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Abstract 

The Brachistochrone problem, meaning in greek "shortest time",  is the question regarding 

what is the shape of the path to slide a point mass between two arbitrary points with a 

height difference in the shortest time possible, while considering only the action of a 

constant gravitational force applied on it. This project will present the problem, and the 

solutions provided for the problem by Johann Brenoulli, and through calculus of variations. 

Introduction 

The problem was first suggested by Johann Bernoulli in 1696, stated as: 

'Given two points A and B in a vertical plane, what is the curve traced out by a point 

acted on only by gravity, which starts at A and reaches B in the shortest time' 

When a person is first addressed with this problem, the intuitive answer is that the path is a 

straight line, assuming the shortest path naturally provides the shortest time. This answer is 

of course incorrect because while the mass has a short distance to cover during its decline 

the acceleration is very low because of the constant path incline and so the mass doesn't 

gain velocity fast enough. Galileo, prior to Bernoulli, while dealing with a similar problem 

proposed a solution of the path of a circle, which is a descent solution, but it's not the 

optimal solution. The optimal solution is known to be the shape of a cycloid, the path of a 

point of a rolling circle on a straight surface. This solution may be computed with several 

methods, including Johan Bernoulli's method using analogy to the motion of light with 

Snell's law, and by calculus of variations while minimizing the cost function of the time of 

descent using the Euler-Lagrange equations. The problem was also solved by Jakob 

Bernoulli, Johan's brother, and by Isaac Newton, who formed his solution anonymously. 

 

 

 

 

 



The path of a Cycloid 

In order to present the derivations of the Brachistochrone solutions it is first required to 

define the shape of the solution path, the Cycloid. 

Given a circle with radius 𝑅, rolling on a straight line on the x axis. It is desired to form the 

equations of the path of a given point on the circle, initially located at 𝐴(0,0). 

 

During the rolling of the circle, point 𝐴 moves around the center 𝑂. Define 𝜃 as the angle 

between the segment 𝑂𝐴, and the initial segment when 𝐴(0,0). The length of 𝑂𝐴 is R as it is 

the radius of the circle. The center 𝑂 position changes with respect to 𝜃 as the circle 

performs a pure roll by the following equations: 

𝑥𝑂 = 𝜃𝑅, 𝑦𝑂 = 𝑅 = 𝑐𝑜𝑛𝑠𝑡 

 

Using trigonometric relations it is derived that: 

𝑥𝐴 = 𝑥𝑂 − 𝑅𝑠𝑖𝑛 𝜃 = 𝜃𝑅 − 𝑅𝑠𝑖𝑛 𝜃 , 𝑦𝐴 = 𝑅 − 𝑅𝑐𝑜𝑠 𝜃  



Therefore, the equations of a cycloid are: 

 
𝑥 = 𝑅(𝜃 − sin 𝜃)
𝑦 = 𝑅(1 − cos 𝜃)

  

Bernoulli's Solution 

Johan Bernoulli solved the Brachistochrone problem using an analogy to the movement of a 

beam of light traveling through a varying medium. The proof assumes Snell's law, so first it is 

required to derive it: 

Snell's law states that while a beam of light travels between one medium to another it will 

deflect according to the following relation: 

𝑛1 sin 𝜃1 = 𝑛2 sin 𝜃2 

While 𝜃 is the angle between the beam of light and the perpendicular to the medium 

transition line, and 𝑛 is the refractive index - the ratio between the speed of light in vacuum 

and the speed of light in the given medium. 

𝑛 =
𝑐

𝑣
 

Snell's law is the implementation of Fermat's principle, which at the time was an ampirical 

law that stated light would find the path to travel between two given points at the minimal 

time. At later dates, with a better understanding of the nature of light Fermat's principle was 

proven using Maxwell's equations of electromagnetism, and by the wave-particle duality 

using quantum  mechanics. 

Given points 𝐴, and 𝐵 which lie in different mediums 𝑛1, and 𝑛2 accordingly. Define the 

horizontal length 𝑚 between 𝐴, and 𝐵, and the vertical length 𝑙. The length between 𝐴 and 

the medium transition line is 𝑎. Mark 𝑥 as the horizontal length between 𝐴 and the point of 

transition between the mediums, which is unknown.  

 

 



 

The velocity in the mediums 𝑛1, and 𝑛2, are 𝑣1, and 𝑣2 accordingly. 

The distance between 𝐴, and the point of transition: 

𝑑1 =  𝑥2 + 𝑎2 

The distance between 𝐵, and the point of transition: 

𝑑2 =   𝑙 − 𝑎 2 +  𝑚 − 𝑥 2 

Since the light velocity is constant in each medium, the time of travel is: 

𝑡1 =
𝑑1

𝑣1
,  𝑡2 =

𝑑2

𝑣2
 

Thus, the total time of travel between 𝐴, and 𝐵 is: 

𝑡 = 𝑡1 + 𝑡2 =
𝑑1

𝑣1
+

𝑑2

𝑣2
=

 𝑥2 + 𝑎2

𝑣2
+

  𝑙 − 𝑎 2 +  𝑚 − 𝑥 2

𝑣2
 

Using Fermat's principle, we wish to minimize the time as function of 𝑥: 

𝑑𝑡

𝑑𝑥
= 0 

𝑑𝑡

𝑑𝑥
=

2𝑥

2𝑣1 𝑥2 + 𝑎2
−

2 𝑚 − 𝑥 

2𝑣2  𝑙 − 𝑎 2 +  𝑚 − 𝑥 2
= 0 

𝑥

𝑣1𝑑1
−

 𝑚 − 𝑥 

𝑣2𝑑2
= 0 

𝑥

𝑑1
= sin 𝜃1 ,

𝑚 − 𝑥

𝑑2
= sin 𝜃2 

sin 𝜃1

𝑣1
−

sin 𝜃2

𝑣2
= 0 



We've received Snell's law: 

sin 𝜃1

𝑣1
=

sin 𝜃2

𝑣2
 

By applying the relation 𝑛 =
𝑐

𝑣
  the better known equation is obtained: 

𝑛1 sin 𝜃1 = 𝑛2 sin 𝜃2 

∎ 

Bernoulli used an analogy between the motion of the point mass on the surface, and a 

motion of a light beam between infinitely many varying mediums. 

 

 

Assume a point mass travels from point 𝐴, to 𝐵 using only the gravitational force. Set a 

Cartesian coordinate system such that 𝐴 is located at (0,0), and 𝐵 at known (𝐿, 𝐻) beneath 

point 𝐴. 𝜃 is the angle between the tangent to the surface and 𝑦 axis. 

 

x 

y 

(0,0) 

(L,H) 

(x,y) 

θ 



Since the only force applied on the mass is gravity, the total energy is conserved. 

𝐸 = 𝑉 + 𝑇 = −𝑚𝑔𝑦 +
𝑚𝑣2

2
= 𝑐𝑜𝑛𝑠𝑡 

𝐸𝐴 = 0 

−𝑚𝑔𝑦 +
𝑚𝑣2

2
= 0 

⇒ 𝑣 =  2𝑔𝑦 

From Snell's law: 

sin 𝜃

𝑣
= 𝑐𝑜𝑛𝑠𝑡 

sin 𝜃

 2𝑔𝑦
= 𝑐𝑜𝑛𝑠𝑡 

Squaring both sides and adding 𝑔 to the constant: 

sin2 𝜃

𝑦
= 𝑐𝑜𝑛𝑠𝑡 

This relation represents the differential equation of a cycloid. To show how, a geometric 

proof by mathematician Mark Levi is provided. 

Consider the following sketch: 

 

Since the cycloid is created from a rolling circle with a radius 𝑅, at any given time 𝐹 is the 

instant center of rotation of the circle, so every point on the circle rotates around 𝐹 at that 

moment and performs a circular motion around that point. 𝑀 moves in a circular motion 

with respect to 𝐹 at any given time, so it's velocity is perpendicular to the line 𝑀𝐹. The 

R 

R 

R 

θ 

y 

θ 



velocity vector is in the same plane as the surface the mass slides on, so the tangent line of 

the surface at any given moment is perpendicular to 𝑀𝐹. Continue the tangent on a straight 

line until it reaches the circle on point 𝐷, such that ∢𝐹𝑀𝐷 = 90°. A circumferential angle 

that equals 90° lies on the diameter, so 𝐹𝐷 is the diameter of the circle. 

Define the angle  ∢FDM = θ. 𝜃 is a circumferential angle, so the central angle that lies on 

the same arc, ∢FOM = 2θ. 𝜃 is also the angle of the mass because they're parallel angles. 

The angle between a chord in the circle to the tangent of the circle is the same as the 

circumferential angle that lies on this chord from the other side, so: 

∢FDM =  ∢MFA = θ 

Using the law of sines: 

𝑀𝐹

sin ∢FDM 
=

𝐷𝐹

sin ∢FMD 
 

𝑀𝐹

sin 𝜃
=

2𝑅

sin 90°
 

⇒ 𝑀𝐹 = 2𝑅 sin 𝜃 

𝑦

𝑀𝐹
= sin ∢MFA  

𝑦

2𝑅 sin 𝜃
= sin 𝜃 

sin2 𝜃

𝑦
=

1

2𝑅
= 𝑐𝑜𝑛𝑠𝑡 

We've received the same equation that was derived by Bernoulli. This equation represents 

the cycloid equation: 

 
𝑥 = 𝑅(2𝜃 − sin 2𝜃)
𝑦 = 𝑅(1 − cos 2𝜃)

  

While 𝜃 is the angle between the tangent to the surface and 𝑦 axis, it is half the angle of the 

circle's rotation. 𝑅 is the radius of the circle: 

𝑅 =
𝐻

2
 

 

 

 

 

 



Calculus of variations 

Calculus of variations is a branch in calculus that deals with finding the minima of 

functionals. A functional is a function which its variables are functions as well. An example 

for a functional is an integral: 

𝐹 𝑦 𝑥  =  𝑦 𝜉 
𝑥2

𝑥1

𝑑𝜉 

The functional used in variational calculus is called a cost function: 

𝐽 𝑦 =  𝐹 𝑥, 𝑦 𝑥 , 𝑦′ 𝑥  𝑑𝑥
𝑥2

𝑥1

 

It is required to find 𝑦(𝑥) such that the solution to 𝐽(𝑦) is minimal. In order to find the 

minimal solution, 𝐹 must satisfy the Euler-Lagrange equation: 

𝜕𝐹

𝜕𝑦
−

𝑑

𝑑𝑥

𝜕𝐹

𝜕𝑦′
= 0 

Example - Shortest path problem: 

It is required to find the path with the shortest possible length between two points 𝐴, and 𝐵. 

Define the coordinates system so that 𝐴 =  0,0 , 𝐵 = (𝐿, 𝐻). 

