𝑎
2

((𝑐𝑐𝑤𝑤𝑤𝑤(𝜓𝜓))2−1)+1�
2
𝑣𝑣𝑎𝑎2

�𝑣𝑣𝑤𝑤𝑣𝑣𝑎𝑎
2

((𝑐𝑐𝑤𝑤𝑤𝑤(𝜓𝜓))2−1)+1 𝑅𝑅𝑔𝑔
   ( 35 ) 

 Using ( 27 ): 

𝑡𝑡𝑡𝑡𝑠𝑠(𝜙𝜙) =
�𝑣𝑣𝑤𝑤𝑣𝑣𝑎𝑎

 𝑐𝑐𝑤𝑤𝑤𝑤(𝜓𝜓)+�𝑣𝑣𝑤𝑤𝑣𝑣𝑎𝑎
2

((𝑐𝑐𝑤𝑤𝑤𝑤(𝜓𝜓))2−1)+1�
2

�𝑣𝑣𝑤𝑤𝑣𝑣𝑎𝑎
2

((𝑐𝑐𝑤𝑤𝑤𝑤(𝜓𝜓))2−1)+1
𝐺𝐺 �𝑣𝑣𝑎𝑎

𝑣𝑣∗
�
2

  ( 36 ) 

 
 
For different wind speeds, the optimal roll angle can now be found for chosen 𝐺𝐺 
values, as shown here: 
 

 

Figure 10 



 

Figure 11 

As done earlier, the optimal roll angle was found with wind and without wind. The 
no wind optimal roll angle is obviously constant. The ratio between the optimal roll 
angle with wind to that without, will show us, yet again, what changes a pilot or 
control system will have to implement. 
 

 

Figure 12 



 

Figure 13 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



• The price: The price, found in ( 23 ), is obviously another interesting parameter to 

observe. Dividing and multiplying the RHS by ��𝑊𝑊
𝑐𝑐
�
2
𝑘𝑘 and applying ( 27 ), ( 28 ) and 

( 29 ): 

𝑝𝑝 = 1
8
 
�3 �𝑣𝑣𝑤𝑤𝑣𝑣𝑎𝑎

2
+43�4 �1𝐺𝐺�

2
+20�𝑣𝑣𝑤𝑤𝑣𝑣𝑎𝑎

2
+45��3 

𝑣𝑣𝑤𝑤
𝑣𝑣𝑎𝑎

2
+4

��1𝐺𝐺�
2
+1

   ( 37 ) 

 
Now, the price can be found for different wind speeds and different circle 
accelerations: 
 

 

Figure 14 

 

 

 

 

 

 

 



Conclusions  

In this work we tried to find the optimal constant velocity (in respect to the air) an aircraft 
must fly in to minimize its energy usage. We found that the optimal velocity is smaller and 
very close to the velocity in the case where there is no wind, and the price paid is very low. 
We will try to understand these findings: 

1. Why is 𝑣𝑣𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 < 𝑣𝑣𝑎𝑎𝑐𝑐𝑜𝑜𝑜𝑜𝑤𝑤𝑐𝑐 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
 ? 

This can occur since we are trying to take advantage of the wind. It makes sense that both 
ground velocities are close so perhaps flying at a slightly smaller velocity helps us more on 
the back-wind half than it “hurts” us on the nose wind half. 

 

2. Why is the price paid so low? 

As we can see in Figure 14, the price becomes a factor to consider only when the wind is 
very strong. This is probably a consequent of the optimal velocities being so close. If the 
energy was only a function of the velocities, one would expect that the price would even be 
smaller than 1. However, there are other factors, such as the winds velocity, that affects the 
energy integrand as we saw in (  )14 . These factors apparently make the price slightly larger 
than 1. Observing the expression for the energy  ( )17  makes things clearer. The energy does 
grow with the presence of wind. 

 

 

During the work we assumed that the thrust is equal to the drag, therefore 𝑣𝑣𝑎𝑎 = 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡. It 
will be interesting to see what happens when we get rid of this constraint and try to find the 
optimal 𝑣𝑣𝑎𝑎 as a function of the location at the circle and the wind direction. Will we be able 
to improve the price? Can we take advantage of the wind?  

   

 

  