 

The differential length of the path: 

𝑑𝑙 =  𝑑𝑥2 + 𝑑𝑦2 

Deriving the relations between 𝑑𝑥, and 𝑑𝑦: 

𝑑𝑥 = 𝑑𝑥 ∙
𝑑𝑦

𝑑𝑦
=

𝑑𝑥

𝑑𝑦
∙ 𝑑𝑦 = 𝑥′ 𝑦 ∙ 𝑑𝑦 

 

 

x 

y 

dl 



It is desired to find a path with minimal length, so it is the cost function: 

𝐽 = 𝑙(𝑥) =  𝐹 𝑦, 𝑥 𝑦 , 𝑥′ 𝑦  𝑑𝑦
𝑦2

𝑦1

 

min
𝑦

𝑙 =  dl

y

=   𝑑𝑥2 + 𝑑𝑦2

y=H

y=0

=    𝑥′ 𝑦  
2

+ 1

y=H

y=0

dy 

Therefore: 

𝐹 𝑦, 𝑥 𝑦 , 𝑥′ 𝑦  =   𝑥′ 𝑦  
2

+ 1 

Applying Euler-Lagrange equation: 

𝜕𝐹

𝜕𝑥
−

𝑑

𝑑𝑦

𝜕𝐹

𝜕𝑥′
= 0 

𝜕𝐹

𝜕𝑥
=

𝜕

𝜕𝑥
  𝑥 ′ 𝑦  

2
+ 1 = 0 

𝜕𝐹

𝜕𝑥′
=

𝜕

𝜕𝑥′
  𝑥′ 𝑦  

2
+ 1 =

𝑥′ 𝑦 

  𝑥′ 𝑦  
2

+ 1

 

𝜕𝐹

𝜕𝑥
−

𝑑

𝑑𝑦

𝜕𝐹

𝜕𝑥′
=

𝑑

𝑑𝑦

𝑥′ 𝑦 

  𝑥′ 𝑦  
2

+ 1

= 0 

⇒
𝑥′ 𝑦 

  𝑥′ 𝑦  
2

+ 1

= 𝑐 = 𝑐𝑜𝑛𝑠𝑡 

Squaring both sides of the equation: 

 𝑥′ 𝑦  
2

 𝑥′ 𝑦  
2

+ 1
= 𝑐2 

 𝑥′ 𝑦  
2

= c2 𝑥′ 𝑦  
2

+ c2 

 𝑥′ 𝑦  
2

=
𝑐2

1 − 𝑐2
 

𝑥′ 𝑦 =  
𝑐2

1 − 𝑐2
= 𝑎 = 𝑐𝑜𝑛𝑠𝑡 

⟹ 𝑥 𝑦 = 𝑎 ∙ 𝑦 + 𝑏 



We've obtained a linear function, so the path that provides the shortest possible length is in 

fact a straight line. Of course this is trivial because it is obvious that the path with the 

shortest length between two points on a cartesian plane is a straight line. 

Applying the initial, and the terminal conditions: 

𝑥 𝑦 = 0 = 0, 𝑥 𝑦 = 𝐻 = 𝐿 

𝑥 𝑦 =
𝐿

𝐻
𝑦 

Brachistochrone solution using variational calculus 

 

The differential length of the path: 

𝑑𝑙 =  𝑑𝑥2 + 𝑑𝑦2 

Deriving the relations between 𝑑𝑥, and 𝑑𝑦: 

𝑑𝑥 = 𝑑𝑥 ∙
𝑑𝑦

𝑑𝑦
=

𝑑𝑥

𝑑𝑦
∙ 𝑑𝑦 = 𝑥′ 𝑦 ∙ 𝑑𝑦 

From conservation of energy: 

𝑣 =  2𝑔𝑦 

It is required to find the path of minimal time, so the time of descent is our cost function: 

min
𝑦

𝑡 =  
𝑑𝑙

𝑣
𝑙

=  
  𝑥′ 𝑦  

2
+ 1

 2𝑔𝑦

𝑦=𝐻

𝑦=0

𝑑𝑦 =
1

 2𝑔
  

 𝑥′ 𝑦  
2

+ 1

𝑦

𝑦=𝐻

𝑦=0

𝑑𝑦 

𝐹 𝑦, 𝑥 𝑦 , 𝑥′ 𝑦  =  
 𝑥′ 𝑦  

2
+ 1

𝑦
 

 

x 

y 

(0,0) 

(L,H) 

(x,y) 



Euler-Lagrange equations: 

𝜕𝐹

𝜕𝑥
−

𝑑

𝑑𝑦

𝜕𝐹

𝜕𝑥′
= 0 

𝜕𝐹

𝜕𝑥
= 0 

𝜕𝐹

𝜕𝑥′
=

𝜕

𝜕𝑥′
 

 𝑥′ 𝑦  
2

+ 1

𝑦
=

1

 𝑦

𝑥′ 𝑦 

  𝑥′ 𝑦  
2

+ 1

 

𝜕𝐹

𝜕𝑥
−

𝑑

𝑑𝑦

𝜕𝐹

𝜕𝑥′
=

𝑑

𝑑𝑦

𝑥′ 𝑦 

 𝑦   𝑥′ 𝑦  
2

+ 1 

= 0 

𝑥′ 𝑦 

 𝑦   𝑥′ 𝑦  
2

+ 1 

= 𝑐𝑜𝑛𝑠𝑡 

Square both sides: 

 𝑥′ 𝑦  
2

𝑦   𝑥′ 𝑦  
2

+ 1 
=

1

2𝑎
= 𝑐𝑜𝑛𝑠𝑡 

2𝑎 𝑥′ 𝑦  
2

= 𝑦 𝑥′ 𝑦  
2

+ 𝑦 

 𝑥′ 𝑦  
2
 2𝑎 − 𝑦 = 𝑦 

𝑥′ 𝑦 =  
𝑦

2𝑎 − 𝑦
 

𝑥 𝑦 =   
𝑦

2𝑎 − 𝑦

𝑦

𝑦=0

𝑑𝑦 

Use parameter substitution: 

𝑦 = 𝑎 − 𝑎 cos 𝜃 

𝑑𝑦 = 𝑎 sin 𝜃 𝑑𝜃 

𝑥 𝜃 =   
𝑎 − 𝑎 cos 𝜃

𝑎 + 𝑎 cos 𝜃

𝜃

𝜃=0

𝑎 sin 𝜃 𝑑𝜃 = 𝑎   
1 − cos 𝜃

1 + cos 𝜃

𝜃

𝜃=0

sin 𝜃 𝑑𝜃 

= 𝑎   
1 − cos 𝜃

1 + cos 𝜃

𝜃

𝜃=0

 1 − cos2 𝜃 𝑑𝜃 = 𝑎   
 1 − cos 𝜃  1 − cos 𝜃 (1 + cos 𝜃)

1 + cos 𝜃

𝜃

𝜃=0

𝑑𝜃 



= 𝑎    1 − cos 𝜃 2

𝜃

𝜃=0

𝑑𝜃 = 𝑎   1 − cos 𝜃 

𝜃

𝜃=0

𝑑𝜃 = 𝑎(θ − sin θ) 

 
𝑥 𝜃 = 𝑎 θ − sin θ 
𝑦(𝜃) = 𝑎(1 − cos 𝜃)

  

We've obtained the equations of a cycloid. 

For 𝜃 = 0: 𝑥 0 = 0, 𝑦 0 = 0 

For 𝜃 = 𝜃𝑓 : 𝑥 𝜃𝑓 = 𝐿, 𝑦 𝜃𝑓 = 𝐻 

Time of movement on a cycloid 

We would like to compute the time it takes for the point mass to move from the top of the 

cycloid, at 𝑦 = 0, to the bottom at 𝑦 = 𝐻. 

The time differential: 

𝑑𝑡 =
𝑑𝑙

𝑣
 

The cycloid equations: 

 
𝑥 𝜃 = 𝑎 θ − sin θ 
𝑦(𝜃) = 𝑎(1 − cos 𝜃)

  

𝑑𝑥 =  𝑎 − 𝑎 cos 𝜃 𝑑𝜃, 𝑑𝑦 = 𝑎 sin 𝜃 𝑑𝜃 

𝑑𝑙 =  𝑑𝑥2 + 𝑑𝑦2 =  𝑎2 − 2𝑎2 cos 𝜃 + 𝑎2 cos2 𝜃 + 𝑎2 sin2 𝜃 𝑑𝜃 = 𝑎 2 − 2 cos 𝜃 𝑑𝜃 

𝑣 =  2𝑔𝑦 =  2𝑔𝑎 1 − cos 𝜃 =  𝑔𝑎 2 − 2 cos 𝜃  

𝑑𝑡 =
𝑑𝑙

𝑣
=

𝑎 2 − 2 cos 𝜃

 𝑔𝑎 2 − 2 cos 𝜃 
𝑑𝜃 =  

𝑎

𝑔
𝑑𝜃 

𝑡 =   
𝑎

𝑔
𝑑𝜃

𝜃

𝜃=0

=  
𝑎

𝑔
θ 

The mass reaches the bottom of the cycloid at 𝜃 = 𝜋 

𝑡 = 𝜋 
𝑎

𝑔
 

𝑎, is the radius of the rolling circle, so: 

𝑎 =
𝐻

2
 



If the mass starts to slide from an intermediate point 𝜃0: 

𝑦0 = 𝑎(1 − cos 𝜃0) 

𝑥0 = 𝑎 θ0 − sin θ0  

𝐸 = 𝐸𝐴 = 𝑐𝑜𝑛𝑠𝑡 

𝑚𝑣2

2
− 𝑚𝑔𝑦 = −𝑚𝑔𝑦0 

𝑣 =  2𝑔 𝑦 − 𝑦0 =  2𝑔𝑎 (1 − cos 𝜃) − (1 − cos 𝜃0)  

=  2𝑔𝑎 cos 𝜃0 − cos 𝜃  

The time differential: 

𝑑𝑡 =
𝑑𝑙

𝑣
=

𝑎 2 − 2 cos 𝜃

 2𝑔𝑎 cos 𝜃0 − cos 𝜃 
𝑑𝜃 =  

𝑎

𝑔
 

1 − cos 𝜃

cos 𝜃0 − cos 𝜃
𝑑𝜃 

𝑡 =  
𝑎

𝑔
  

1 − cos 𝜃

cos 𝜃0 − cos 𝜃
𝑑𝜃

𝜃

𝜃0

 

cos 𝜃 = 2 cos2
𝜃

2
− 1 

𝑡 =  
𝑎

𝑔
  

1 − 2 cos2 𝜃
2

+ 1

2 cos2 𝜃0
2

− 1 − 2 cos2 𝜃
2

+ 1
𝑑𝜃

𝜃

𝜃0

=  
𝑎

𝑔
  

1 − cos2 𝜃
2

cos2 𝜃0
2

− cos2 𝜃
2

𝑑𝜃

𝜃

𝜃0

 

=  
𝑎

𝑔
 

sin
𝜃
2

 cos2 𝜃0
2 − cos2 𝜃

2

𝑑𝜃

𝜃

𝜃0

 

Parameter substitution: 

𝑢 =
cos

𝜃
2

cos
𝜃0
2

 

𝑑𝑢 = −

1
2 sin

𝜃
2

cos
𝜃0
2

𝑑𝜃 

𝑡 = − 
𝑎

𝑔
 

sin
𝜃
2

 cos2 𝜃0
2 − 𝑢2 cos2 𝜃0

2

cos
𝜃0
2

1
2 sin

𝜃
2

 𝑑𝑢 

𝑢

𝑢0

= − 
𝑎

𝑔
 

2 cos
𝜃0
2

cos
𝜃0
2  1 − 𝑢2

𝑑𝑢 

𝑢

𝑢0

 



= −2 
𝑎

𝑔
 

1

 1 − 𝑢2
𝑑𝑢 

𝜃

𝜃0

= −2 
𝑎

𝑔
∙ arcsin𝑢 

= −  2 
𝑎

𝑔
∙ arcsin

cos
𝜃
2

cos
𝜃0
2

 

θ0

𝜃

= −2 
𝑎

𝑔
∙ arcsin

cos
𝜃
2

cos
𝜃0
2

+ 2 
𝑎

𝑔
∙
π

2
 

𝑡 = −2 
𝑎

𝑔
∙ arcsin

cos
𝜃
2

cos
𝜃0
2

+ 𝜋 
𝑎

𝑔
  

At the bottom of the cycloid: 𝜃 = 𝜋 

𝑡 = −2 
𝑎

𝑔
∙ arcsin

cos
𝜋
2

cos
𝜃0
2

+ 𝜋 
𝑎

𝑔
= −2 

𝑎

𝑔
∙ arcsin

0

cos
𝜃0
2

+ 𝜋 
𝑎

𝑔
 

𝑡 = 𝜋 
𝑎

𝑔
 

From any point the mass starts sliding on the cycloid it will reach the bottom of the cycloid 

at the same time. A mass placed at the top of the cycloid, and a mass placed half way 

through will reach the bottom together. 

Comparison to a straight line 

In this paper it was proven mathematically that the time of descent of a cycloid is the 

minimal possible of all path shapes, we'd like to justify this proof by comparing it to other 

paths. 

The equation of a straight line is linear: 

𝑦 𝑥 = 𝑎𝑥 + 𝑏 

providing the initial, and terminal conditions: 

𝑦 𝑥 =
𝐻

𝐿
𝑥 

𝑑𝑦 =
𝐻

𝐿
𝑑𝑥 

The time differential: 

𝑑𝑡 =
𝑑𝑙

𝑣
 

 

 



𝑑𝑙 =  𝑑𝑥2 + 𝑑𝑦2 =  1 +
𝐻2

𝐿2
𝑑𝑥 

𝑣 =  2𝑔𝑦 =  2𝑔
𝐻

𝐿
𝑥 

𝑑𝑡 =
𝑑𝑙

𝑣
=

 1 +
𝐻2

𝐿2

 2𝑔
𝐻
𝐿

𝑥

𝑑𝑥 =  
1 +

𝐻2

𝐿2

2𝑔
𝐻
𝐿

1

 x
dx 

𝑡 =  
1 +

𝐻2

𝐿2

2𝑔
𝐻
𝐿

 
1

 x
dx

x

𝑥=0

= 2 
1 +

𝐻2

𝐿2

2𝑔
𝐻
𝐿

 𝑥 

At the end of the path, 𝑥 = 𝐿: 

𝑡𝑙𝑖𝑛𝑒 = 2 
1 +

𝐻2

𝐿2

2𝑔
𝐻
𝐿

 𝐿 = 2 
𝐿2 + 𝐻2

2𝑔𝐻
 

The descent time for a cycloid: 

𝑡𝑐𝑦𝑐𝑙𝑜𝑖𝑑 = 𝜋 
𝑎

𝑔
= 𝜋 

𝐻

2𝑔
 

For a full cycloid where the mass is released from the top of the cycloid: 

𝐿 = 𝜋𝑎 =
𝜋𝐻

2
 

𝑡𝑙𝑖𝑛𝑒 = 2 
𝐿2 + 𝐻2

2𝑔𝐻
= 2

  
𝜋𝐻
2  

2

+ 𝐻2

2𝑔𝐻
=  

𝜋2 + 4

2
 

𝐻

𝑔
 

𝑡𝑙𝑖𝑛𝑒

𝑡𝑐𝑦𝑐𝑙𝑜𝑖𝑑
=

 𝜋2 + 4
2

𝜋

 2

≅ 1.185 

The descent time of a straight line is indeed slower than the cycloid path. 

 

 

 



Gravitational potential inside, and outside the earth 

It is required to obtain an expression for the gravitational potential at a point inside the 

earth. The derivation is done using Gauss's law for gravitational fields: 

 𝑔 ∙ 𝑑𝑆

𝑆

= −4𝜋𝐺𝑀𝑖𝑛  

While 𝑆 is the area vector of a closed surface, 𝑀𝑖𝑛  is the total mass enclosed within the 

surface, and 𝑔 is the gravitational field. 

First, deriving the gravitational field at a point with radius 𝑟 outside the earth. The earth is 

assumed to be a perfect solid sphere with radius 𝑅, and density 𝜌. The mass of the earth: 

𝑀 =  𝜌

𝑉

𝑑𝑉 =
4

3
𝜋𝑅3𝜌 

The closed surface chosen is a sphere with radius 𝑟, the surface area: 

𝑆 = 4𝜋𝑟2𝑟  

Since there is radial symmetry, the integral is simplified as: 

 𝑔 ∙ 𝑑𝑆

𝑆

= 𝑔 ∙ 𝑆 =  𝑔𝑟  ∙  4𝜋𝑟2𝑟  = 4𝜋𝑔𝑟2 

Applying Gauss's law: 

4𝜋𝑔𝑟2 = −4𝜋𝐺𝑀𝑖𝑛  

𝑟 > 𝑅, so the mass enclosed within 𝑆 is the entire mass of the earth: 

𝑔 = −
𝐺𝑀

𝑟2
 

From the radial symmetry: 

𝑔 = −
𝐺𝑀

𝑟2
𝑟  

The gravitational potential at a point 𝑟 > 𝑅: 

𝑉 𝑟 = − 𝑔 ∙ 𝑑𝑟 =  
𝐺𝑀

𝑟2
𝑑𝑟 = −

𝐺𝑀

𝑟
+ 𝑐 

It is customary to define the potential such that: 

lim
𝑟→∞

𝑉(𝑟) = 0 

So 𝑐 = 0 



Overall, the gravitational potential outside a solid sphere: 

𝑉 𝑟 = −
𝐺𝑀

𝑟
 

The gravitational field inside the earth is computed using Gauss's law as well. For 𝑟 < 𝑅 the 

surface 𝑆 is chosen a sphere with radius 𝑟: 

𝑆 = 4𝜋𝑟2𝑟  

Since the surface is inside the earth, the mass inside is proportional to the volume enclosed 

within the surface: 

𝑀𝑖𝑛 =
4

3
𝜋𝑟3𝜌 

The ratio between the total mass and the enclosed mass: 

𝑀𝑖𝑛

𝑀
=

4
3 𝜋𝑟3𝜌

4
3

𝜋𝑅3𝜌
=

𝑟3

𝑅3
 

⟹ 𝑀𝑖𝑛 =
𝑟3

𝑅3
𝑀 

Gauss's law: 

 𝑔 ∙ 𝑑𝑆

𝑆

= −4𝜋𝐺𝑀𝑖𝑛  

4𝜋𝑔𝑟2 = −4𝜋𝐺
𝑟3

𝑅3
𝑀 

𝑔 = −𝐺
𝑟

𝑅3
𝑀 

From the radial symmetry: 

𝑔 = −
𝐺𝑀

𝑅3
𝑟𝑟  

It is obtained that the gravitational field inside a solid sphere is linearly proportional to the 

radius, similar to harmonic oscillators. 

The potential inside the earth at a point 𝑟 < 𝑅: 

𝑉 𝑟 = − 𝑔 ∙ 𝑑𝑟 =  
𝐺𝑀

𝑅3
𝑟 𝑑𝑟 =

𝐺𝑀

2𝑅3
𝑟2 + 𝑐 

Since the gravitational potential is required to be continuous, it is equal to the potential 

outside the sphere on the border at 𝑟 = 𝑅: 



𝑉 𝑅 = −
𝐺𝑀

𝑅
 

⟹ 𝑐 = −
3

2

𝐺𝑀

𝑅
  

So the gravitational potential inside the sphere: 

𝑉 𝑟 =
𝐺𝑀

2𝑅
 
𝑟2

𝑅2
− 3  

Overall, the potential of the earth: 

𝑉 𝑟 =

 
 

 
𝐺𝑀

2𝑅
 
𝑟2

𝑅2
− 3 , 𝑟 < 𝑅

−
𝐺𝑀

𝑟
,                        𝑟 ≥ 𝑅

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Snell's Law derivation for polar coordinates 

Using Fermat's principle of minimum time, it is desired to compute Snell's law while the 

refractive index changes radially on an axis-symmetric sphere, so in polar coordinates: 

𝑛 = 𝑓(𝑟) 

Given two mediums, one outside a sphere with radius 𝑟 = 𝑎, and the second inside the 

sphere. The refractive index is therefore: 

𝑛(𝑟) =  
𝑛1 , 𝑟 > 𝑎
𝑛2 , 𝑟 < 𝑎

  

Choosing two arbitrary points: A is outside the sphere, and B is inside the sphere. 

𝑟 𝜃𝐴 = 𝑟𝐴 , 𝑟 𝜃𝐵 = 𝑟𝐵  

𝜃 = 𝜃𝐵 − 𝜃𝐴 

It is required to find the point at which the light would choose to pass from 𝑛1 to 𝑛2 in order 

to travel from point 𝐴 to point 𝐵 at the minimum possible time. 

 

The light would travel from point A to the sphere intersection point an angular distance of 𝛾, 

the linear distance traveled over this angle is obtained via the cosine theorem: 

𝑙1
2 = 𝑎2 + 𝑟𝐴

2 − 2𝑎𝑟𝐴 cos 𝛾 

 



Similarly, for the distance from the intersection to 𝐵: 

𝑙2
2 = 𝑎2 + 𝑟𝐵

2 − 2𝑎𝑟𝐵 cos(𝜃 − 𝛾) 

The light travels in a given medium at a velocity of: 

𝑣 =
𝑐

𝑛
 

While 𝑐 is the speed of light in vacuum. 

The time that takes the light to cover the distances: 

𝑡1 =
𝑙1

𝑣1
=

 𝑎2 + 𝑟𝐴
2 − 2𝑎𝑟𝐴 cos 𝛾

𝑣1
, 𝑡2 =

𝑙2

𝑣2
=

 𝑎2 + 𝑟𝐵
2 − 2𝑎𝑟𝐵 cos(𝜃 − 𝛾)

𝑣2
 

The total time of travel: 

𝑡 = 𝑡1 + 𝑡2 =
 𝑎2 + 𝑟𝐴

2 − 2𝑎𝑟𝐴 cos 𝛾

𝑣1
+

 𝑎2 + 𝑟𝐵
2 − 2𝑎𝑟𝐵 cos 𝜃 − 𝛾 

𝑣2
 

Applying Fermat's principle of minimum time: 

𝑑𝑡

𝑑𝛾
= 0 

𝑑𝑡

𝑑𝛾
=

𝑎𝑟𝐴 sin 𝛾

𝑣1 𝑎2 + 𝑟𝐴
2 − 2𝑎𝑟𝐴 cos 𝛾

−
𝑎𝑟𝐵 sin 𝜃 − 𝛾 

𝑣2 𝑎2 + 𝑟𝐵
2 − 2𝑎𝑟𝐵 cos 𝜃 − 𝛾 

= 0 

𝑟𝐴 sin 𝛾

𝑣1𝑙1
−

𝑟𝐵 sin 𝜃 − 𝛾 

𝑣2𝑙2
= 0 

Using the sine theorem: 

𝑙1

sin 𝛾
=

𝑟𝐴
sin(𝜋 − 𝜃1)

=
𝑟𝐴

sin 𝜃1
,

𝑙2

sin 𝜃 − 𝛾 
=

𝑟𝐵
sin 𝜃2

 

𝑟𝐴 sin 𝜃1

𝑣1𝑟𝐴
−

𝑟𝐵 sin 𝜃2

𝑣2𝑟𝐵
= 0 

sin 𝜃1

𝑣1
=

sin 𝜃2

𝑣2
 

⟹ 𝑛1 sin 𝜃1 = 𝑛2 sin 𝜃2 

This result is the same as the law derived in linear coordinates. 

Bouguer's Law derivation: 

𝑛 𝑟 ∙ 𝑟 sin 𝜃 = 𝑐𝑜𝑛𝑠𝑡 

𝑟 sin 𝜃

𝑣 𝑟 
= 𝑐𝑜𝑛𝑠𝑡 



Assume homogenous spherical medium, the velocity inside the sphere is constant: 

𝑣 𝑟 = 𝑐𝑜𝑛𝑠𝑡 

It is only required to prove that: 

𝑟 sin 𝜃 = 𝑐𝑜𝑛𝑠𝑡 

Since there is no refraction while 𝑛 = 𝑐𝑜𝑛𝑠𝑡 the fastest route would be a straight line, and 

that is the path in which the light travels. 

 

The angle between the trajectory of the light and the initial radius vector 𝑟𝐴  is constant. 

𝛿 = 𝑐𝑜𝑛𝑠𝑡 

Using the sine theorem for every 𝑟, 𝜃 𝑟  throughout the course between points 𝐴, and 𝐵: 

sin 𝛿

𝑟
=

sin(180 − 𝜃)

𝑟𝐴
 

𝑟 sin 𝜃 = 𝑟𝐴 sin 𝛿 = 𝑐𝑜𝑛𝑠𝑡 

Since 𝑛(𝑟) is constant as long as the movement is a straight line: 

𝑛 𝑟 ∙ 𝑟 sin 𝜃 = 𝑐𝑜𝑛𝑠𝑡 

Assuming there is a medium change between points 𝐴, and 𝐵: 



 

During the movement of the light through 𝑙1, and through 𝑙2 there is no medium change so 

it has been showed that the equation holds for these parts of the course. 

At the point of the refraction it was proven that Snell's law applies: 

𝑛1 sin 𝜃1 = 𝑛2 sin 𝜃2 

Since the radius is the same on that point it can be multiplied on both sides of the equation: 

𝑛1𝑎 ∙ sin 𝜃1 = 𝑛2𝑎 ∙ sin 𝜃2 

Since the equation is true on the refraction points and also between refractions it applies 

throughout all of the movement between points 𝐴, and 𝐵. 

So, overall: 

𝑛 𝑟 ∙ 𝑟 sin 𝜃 = 𝑐𝑜𝑛𝑠𝑡 

 

 

 

 

 

 



Solving the Brachistochrone problem for a spherical earth 

Assume a spherical earth with a gravitational field: 

𝑔 = −
𝑀⊕𝐺

𝑟2
𝑟  

The center of the earth in ECI coordinates is at 𝑟𝑂 =  0 0 0 𝑇. 

It is required to find the course from point 𝐴(𝑥𝐴 , 𝑦𝐴 , 𝑧𝐴) to point 𝐵(𝑥𝐵 , 𝑦𝐵 , 𝑧𝐵) which a point 

mass would travel at the shortest time while applied only a gravitational force directed to 

𝑟𝑂. 

𝑟𝐴 ≥ 𝑟𝐵 

Since the earth is assumed to be a perfect sphere, and the gravity is assumed to be only 

dependent on 𝑟, there exists a coordinate system where 𝐴, and 𝐵 both lie on the same 

plane. So using polar coordinates: 

𝐴 𝑟𝐴 , 𝜃𝐴 , 𝐵 𝑟𝐵 , 𝜃𝐵  

The transformation from cartesian to polar coordinates: 

𝑥 = 𝑟 cos 𝜃 , 𝑦 = 𝑟 sin 𝜃 

𝜕𝑥

𝜕𝑟
= cos 𝜃 ,

𝜕𝑦

𝜕𝑟
= sin 𝜃 

𝜕𝑥

𝜕𝜃
= −𝑟 sin 𝜃 ,

𝜕𝑦

𝜕𝜃
= 𝑟 cos 𝜃 

𝑑𝑙𝑟 =   
𝜕𝑥

𝜕𝑟
 

2

+  
𝜕𝑥

𝜕𝑟
 

2

𝑑𝑟 =  cos2 𝜃 + sin2 𝜃 𝑑𝑟 = 𝑑𝑟 

𝑑𝑙𝜃 =   
𝜕𝑥

𝜕𝜃
 

2

+  
𝜕𝑥

𝜕𝜃
 

2

𝑑𝜃 =  𝑟2 sin2 𝜃 + 𝑟2 cos2 𝜃 𝑑𝜃 = 𝑟𝑑𝜃 

𝑑𝑙 =  𝑑𝑙𝑟
2 + 𝑑𝑙𝜃

2 =  𝑑𝑟2 + 𝑟2𝑑𝜃2 =  𝑑𝑟2 + 𝑟2  
𝑑𝜃

𝑑𝑟
 

2

𝑑𝑟2 =  1 + 𝑟2  
𝑑𝜃

𝑑𝑟
 

2

𝑑𝑟 

The kinetic energy of the mass during its course: 

𝑇 =
1

2
𝑚𝑣2 

The gravitational potential energy of the mass during its course: 

𝑉 = −
𝐺𝑀𝑚

𝑟
 

Conservation of energy: 



𝐸 = 𝑇 + 𝑉 =
1

2
𝑚𝑣2 −

𝐺𝑀𝑚

𝑟
= 𝑐𝑜𝑛𝑠𝑡 

At point A the mass starts the movement: 

𝐸𝐴 = 𝑉𝐴 = −
𝐺𝑀𝑚

𝑟𝐴
 

1

2
𝑚𝑣2 −

𝐺𝑀𝑚

𝑟
= −

𝐺𝑀𝑚

𝑟𝐴
 

⟹ 𝑣 =  2𝐺𝑀  
1

𝑟
−

1

𝑟𝐴
  

It is desired to find the course that minimizes the time function: 

min
𝜃

𝑡 =  
𝑑𝑙

𝑣
𝑙

=  
 1 + 𝑟2  

𝑑𝜃
𝑑𝑟

 
2

 2𝐺𝑀  
1
𝑟 −

1
𝑟𝐴

 

𝑑𝑟

𝑟𝐵

𝑟=𝑟𝐴

=
1

 2𝐺𝑀
  

1 + 𝑟2𝜃′(𝑟)2

1
𝑟 −

1
𝑟𝐴

𝑑𝑟

𝑟𝐵

𝑟=𝑟𝐴

=
1

 2𝐺𝑀
  

 1 + 𝑟2𝜃 ′(𝑟)2 𝑟𝑟𝐴
𝑟𝐴 − 𝑟

𝑑𝑟

𝑟𝐵

𝑟=𝑟𝐴

 

𝐹 𝑟, 𝜃, 𝜃 ′ 𝑟  =  
 1 + 𝑟2𝜃 ′(𝑟)2 𝑟𝑟𝐴

𝑟𝐴 − 𝑟
 

𝜕𝐹

𝜕𝜃
−

𝑑

𝑑𝑟

𝜕𝐹

𝜕𝜃 ′
= 0 

𝜕𝐹

𝜕𝜃
= 0 

𝜕𝐹

𝜕𝜃 ′
= 𝑟2 

𝑟𝑟𝐴
𝑟𝐴 − 𝑟

𝜃 ′ 𝑟 

 1 + 𝑟2𝜃′ 𝑟 2
 

𝜕𝐹

𝜕𝜃
−

𝑑

𝑑𝑟

𝜕𝐹

𝜕𝜃 ′
= −

𝑑

𝑑𝑟

𝜕𝐹

𝜕𝜃 ′
= −

𝑑

𝑑𝑟
 𝑟2 

𝑟𝑟𝐴
𝑟𝐴 − 𝑟

𝜃 ′ 𝑟 

 1 + 𝑟2𝜃 ′ 𝑟 2
 = 0 

𝜕𝐹

𝜕𝜃 ′
= 𝑟2 

𝑟𝑟𝐴
𝑟𝐴 − 𝑟

𝜃 ′ 𝑟 

 1 + 𝑟2𝜃′ 𝑟 2
= 𝑐𝑜𝑛𝑠𝑡 

Squaring both sides: 

𝑟4
𝑟𝑟𝐴

𝑟𝐴 − 𝑟

𝜃 ′ 𝑟 2

1 + 𝑟2𝜃′ 𝑟 2
= 𝑐 = 𝑐𝑜𝑛𝑠𝑡 



𝑟5𝑟𝐴
𝑟𝐴 − 𝑟

𝜃 ′ 𝑟 2 = 𝑐 + 𝑐𝑟2𝜃 ′ 𝑟 2 

𝜃 ′ 𝑟 2  
𝑟5𝑟𝐴

𝑟𝐴 − 𝑟
− 𝑐𝑟2 = 𝑐 

𝜃 ′ 𝑟 2 =
𝑐

𝑟5𝑟𝐴
𝑟𝐴 − 𝑟 − 𝑐𝑟2

=
𝑐 𝑟𝐴 − 𝑟 

𝑟5𝑟𝐴 − 𝑐𝑟2 𝑟𝐴 − 𝑟 
 

𝜃 𝑟 = ±   
𝑐 𝑟𝐴 − 𝑟 

𝑟5𝑟𝐴 − 𝑐𝑟2 𝑟𝐴 − 𝑟 

𝑟𝐵

𝑟=𝑟𝐴

𝑑𝑟 

The initial and terminal conditions: 

𝜃 𝑟𝐴 = 𝜃𝐴 , 𝜃 𝑟𝐵 = 𝜃𝐵 

This is solved numerically: 

 



 

 

Bernoulli's Method: 

The path of shortest time must satisfy Bouguer's law: 

𝑟 sin 𝜙

𝑣(𝑟)
= 𝑐𝑜𝑛𝑠𝑡 

𝜙 is the angle between the tangent to the surface and the radius vector. 

It was seen from energy conservation that 𝑣 satisfies: 

𝑣 =  2𝐺𝑀  
1

𝑟
−

1

𝑟𝐴
  

Therefore: 

𝑟 sin 𝜙

 2𝐺𝑀  
1
𝑟 −

1
𝑟𝐴

 

= 𝑐𝑜𝑛𝑠𝑡 

𝑟 sin 𝜙

 
1
𝑟 −

1
𝑟𝐴

= 𝑐𝑜𝑛𝑠𝑡 



𝑟 sin 𝜙

 
𝑟𝐴 − 𝑟
𝑟𝑟𝐴

= 𝑐𝑜𝑛𝑠𝑡 

 
𝑟3𝑟𝐴

𝑟𝐴 − 𝑟
sin 𝜙 = 𝑐𝑜𝑛𝑠𝑡 

In order to find the path it is required to identify the relation between 𝜙, and 𝜃. 

sin 𝜙 =
𝑟𝑑𝜃

𝑑𝑙
 

 
𝑟3𝑟𝐴

𝑟𝐴 − 𝑟

𝑟𝑑𝜃

𝑑𝑙
= 𝑐𝑜𝑛𝑠𝑡 =  𝑐 

Squaring both sides: 

𝑟3𝑟𝐴
𝑟𝐴 − 𝑟

𝑟2𝑑𝜃2 = 𝑐𝑑𝑙2 = 𝑐 𝑑𝑟2 + 𝑟2𝑑𝜃2  

𝑟2𝑑𝜃2  
𝑟3𝑟𝐴

𝑟𝐴 − 𝑟
− 𝑐 = 𝑐𝑑𝑟2 

𝑑𝜃2  
𝑟5𝑟𝐴

𝑟𝐴 − 𝑟
− 𝑐𝑟2 = 𝑐𝑑𝑟2 

𝑑𝜃2  
𝑟5𝑟𝐴 − 𝑐𝑟2 𝑟𝐴 − 𝑟 

𝑟𝐴 − 𝑟
 = 𝑐𝑑𝑟2 

𝑑𝜃2

𝑑𝑟2
= 𝜃 ′ 𝑟 2 =

𝑐 𝑟𝐴 − 𝑟 

𝑟5𝑟𝐴 − 𝑐𝑟2 𝑟𝐴 − 𝑟 
 

𝜃 𝑟 = ±   
𝑐 𝑟𝐴 − 𝑟 

𝑟5𝑟𝐴 − 𝑐𝑟2 𝑟𝐴 − 𝑟 

𝑟𝐵

𝑟=𝑟𝐴

𝑑𝑟 

The initial and terminal conditions: 

𝜃 𝑟𝐴 = 𝜃𝐴 , 𝜃 𝑟𝐵 = 𝜃𝐵 

The same expression has been obtained from both methods. 

 

 

 

 

 



Solving the brachistichrone problem inside the earth 

Assume a spherical earth with an internal gravitational field: 

𝑔 = −
𝐺𝑀

𝑅3
𝑟𝑟  

The gravitational potential is derived to be: 

𝑉 𝑟 =
𝐺𝑀𝑚

2𝑅
 
𝑟2

𝑅2
− 3  

The kinetic energy of a point mass during its course: 

𝑇 =
1

2
𝑚𝑣2 

Conservation of energy: 

𝐸 = 𝑇 + 𝑉 =
1

2
𝑚𝑣2 +

𝐺𝑀𝑚

2𝑅
 
𝑟2

𝑅2
− 3 = 𝑐𝑜𝑛𝑠𝑡 

At point 𝐴 the mass starts the movement: 

𝐸𝐴 = 𝑉𝐴 =
𝐺𝑀𝑚

2𝑅
 
𝑟𝐴

2

𝑅2
− 3  

1

2
𝑚𝑣2 +

𝐺𝑀𝑚

2𝑅
 
𝑟2

𝑅2
− 3 =

𝐺𝑀𝑚

2𝑅
 
𝑟𝐴

2

𝑅2
− 3  

1

2
𝑚𝑣2 =

𝐺𝑀𝑚

2𝑅3
 𝑟𝐴

2 − 𝑟2  

⟹ 𝑣 =  
𝐺𝑀

𝑅3
 𝑟𝐴

2 − 𝑟2  

𝑑𝑙 =  𝑑𝑟2 + 𝑟2𝑑𝜃2 =   
𝑑𝑟

𝑑𝜃
 

2

𝑑𝜃2 + 𝑟2𝑑𝜃2 =  𝑟′(𝜃)2 + 𝑟2𝑑𝜃 

It is desired to find the course that minimizes the time function: 

min
𝜃

𝑡 =  
𝑑𝑙

𝑣
𝑙

=  
 𝑟′(𝜃)2 + 𝑟2

 𝐺𝑀
𝑅3  𝑟𝐴

2 − 𝑟2 

𝑑𝜃

𝜃𝐵

𝜃=𝜃𝐴

=  
𝑅3

𝐺𝑀
 

 𝑟′(𝜃)2 + 𝑟2

 𝑟𝐴
2 − 𝑟2

𝑑𝜃

𝜃𝐵

𝜃=𝜃𝐴

 

𝐹 𝜃, 𝑟, 𝑟′ 𝜃  =  
𝑟′ 𝜃 2 + 𝑟2

𝑟𝐴
2 − 𝑟2

 

 



The Euler-Lagrange equations: 

𝜕𝐹

𝜕𝑟
−

𝑑

𝑑𝜃

𝜕𝐹

𝜕𝑟′
= 0 

Since 
𝜕𝐹

𝜕𝜃
= 0, Beltrami's identity is applied: 

𝐹 − 𝑟′ 𝜃 
𝜕𝐹

𝜕𝑟′
= 𝑐𝑜𝑛𝑠𝑡 

𝜕𝐹

𝜕𝑟′
=

𝑟′ 𝜃 

  𝑟𝐴
2 − 𝑟2  𝑟′ 𝜃 2 + 𝑟2 

 

𝐹 − 𝑟′ 𝜃 
𝜕𝐹

𝜕𝑟′
=  

𝑟′ 𝜃 2 + 𝑟2

𝑟𝐴
2 − 𝑟2

−
𝑟′ 𝜃 2

  𝑟𝐴
2 − 𝑟2  𝑟′ 𝜃 2 + 𝑟2 

= 𝑐𝑜𝑛𝑠𝑡 

𝑟′ 𝜃 2 + 𝑟2 − 𝑟′ 𝜃 2

  𝑟𝐴
2 − 𝑟2  𝑟′ 𝜃 2 + 𝑟2 

=
𝑟2

  𝑟𝐴
2 − 𝑟2  𝑟′ 𝜃 2 + 𝑟2 

= 𝑐𝑜𝑛𝑠𝑡 

 

Squaring both sides: 

𝑟4

 𝑟𝐴
2 − 𝑟2  𝑟′ 𝜃 2 + 𝑟2 

= 𝑐 = 𝑐𝑜𝑛𝑠𝑡 

𝑟4

𝑟𝐴
2 − 𝑟2

= 𝑐 𝑟′ 𝜃 2 + 𝑟2  

𝑟′ 𝜃 2 =
𝑟4

𝑐 𝑟𝐴
2 − 𝑟2 

− 𝑟2 =
𝑟4 − 𝑐𝑟2 𝑟𝐴

2 − 𝑟2 

𝑐 𝑟𝐴
2 − 𝑟2 

 

A non linear differential equation has been received. A simple private solution may be 

obtained by assuming both points 𝐴, and 𝐵 are of radius 𝑟𝐴. From the symmetry of the 

problem the path would have its minimum radius at the middle of the course: 

𝑟′ 𝜃𝑚 = 0, 𝜃𝑚 =
𝜃𝐴 + 𝜃𝐵

2
 

⟹ 𝑐 =
𝑟𝑚

2

 𝑟𝐴
2 − 𝑟𝑚

2 
, 𝑟𝑚 = 𝑟(𝜃𝑚 ) 

𝑟′ 𝜃 2 =
𝑟4

𝑟𝑚
2

 𝑟𝐴
2 − 𝑟𝑚

2 
 𝑟𝐴

2 − 𝑟2 
− 𝑟2 =

𝑟4 𝑟𝐴
2 − 𝑟𝑚

2 

𝑟𝑚
2(𝑟𝐴

2 − 𝑟2)
− 𝑟2 

=
𝑟4 𝑟𝐴

2 − 𝑟𝑚
2 − 𝑟2𝑟𝑚

2 𝑟𝐴
2 − 𝑟2 

𝑟𝑚
2 𝑟𝐴

2 − 𝑟2 
=

𝑟4𝑟𝐴
2 − 𝑟4𝑟𝑚

2 − 𝑟2𝑟𝑚
2𝑟𝐴

2 + 𝑟4𝑟𝑚
2

𝑟𝑚
2 𝑟𝐴

2 − 𝑟2 
 

=
𝑟4𝑟𝐴

2 − 𝑟2𝑟𝑚
2𝑟𝐴

2

𝑟𝑚
2 𝑟𝐴

2 − 𝑟2 
=  

𝑟𝐴𝑟

𝑟𝑚
 

2 𝑟2 − 𝑟𝑚
2

𝑟𝐴
2 − 𝑟2

 



𝑑𝑟

𝑑𝜃
= ±

𝑟𝐴𝑟

𝑟𝑚
 

𝑟2 − 𝑟𝑚
2

𝑟𝐴
2 − 𝑟2

 

Rewriting in the form of 𝜃(𝑟) obtains an integral equation. Since the curve is symmetric 𝜃 

can be integrated from the minimum point 𝑟𝑚  to 𝑟 

𝑑𝜃

𝑑𝑟
= ±

𝑟𝑚
𝑟𝐴𝑟

 
𝑟𝐴

2 − 𝑟2

𝑟2 − 𝑟𝑚
2

 

𝜃 𝑟 = ±
𝑟𝑚
𝑟𝐴

 
1

𝑟

𝑟

𝑟𝑚

 
𝑟𝐴

2 − 𝑟2

𝑟2 − 𝑟𝑚
2
𝑑𝑟 

The solution: 

𝜃 𝑟 = arctan 
𝑟𝐴
𝑟𝑚

 
𝑟2 − 𝑟𝑚

2

𝑟𝐴
2 − 𝑟2

 −
𝑟𝑚
𝑟𝐴

arctan  
𝑟2 − 𝑟𝑚

2

𝑟𝐴
2 − 𝑟2

  + 𝑐 

𝜃 𝑟𝑚  = arctan 0 −
𝑟𝑚
𝑟𝐴

arctan 0 + 𝑐 = 𝑐 = 𝜃𝑚 =
𝜃𝐴 + 𝜃𝐵

2
 

𝜃 𝑟𝐴 = arctan∞ −
𝑟𝑚
𝑟𝐴

arctan ∞ + 𝑐 =
𝜋

2
−

𝜋

2

𝑟𝑚
𝑟𝐴

+ 𝑐 = 𝜃𝐴 

𝜋

2
−

𝜋

2

𝑟𝑚
𝑟𝐴

+
𝜃𝐴 + 𝜃𝐵

2
= 𝜃𝐴  

𝜋 − 𝜋
𝑟𝑚
𝑟𝐴

+ 𝜃𝐴 + 𝜃𝐵 = 2𝜃𝐴 

𝜃𝐴 − 𝜃𝐵 = 𝜋 − 𝜋
𝑟𝑚
𝑟𝐴

 

This is the relation for the angular distance between points 𝐴, 𝐵, and the ratio between the 

initial radius and the minimum radius of the path. 

Overall, the equation: 

𝜃 𝑟 = arctan 
𝑟𝐴
𝑟𝑚

 
𝑟2 − 𝑟𝑚

2

𝑟𝐴
2 − 𝑟2

 −
𝑟𝑚
𝑟𝐴

arctan  
𝑟2 − 𝑟𝑚

2

𝑟𝐴
2 − 𝑟2

  + 𝜃𝑚  

While the end points: 

𝜃 𝑟𝐴 = 𝜃𝐴 , 𝜃 𝑟𝐵 = 𝑟𝐴 = 𝜃𝐵 = 𝜃𝐴 − 𝜋 + 𝜋
𝑟𝑚
𝑟𝐴

 

 

 



And the midpoint is: 

𝜃 𝑟𝑚  = 𝜃𝑚 =
𝜃𝐴 + 𝜃𝐵

2
 

Bernoulli's Method: 

The path of shortest time must satisfy Bouguer's law: 

𝑟 sin 𝜙

𝑣(𝑟)
= 𝑐𝑜𝑛𝑠𝑡 

𝜙 is the angle between the tangent to the surface and the radius vector. 

It was seen from energy conservation that 𝑣 satisfies: 

𝑣 =  
𝐺𝑀

𝑅3
 𝑟𝐴

2 − 𝑟2  

Therefore: 

𝑟 sin 𝜙

 𝐺𝑀
𝑅3  𝑟𝐴

2 − 𝑟2 

= 𝑐𝑜𝑛𝑠𝑡 

𝑟 sin 𝜙

 𝑟𝐴
2 − 𝑟2

= 𝑐𝑜𝑛𝑠𝑡 

The relation between 𝜙 and 𝜃: 

sin 𝜙 =
𝑟𝑑𝜃

𝑑𝑙
 

𝑟
𝑟𝑑𝜃
𝑑𝑙

 𝑟𝐴
2 − 𝑟2

= 𝑐𝑜𝑛𝑠𝑡 

Squaring both sides: 

𝑟4

𝑟𝐴
2 − 𝑟2

𝑑𝜃2

𝑑𝑙2
= 𝑐 = 𝑐𝑜𝑛𝑠𝑡 

𝑟4

𝑟𝐴
2 − 𝑟2

𝑑𝜃2 = 𝑐𝑑𝑙2 = 𝑐(𝑑𝑟2 + 𝑟2𝑑𝜃2) 

𝑑𝜃2  
𝑟4

𝑟𝐴
2 − 𝑟2

− 𝑐𝑟2 = 𝑐𝑑𝑟2 

𝑑𝜃2 𝑟4 − 𝑐𝑟2 𝑟𝐴
2 − 𝑟2  = 𝑐 𝑟𝐴

2 − 𝑟2 𝑑𝑟2 

𝑟′ 𝜃 2 =
𝑑𝑟2

𝑑𝜃2
=

𝑟4 − 𝑐𝑟2 𝑟𝐴
2 − 𝑟2 

𝑐 𝑟𝐴
2 − 𝑟2 

 



𝑟′ 𝜃 2 =
𝑟4

𝑐 𝑟𝐴
2 − 𝑟2 

− 𝑟2 

The same expression has been obtained from both calculus of variations, and from 

Bernoulli's method. 

 



Solving the brachistochrone problem with drag 

Assume the constant gravity problem with a rigid body sliding on a surface with air 

resistance. the drag force applied on the mass: 

𝐷 = −
1

2
𝜌𝑣2𝑆𝐶𝐷𝑣  

While 𝜌 is the density of the air which is assumed constant for very low heights, 𝑆 is the drag 

induced cross sectional area of the body which interacts with the air, 𝐶𝐷 is the coefficient of 

drag of the body, assumed constant for low velocities.  

Define: 

𝑘 =
𝜌𝑆𝐶𝐷

2𝑚
 

𝐷 = −𝑚𝑘𝑣2𝑣  

 

It is assumed that the velocity vector coincides with the direction of motion on the surface 

path: 

𝐷 = −𝑚𝑘𝑣2𝑑𝑙  

The work of the drag force: 

𝑊𝐷 =  𝐷 ∙ 𝑑𝑙 = − 𝑚𝑘𝑣2 𝑑𝑙 ∙ 𝑑𝑙 = − 𝑚𝑘𝑣2 𝑑𝑙 

There is no energy conservation, the energy loss is equal to the work done by the drag: 

𝐸 =
𝑚𝑣2

2
− 𝑚𝑔𝑦 

𝑑𝐸 = 𝑚𝑣𝑑𝑣 − 𝑚𝑔𝑑𝑦 = 𝑑𝑊𝐷  

𝑚𝑣𝑑𝑣 − 𝑚𝑔𝑑𝑦 = −𝑚𝑘𝑣2𝑑𝑙 

D 

mg 

N 

(x,y) 

(0,0) 

(L,H) 

θ 

y 

x 



𝑣
𝑑𝑣

𝑑𝑥
𝑑𝑥 − 𝑔

𝑑𝑦

𝑑𝑥
𝑑𝑥 = −𝑘𝑣2 1 + 𝑦′ 𝑥 2𝑑𝑥 

𝑣(𝑥)𝑣 ′ 𝑥 − 𝑔𝑦′ 𝑥 + 𝑘𝑣2(𝑥) 1 + 𝑦′ 𝑥 2 = 0 

A constraint on the path course has been received: 

Ψ 𝑥, 𝑦 𝑥 , 𝑦′ 𝑥 , 𝑣 𝑥 , 𝑣 ′(𝑥) = 𝑣(𝑥)𝑣 ′ 𝑥 − 𝑔𝑦′ 𝑥 + 𝑘𝑣2(𝑥) 1 + 𝑦′ 𝑥 2 = 0 

𝑣 ′(𝑥) =
𝑔

𝑣 𝑥 
𝑦′(𝑥) − 𝑘𝑣(𝑥) 1 + 𝑦′ 𝑥 2 

While: 

𝑣 𝑥𝐴 = 0 = 0 

A differential equation for 𝑣 has been received. 

It is required to find the path of minimal time, so the time of descent is our cost function: 

min
𝑥

𝑡 =  
𝑑𝑙

𝑣
𝑙

=  
 1 + 𝑦′ 𝑥 2

𝑣(𝑥)

𝑥=𝐿

𝑥=0

𝑑𝑥 

Adding the constraint to the cost function: 

min
𝑥

𝑡 =   
 1 + 𝑦′ 𝑥 2

𝑣(𝑥)
+ 𝜆(𝑥)  𝑣(𝑥)𝑣 ′ 𝑥 − 𝑔𝑦′ 𝑥 + 𝑘𝑣2(𝑥) 1 + 𝑦′ 𝑥 2  

𝑥=𝐿

𝑥=0

𝑑𝑥 

Therefore: 

𝐻 =
 1 + 𝑦′ 𝑥 2

𝑣(𝑥)
+ 𝜆(𝑥)  𝑣(𝑥)𝑣 ′ 𝑥 − 𝑔𝑦′ 𝑥 + 𝑘𝑣2(𝑥) 1 + 𝑦′ 𝑥 2  

The Euler-Lagrange equations: 

𝜕𝐻

𝜕𝑦
−

𝑑

𝑑𝑥

𝜕𝐻

𝜕𝑦′
= 0,

𝜕𝐻

𝜕𝑣
−

𝑑

𝑑𝑥

𝜕𝐻

𝜕𝑣′
= 0 

Since 𝐻 is not explicitly dependant on 𝑥 the Beltrami identity may be used: 

𝐻 − 𝑦′ 𝑥 
𝜕𝐻

𝜕𝑦′
= 𝑐1 = 𝑐𝑜𝑛𝑠𝑡, 𝐻 − 𝑣 ′ 𝑥 

𝜕𝐻

𝜕𝑣 ′
= 𝑐2 = 𝑐𝑜𝑛𝑠𝑡 

𝜕𝐻

𝜕𝑦′
=

𝑦′ 𝑥 

𝑣 𝑥  𝑦′ 𝑥 2 + 1
+ 𝜆 𝑥  −𝑔 +

𝑘𝑣2 𝑥 𝑦′ 𝑥 

 1 + 𝑦′ 𝑥 2
  

=
𝑦′ 𝑥 

𝑣 𝑥  𝑦′ 𝑥 2 + 1
− 𝑔𝜆 𝑥 +

𝑘𝑣2 𝑥 𝑦′ 𝑥 

 1 + 𝑦′ 𝑥 2
𝜆 𝑥  

 



𝐻 − 𝑦′ 𝑥 
𝜕𝐻

𝜕𝑦′
=

 1 + 𝑦′ 𝑥 2

𝑣(𝑥)
+ 𝜆 𝑥  𝑣 𝑥 𝑣 ′ 𝑥 − 𝑔𝑦′ 𝑥 + 𝑘𝑣2 𝑥  1 + 𝑦′ 𝑥 2 

−
𝑦′ 𝑥 2

𝑣 𝑥  𝑦′ 𝑥 2 + 1
+ 𝑔𝜆 𝑥 𝑦′ 𝑥 −

𝑘𝑣2 𝑥 𝑦′ 𝑥 2

 1 + 𝑦′ 𝑥 2
𝜆 𝑥 = 𝑐1 

1 + 𝑦′ 𝑥 2

𝑣(𝑥)
+ 𝜆 𝑥  𝑣 𝑥 𝑣 ′ 𝑥  1 + 𝑦′ 𝑥 2 + 𝑘𝑣2 𝑥  1 + 𝑦′ 𝑥 2  −

𝑦′ 𝑥 2

𝑣 𝑥 

− 𝑘𝑣2 𝑥 𝑦′ 𝑥 2𝜆 𝑥 = 𝑐1 1 + 𝑦′ 𝑥 2 

1

𝑣(𝑥)
+ 𝜆 𝑥 𝑣 𝑥 𝑣 ′ 𝑥  1 + 𝑦′ 𝑥 2 + 𝜆 𝑥 𝑘𝑣2 𝑥 = 𝑐1 1 + 𝑦′ 𝑥 2 

1

𝑣(𝑥)
+ 𝜆 𝑥 𝑘𝑣2 𝑥 =  𝑐1 − 𝜆 𝑥 𝑣 𝑥 𝑣 ′ 𝑥   1 + 𝑦′ 𝑥 2 

1 + 𝑦′ 𝑥 2 =

1
𝑣 𝑥 

+ 𝜆 𝑥 𝑘𝑣2 𝑥 

𝑐1 − 𝜆 𝑥 𝑣 𝑥 𝑣 ′ 𝑥 
 

𝑦′ 𝑥 =  
1 + 𝜆 𝑥 𝑘𝑣3 𝑥 

𝑐1𝑣(𝑥) − 𝜆 𝑥 𝑣2 𝑥 𝑣′ 𝑥 
− 1 

𝜕𝐻

𝜕𝑣′
= 𝜆(𝑥)𝑣(𝑥) 

𝐻 − 𝑣 ′ 𝑥 
𝜕𝐻

𝜕𝑣 ′
=

 1 + 𝑦′ 𝑥 2

𝑣 𝑥 
+ 𝜆 𝑥  𝑣 𝑥 𝑣 ′ 𝑥 − 𝑔𝑦′ 𝑥 + 𝑘𝑣2 𝑥  1 + 𝑦′ 𝑥 2 

− 𝜆 𝑥 𝑣 𝑥 𝑣 ′ 𝑥 = 𝑐2 

 1 + 𝑦′ 𝑥 2

𝑣 𝑥 
+ 𝜆 𝑥  𝑘𝑣2 𝑥  1 + 𝑦′ 𝑥 2 − 𝑔𝑦′ 𝑥  = 𝑐2 

𝜆 𝑥 =
𝑐2 −

 1 + 𝑦′ 𝑥 2

𝑣 𝑥 

𝑘𝑣2 𝑥  1 + 𝑦′ 𝑥 2 − 𝑔𝑦′ 𝑥 
=

𝑐2𝑣 𝑥 −  1 + 𝑦′ 𝑥 2

𝑘𝑣3 𝑥  1 + 𝑦′ 𝑥 2 − 𝑔𝑦′ 𝑥 𝑣 𝑥 
 

Overall: 

 
 
 
 

 
 
 

𝑦′(𝑥) =  
1 + 𝜆 𝑥 𝑘𝑣3 𝑥 

𝑐1𝑣(𝑥) − 𝜆 𝑥 𝑣2 𝑥 𝑣′ 𝑥 
− 1

𝑣 ′(𝑥) =
𝑔

𝑣 𝑥 
𝑦′(𝑥) − 𝑘𝑣(𝑥) 1 + 𝑦′ 𝑥 2

𝜆(𝑥) =
𝑐2𝑣 𝑥 −  1 + 𝑦′ 𝑥 2

𝑘𝑣3 𝑥  1 + 𝑦′ 𝑥 2 − 𝑔𝑦′ 𝑥 𝑣 𝑥 

  

There are two unknown constants and two integration constants, 4 constants overall. 

 



Boundary conditions: 

𝑦 𝑥0 = 0 = 0, 𝑦 𝑥𝑓 = 𝐿 = 𝐻, 𝑣 𝑥0 = 0 = 0 

Transversality condition, there is no constraint on 𝑣 𝑥𝑓 : 

𝜕𝐻

𝜕𝑣 ′  𝑥𝑓 = 𝐿 = 0 

𝜆 𝑥𝑓 𝑣 𝑥𝑓 = 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Solving the Brachistochrone problem with varying density drag 

Assume the constant gravity problem with a rigid body sliding on a surface with air 

resistance. The drag force applied on the mass: 

𝐷 = −
1

2
𝜌𝑣2𝑆𝐶𝐷𝑣 = −

1

2
𝜌𝑣2𝑆𝐶𝐷𝑑𝑙  

The density is expressed by troposphere Pitot-statics model: 

𝜌 = 𝜌0  1 −
𝛽0

𝑇0
 

𝑔
𝑅𝛽0

−1

 

While the specific gas constant for air: 

𝑅 = 287  
𝐽

𝑘𝑔 ∙ 𝐾
  

The temperature drop rate: 

𝑇  = 𝑇0 − 𝛽0, 𝛽0 = 6.5 ∙ 10−3  
𝐾

𝑚
  

Assuming STP conditions at sea level: 

𝑇0 = 288 𝐾 , 𝜌0 = 1.225  
𝑘𝑔

𝑚3 , 𝑃0 = 101325[𝑃𝑎] 

Approximating as an exponential model for 
𝛽0

𝑇0
<< 1 

ln 1 − 𝑥 ≈ −𝑥, 𝑥 << 1 

𝜌 = 𝜌0  1 −
𝛽0

𝑇0
 

𝑔
𝑅𝛽0

−1

= 𝜌0𝑒

ln  1−
𝛽0
𝑇0

 

𝑔
𝑅𝛽0

−1

 

= 𝜌0𝑒
 

𝑔
𝑅𝛽0

−1 ln 1−
𝛽0
𝑇0

 
≈ 𝜌0𝑒

−
𝛽0
𝑇0

 
𝑔

𝑅𝛽0
−1 

 

= 𝜌0𝑒−

𝐻 

While: 

𝐻 =
𝑇0

𝛽0

1
𝑔

𝑅𝛽0
− 1

= 10404 𝑚  

Since the positive 𝑦 direction is defined as negative altitude: 

𝜌 = 𝜌0𝑒
𝑦(𝑥)
𝐻  

Define: 

𝑘0 =
𝜌0𝑆𝐶𝐷

2𝑚
 



𝐷 = −
1

2
𝜌0𝑒

𝑦(𝑥)
𝐻 𝑣2𝑆𝐶𝐷𝑑𝑙 = −𝑚𝑘0𝑒

𝑦(𝑥)
𝐻 𝑣2𝑑𝑙  

There is no energy conservation, the energy loss is equal to the work done by the drag: 

𝐸 =
𝑚𝑣2

2
− 𝑚𝑔𝑦 

𝑑𝐸 = 𝑚𝑣𝑑𝑣 − 𝑚𝑔𝑑𝑦 = 𝑑𝑊𝐷  

𝑚𝑣𝑑𝑣 − 𝑚𝑔𝑑𝑦 = −𝑚𝑘0𝑒
𝑦(𝑥)
𝐻 𝑣2𝑑𝑙 

𝑣
𝑑𝑣

𝑑𝑥
𝑑𝑥 − 𝑔

𝑑𝑦

𝑑𝑥
𝑑𝑥 = −𝑘0𝑒

𝑦(𝑥)
𝐻 𝑣2 1 + 𝑦′ 𝑥 2𝑑𝑥 

𝑑𝑣

𝑑𝑥
=

𝑔

𝑣

𝑑𝑦

𝑑𝑥
− 𝑘0𝑒

𝑦(𝑥)
𝐻 𝑣 1 + 𝑦′ 𝑥 2 

While: 

𝑣 𝑥𝐴 = 0 = 0 

A constraint on the path course has been received: 

Ψ 𝑥, 𝑦 𝑥 , 𝑦′ 𝑥 , 𝑣 𝑥 , 𝑣 ′(𝑥) = 𝑣(𝑥)𝑣 ′ 𝑥 − 𝑔𝑦′ 𝑥 + 𝑘0𝑒
𝑦(𝑥)
𝐻 𝑣2(𝑥) 1 + 𝑦′ 𝑥 2 = 0 

It is required to find the path of minimal time, so the time of descent is our cost function: 

min
𝑥

𝑡 =  
𝑑𝑙

𝑣
𝑙

=  
 1 + 𝑦′ 𝑥 2

𝑣(𝑥)

𝑥=𝐿

𝑥=0

𝑑𝑥 

Adding the constraint to the cost function: 

min
𝑥

𝑡 =   
 1 + 𝑦′ 𝑥 2

𝑣(𝑥)
+ 𝜆(𝑥)  𝑣(𝑥)𝑣′ 𝑥 − 𝑔𝑦′ 𝑥 + 𝑘0𝑒

𝑦(𝑥)
𝐻 𝑣2(𝑥) 1 + 𝑦′ 𝑥 2  

𝑥=𝐿

𝑥=0

𝑑𝑥 

Therefore: 

𝐻 =
 1 + 𝑦′ 𝑥 2

𝑣(𝑥)
+ 𝜆(𝑥)  𝑣(𝑥)𝑣 ′ 𝑥 − 𝑔𝑦′ 𝑥 + 𝑘0𝑒

𝑦(𝑥)
𝐻 𝑣2(𝑥) 1 + 𝑦′ 𝑥 2  

The Euler-Lagrange equations: 

𝜕𝐻

𝜕𝑦
−

𝑑

𝑑𝑥

𝜕𝐻

𝜕𝑦′
= 0,

𝜕𝐻

𝜕𝑣
−

𝑑

𝑑𝑥

𝜕𝐻

𝜕𝑣′
= 0 

Since 𝐻 is not explicitly dependant on 𝑥 the Beltrami identity may be used: 

𝐻 − 𝑦′ 𝑥 
𝜕𝐻

𝜕𝑦′
= 𝑐1 = 𝑐𝑜𝑛𝑠𝑡, 𝐻 − 𝑣 ′ 𝑥 

𝜕𝐻

𝜕𝑣 ′
= 𝑐2 = 𝑐𝑜𝑛𝑠𝑡 



𝜕𝐻

𝜕𝑦′
=

𝑦′ 𝑥 

𝑣 𝑥  𝑦′ 𝑥 2 + 1
+ 𝜆 𝑥  −𝑔 +

𝑘0𝑒
𝑦(𝑥)
𝐻 𝑣2 𝑥 𝑦′ 𝑥 

 1 + 𝑦′ 𝑥 2
  

=
𝑦′ 𝑥 

𝑣 𝑥  𝑦′ 𝑥 2 + 1
− 𝑔𝜆 𝑥 +

𝑘0𝑒
𝑦(𝑥)
𝐻 𝑣2 𝑥 𝑦′ 𝑥 

 1 + 𝑦′ 𝑥 2
𝜆 𝑥  

𝐻 − 𝑦′ 𝑥 
𝜕𝐻

𝜕𝑦′
=

 1 + 𝑦′ 𝑥 2

𝑣(𝑥)
+ 𝜆 𝑥  𝑣 𝑥 𝑣 ′ 𝑥 − 𝑔𝑦′ 𝑥 + 𝑘0𝑒

𝑦(𝑥)
𝐻 𝑣2 𝑥  1 + 𝑦′ 𝑥 2 

−
𝑦′ 𝑥 2

𝑣 𝑥  𝑦′ 𝑥 2 + 1
+ 𝑔𝜆 𝑥 𝑦′ 𝑥 −

𝑘0𝑒
𝑦(𝑥)
𝐻 𝑣2 𝑥 𝑦′ 𝑥 2

 1 + 𝑦′ 𝑥 2
𝜆 𝑥 = 𝑐1 

1 + 𝑦′ 𝑥 2

𝑣(𝑥)
+ 𝜆 𝑥  𝑣 𝑥 𝑣 ′ 𝑥  1 + 𝑦′ 𝑥 2 + 𝑘0𝑒

𝑦(𝑥)
𝐻 𝑣2 𝑥  1 + 𝑦′ 𝑥 2  −

𝑦′ 𝑥 2

𝑣 𝑥 

− 𝑘0𝑒
𝑦(𝑥)
𝐻 𝑣2 𝑥 𝑦′ 𝑥 2𝜆 𝑥 = 𝑐1 1 + 𝑦′ 𝑥 2 

1

𝑣(𝑥)
+ 𝜆 𝑥 𝑣 𝑥 𝑣 ′ 𝑥  1 + 𝑦′ 𝑥 2 + 𝜆 𝑥 𝑘0𝑒

𝑦(𝑥)
𝐻 𝑣2 𝑥 = 𝑐1 1 + 𝑦′ 𝑥 2 

1

𝑣(𝑥)
+ 𝜆 𝑥 𝑘0𝑒

𝑦(𝑥)
𝐻 𝑣2 𝑥 =  𝑐1 − 𝜆 𝑥 𝑣 𝑥 𝑣 ′ 𝑥   1 + 𝑦′ 𝑥 2 

1 + 𝑦′ 𝑥 2 =

1
𝑣 𝑥 

+ 𝜆 𝑥 𝑘0𝑒
𝑦(𝑥)
𝐻 𝑣2 𝑥 

𝑐1 − 𝜆 𝑥 𝑣 𝑥 𝑣 ′ 𝑥 
 

𝑦′ 𝑥 =  1 + 𝜆 𝑥 𝑘0𝑒
𝑦(𝑥)
𝐻 𝑣3 𝑥 

𝑐1𝑣(𝑥) − 𝜆 𝑥 𝑣2 𝑥 𝑣′ 𝑥 
− 1 

𝜕𝐻

𝜕𝑣′
= 𝜆(𝑥)𝑣(𝑥) 

𝐻 − 𝑣 ′ 𝑥 
𝜕𝐻

𝜕𝑣 ′
=

 1 + 𝑦′ 𝑥 2

𝑣 𝑥 
+ 𝜆 𝑥  𝑣 𝑥 𝑣 ′ 𝑥 − 𝑔𝑦′ 𝑥 + 𝑘0𝑒

𝑦(𝑥)
𝐻 𝑣2 𝑥  1 + 𝑦′ 𝑥 2 

− 𝜆 𝑥 𝑣 𝑥 𝑣 ′ 𝑥 = 𝑐2 

 1 + 𝑦′ 𝑥 2

𝑣 𝑥 
+ 𝜆 𝑥  𝑘0𝑒

𝑦(𝑥)
𝐻 𝑣2 𝑥  1 + 𝑦′ 𝑥 2 − 𝑔𝑦′ 𝑥  = 𝑐2 

𝜆 𝑥 =
𝑐2 −

 1 + 𝑦′ 𝑥 2

𝑣 𝑥 

𝑘0𝑒
𝑦(𝑥)
𝐻 𝑣2 𝑥  1 + 𝑦′ 𝑥 2 − 𝑔𝑦′ 𝑥 

=
𝑐2𝑣 𝑥 −  1 + 𝑦′ 𝑥 2

𝑘0𝑒
𝑦(𝑥)
𝐻 𝑣3 𝑥  1 + 𝑦′ 𝑥 2 − 𝑔𝑦′ 𝑥 𝑣 𝑥 

 

 

 



 

Overall: 

 
 
 
 
 

 
 
 
 

𝑦′(𝑥) =  1 + 𝜆 𝑥 𝑘0𝑒
𝑦(𝑥)
𝐻 𝑣3 𝑥 

𝑐1𝑣(𝑥) − 𝜆 𝑥 𝑣2 𝑥 𝑣′ 𝑥 
− 1

𝑣 ′(𝑥) =
𝑔

𝑣 𝑥 
𝑦′(𝑥) − 𝑘0𝑒

𝑦(𝑥)
𝐻 𝑣(𝑥) 1 + 𝑦′ 𝑥 2

𝜆(𝑥) =
𝑐2𝑣 𝑥 −  1 + 𝑦′ 𝑥 2

𝑘0𝑒
𝑦(𝑥)
𝐻 𝑣3 𝑥  1 + 𝑦′ 𝑥 2 − 𝑔𝑦′ 𝑥 𝑣 𝑥 

  

There are two unknown constants and two integration constants, 4 constants overall. 

Boundary conditions: 

𝑦 𝑥0 = 0 = 0, 𝑦 𝑥𝑓 = 𝐿 = 𝐻, 𝑣 𝑥0 = 0 = 0 

Transversality condition, there is no constraint on 𝑣 𝑥𝑓 : 

𝜕𝐻

𝜕𝑣 ′  𝑥𝑓 = 𝐿 = 0 

𝜆 𝑥𝑓 𝑣 𝑥𝑓 = 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Solving the Brachistochrone problem for a spherical earth with drag 

Assume a spherical earth with a gravitational field: 

𝑔 = −
𝑀⊕𝐺

𝑟2
𝑟  

A rigid body sliding on a surface with air resistance. The drag force applied on the mass: 

𝐷 = −
1

2
𝜌𝑣2𝑆𝐶𝐷𝑣 = −

1

2
𝜌𝑣2𝑆𝐶𝐷𝑑𝑙  

The density model: 

𝜌 = 𝜌0𝑒−

𝐻 

At polar coordinates the altitude is: 

 = 𝑟 − 𝑅⊕ 

So, the density model: 

𝜌 = 𝜌0𝑒
𝑅⊕−𝑟

𝐻  

Define: 

𝑘0 =
𝜌0𝑆𝐶𝐷

2𝑚
 

𝐷 = −
1

2
𝜌0𝑒

𝑅⊕−𝑟
𝐻 𝑣2𝑆𝐶𝐷𝑑𝑙 = −𝑚𝑘0𝑒

𝑅⊕−𝑟
𝐻 𝑣2𝑑𝑙  

There is no energy conservation, the energy loss is equal to the work done by the drag: 

𝐸 =
𝑚𝑣2

2
−

𝐺𝑀𝑚

𝑟
 

𝑑𝐸 = 𝑚𝑣𝑑𝑣 +
𝐺𝑀𝑚

𝑟2
𝑑𝑟 = 𝑑𝑊𝐷  

𝑚𝑣𝑑𝑣 +
𝐺𝑀𝑚

𝑟2
𝑑𝑟 = −𝑚𝑘0𝑒

𝑅⊕−𝑟
𝐻 𝑣2𝑑𝑙 

𝑣
𝑑𝑣

𝑑𝜃
 𝑑𝜃 +

𝐺𝑀

𝑟2
𝑑𝑟 = −𝑘0𝑒

𝑅⊕−𝑟
𝐻 𝑣2  

𝑑𝑟

𝑑𝜃
 

2

+ 𝑟2𝑑𝜃 

𝑑𝑣

𝑑𝜃
 = −

𝐺𝑀

𝑣𝑟2

𝑑𝑟

𝑑𝜃
− 𝑘0𝑒

𝑅⊕−𝑟
𝐻 𝑣  

𝑑𝑟

𝑑𝜃
 

2

+ 𝑟2 

While: 

𝑣 𝜃𝐴  = 0 = 0 



A constraint on the path course has been received: 

Ψ 𝜃, 𝑟 𝜃 , 𝑟′ 𝜃 , 𝑣 𝜃 , 𝑣 ′(𝜃) = 𝑣𝑣 ′ 𝜃 +
𝐺𝑀

𝑟2
𝑟′ 𝜃 + 𝑘0𝑒

𝑅⊕−𝑟
𝐻 𝑣2 𝑟′ 𝜃 2 + 𝑟2 = 0 

It is desired to find the course that minimizes the time function: 

min
𝜃

𝑡 =  
𝑑𝑙

𝑣
𝑙

=  
  

𝑑𝑟
𝑑𝜃

 
2

+ 𝑟2

𝑣(𝜃)
𝑑𝜃

𝜃𝐵

𝜃=𝜃𝐴

 

Adding the constraint to the cost function: 

min
𝜃

𝑡 =   
 𝑟′ 𝜃 2 + 𝑟2

𝑣(𝜃)
+ 𝜆 𝜃  𝑣𝑣′ 𝜃 +

𝐺𝑀

𝑟2
𝑟′ 𝜃 + 𝑘0𝑒

𝑅⊕−𝑟
𝐻 𝑣2 𝑟′ 𝜃 2 + 𝑟2  

𝜃𝐵

𝜃=𝜃𝐴

𝑑𝑥 

Therefore: 

𝐻 =
 𝑟′ 𝜃 2 + 𝑟2

𝑣(𝜃)
+ 𝜆 𝜃  𝑣𝑣 ′ 𝜃 +

𝐺𝑀

𝑟2
𝑟′ 𝜃 + 𝑘0𝑒

𝑅⊕−𝑟
𝐻 𝑣2 𝑟′ 𝜃 2 + 𝑟2  

The Euler-Lagrange equations: 

𝜕𝐻

𝜕𝑟
−

𝑑

𝑑𝜃

𝜕𝐻

𝜕𝑟′
= 0,

𝜕𝐻

𝜕𝑣
−

𝑑

𝑑𝜃

𝜕𝐻

𝜕𝑣′
= 0 

Since 𝐻 is not explicitly dependant on 𝜃 the Beltrami identity may be used: 

𝐻 − 𝑟′ 𝜃 
𝜕𝐻

𝜕𝑟′
= 𝑐1 = 𝑐𝑜𝑛𝑠𝑡, 𝐻 − 𝑣 ′ 𝜃 

𝜕𝐻

𝜕𝑣 ′
= 𝑐2 = 𝑐𝑜𝑛𝑠𝑡 

𝜕𝐻

𝜕𝑟′
=

𝑟′ 𝜃 

𝑣 𝜃  𝑟′ 𝜃 2 + 𝑟2
+ 𝜆 𝜃 

𝐺𝑀

𝑟2
+ 𝜆 𝜃 

𝑘0𝑒
𝑅⊕−𝑟

𝐻 𝑣2𝑟′ 𝜃 

 𝑟′ 𝜃 2 + 𝑟2
 

𝐻 − 𝑟′ 𝜃 
𝜕𝐻

𝜕𝑟′
=

 𝑟′ 𝜃 2 + 𝑟2

𝑣(𝜃)
+ 𝜆 𝜃  𝑣𝑣 ′ 𝜃 +

𝐺𝑀

𝑟2
𝑟′ 𝜃 + 𝑘0𝑒

𝑅⊕−𝑟
𝐻 𝑣2 𝑟′ 𝜃 2 + 𝑟2 

−
𝑟′ 𝜃 2

𝑣 𝜃  𝑟′ 𝜃 2 + 𝑟2
− 𝜆 𝜃 

𝐺𝑀

𝑟2
𝑟′ 𝜃 − 𝜆 𝜃 

𝑘0𝑒
𝑅⊕−𝑟

𝐻 𝑣2𝑟′ 𝜃 2

 𝑟′ 𝜃 2 + 𝑟2
= 𝑐1 

𝑟′ 𝜃 2 + 𝑟2

𝑣(𝜃)
+ 𝜆 𝜃 𝑣𝑣 ′ 𝜃  𝑟′ 𝜃 2 + 𝑟2 + 𝜆 𝜃 𝑘0𝑒

𝑅⊕−𝑟
𝐻 𝑣2 𝑟′ 𝜃 2 + 𝑟2 −

𝑟′ 𝜃 2

𝑣 𝜃 

− 𝜆 𝜃 𝑘0𝑒
𝑅⊕−𝑟

𝐻 𝑣2𝑟′ 𝜃 2 = 𝑐1 𝑟′ 𝜃 2 + 𝑟2 

𝑟2

𝑣(𝜃)
+ 𝜆 𝜃 𝑣𝑣 ′ 𝜃  𝑟′ 𝜃 2 + 𝑟2 + 𝜆 𝜃 𝑘0𝑒

𝑅⊕−𝑟
𝐻 𝑣2𝑟2 = 𝑐1 𝑟′ 𝜃 2 + 𝑟2 

𝑟2

𝑣(𝜃)
+ 𝜆 𝜃 𝑘0𝑒

𝑅⊕−𝑟
𝐻 𝑣2𝑟2 =  𝑐1 − 𝜆 𝜃 𝑣𝑣 ′ 𝜃   𝑟′ 𝜃 2 + 𝑟2 



 𝑟′ 𝜃 2 + 𝑟2 =

𝑟2

𝑣(𝜃)
+ 𝜆 𝜃 𝑘0𝑒

𝑅⊕−𝑟
𝐻 𝑣2𝑟2

𝑐1 − 𝜆 𝜃 𝑣𝑣 ′ 𝜃 
 

𝑟′ 𝜃 2 + 𝑟2 =  
𝑟2 + 𝜆 𝜃 𝑘0𝑒

𝑅⊕−𝑟
𝐻 𝑣3(𝜃)𝑟2

𝑐1𝑣(𝜃) − 𝜆 𝜃 𝑣2(𝜃)𝑣 ′ 𝜃 
 

2

 

𝑟′ 𝜃 =   
𝑟2 + 𝜆 𝜃 𝑘0𝑒

𝑅⊕−𝑟
𝐻 𝑣3(𝜃)𝑟2

𝑐1𝑣(𝜃) − 𝜆 𝜃 𝑣2(𝜃)𝑣 ′ 𝜃 
 

2

− 𝑟2 

𝜕𝐻

𝜕𝑣 ′
= 𝜆 𝜃 𝑣 𝜃  

𝐻 − 𝑣 ′ 𝜃 
𝜕𝐻

𝜕𝑣 ′
=

 𝑟′ 𝜃 2 + 𝑟2

𝑣(𝜃)
+ 𝜆 𝜃  𝑣𝑣 ′ 𝜃 +

𝐺𝑀

𝑟2
𝑟′ 𝜃 + 𝑘0𝑒

𝑅⊕−𝑟
𝐻 𝑣2 𝑟′ 𝜃 2 + 𝑟2 

− 𝜆 𝜃 𝑣 𝜃 𝑣′ 𝜃 = 𝑐2 

 𝑟′ 𝜃 2 + 𝑟2

𝑣(𝜃)
+ 𝜆 𝜃  

𝐺𝑀

𝑟2
𝑟′ 𝜃 + 𝑘0𝑒

𝑅⊕−𝑟
𝐻 𝑣2 𝑟′ 𝜃 2 + 𝑟2 = 𝑐2 

𝜆 𝜃 =
𝑐2 −

 𝑟′ 𝜃 2 + 𝑟2

𝑣(𝜃)

𝐺𝑀
𝑟2 𝑟′ 𝜃 + 𝑘0𝑒

𝑅⊕−𝑟
𝐻 𝑣2 𝑟′ 𝜃 2 + 𝑟2

=
𝑐2𝑣(𝜃) −  𝑟′ 𝜃 2 + 𝑟2

𝐺𝑀
𝑟2 𝑟′ 𝜃 𝑣(𝜃) + 𝑘0𝑒

𝑅⊕−𝑟
𝐻 𝑣3(𝜃) 𝑟′ 𝜃 2 + 𝑟2

 

Overall: 

 
 
 
 
 

 
 
 
 

𝑟′ 𝜃 =   
𝑟2 + 𝜆 𝜃 𝑘0𝑒

𝑅⊕−𝑟
𝐻 𝑣3(𝜃)𝑟2

𝑐1𝑣(𝜃) − 𝜆 𝜃 𝑣2(𝜃)𝑣 ′ 𝜃 
 

2

− 𝑟2

𝑣 ′(𝜃) = −
𝐺𝑀

𝑣 𝜃 𝑟2(𝜃)
𝑟′(𝜃) − 𝑘0𝑒

𝑅⊕−𝑟(𝜃)
𝐻 𝑣 𝜃  𝑟′(𝜃)2 + 𝑟2(𝜃)

𝜆(𝜃) =
𝑐2𝑣(𝜃) −  𝑟′ 𝜃 2 + 𝑟2

𝐺𝑀
𝑟2 𝑟′ 𝜃 𝑣(𝜃) + 𝑘0𝑒

𝑅⊕−𝑟
𝐻 𝑣3(𝜃) 𝑟′ 𝜃 2 + 𝑟2

  

There are two unknown constants and two integration constants, 4 constants overall. 

Boundary conditions: 

𝑟 𝜃𝐴 = 𝑟𝐴 , 𝑟 𝜃𝐵 = 𝑟𝐵 , 𝑣 𝜃𝐴 = 0 

Transversality condition, there is no constraint on 𝑣 𝜃𝐵 : 

𝜕𝐻

𝜕𝑣 ′
 𝜃𝐵 = 0 

𝜆 𝜃𝐵 𝑣 𝜃𝐵 = 0 



Conclusion 

This paper presented and discussed the Brachistochrone problem, defined the  statement of 

the problem by Johan Bernoulli in 1696. In order to solve the problem and to find the 

shortest path the parametrisation equations of the cycloid curve were computed from a 

rolling circle on a straight line, Snell's law was derived using Fermat's principle of minimal 

time. Also, there was a brief introduction to calculus of variations and the tools which were 

used in the proof were presented. Afterwards, the Brachistochrone problem was solved 

using Bernoulli's method of analogy to light, and by variational calculus method. The time of 

descent was computed for the cycloid curve and it was received that the time to reach the 

bottom of the cycloid is the same with no regard where the point mass is placed. Lastly, the 

time of descent of a straight line was computed and compared with cycloid to confirm that 

the time of descent of the cycloid is indeed the minimal possible time. In the second part of 

the report the problem was generalized using several realistic influences and their effect on 

the Brachistochrone curve was derived and analyzed. The gravitational potential of a perfect 

sphere was derived both inside, and outside the sphere, and using it the Brachistochrone 

problem was solved for round earth solutions via Bernoulli's method and with calculus of 

variations. It was seen that both methods provided the same exact solution so they verified 

each over. Afterwards the problem was solved including quadratic drag forces, for low 

heights with constant drag, for varying density and lastly for a round earth. The solutions for 

the drag problems were received as a set of algebraic differential equations, and solving it 

requires advanced numerical integration methods. 
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