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Abstract

The Brachistochrone problem, meaning in greek "shortest time", is the question regarding
what is the shape of the path to slide a point mass between two arbitrary points with a
height difference in the shortest time possible, while considering only the action of a
constant gravitational force applied on it. This project will present the problem, and the
solutions provided for the problem by Johann Brenoulli, and through calculus of variations.

Introduction

The problem was first suggested by Johann Bernoulli in 1696, stated as:

‘Given two points A and B in a vertical plane, what is the curve traced out by a point
acted on only by gravity, which starts at A and reaches B in the shortest time'

When a person is first addressed with this problem, the intuitive answer is that the path is a
straight line, assuming the shortest path naturally provides the shortest time. This answer is
of course incorrect because while the mass has a short distance to cover during its decline
the acceleration is very low because of the constant path incline and so the mass doesn't
gain velocity fast enough. Galileo, prior to Bernoulli, while dealing with a similar problem
proposed a solution of the path of a circle, which is a descent solution, but it's not the
optimal solution. The optimal solution is known to be the shape of a cycloid, the path of a
point of a rolling circle on a straight surface. This solution may be computed with several
methods, including Johan Bernoulli's method using analogy to the motion of light with
Snell's law, and by calculus of variations while minimizing the cost function of the time of
descent using the Euler-Lagrange equations. The problem was also solved by Jakob
Bernoulli, Johan's brother, and by Isaac Newton, who formed his solution anonymously.



The path of a Cycloid

In order to present the derivations of the Brachistochrone solutions it is first required to
define the shape of the solution path, the Cycloid.

Given a circle with radius R, rolling on a straight line on the x axis. It is desired to form the
equations of the path of a given point on the circle, initially located at A(0,0).

During the rolling of the circle, point A moves around the center 0. Define 8 as the angle
between the segment 04, and the initial segment when A(0,0). The length of OA is R as it is
the radius of the circle. The center O position changes with respect to 6 as the circle
performs a pure roll by the following equations:

Xo = OR, Yo = R = const

p=2
A

Using trigonometric relations it is derived that:

X4 = xo — Rsin(0) = OR — Rsin(6), ¥4 = R — Rcos(6)



Therefore, the equations of a cycloid are:

x = R(6 —sin8)
{y = R(1 —cosh)
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Bernoulli's Solution

Johan Bernoulli solved the Brachistochrone problem using an analogy to the movement of a
beam of light traveling through a varying medium. The proof assumes Snell's law, so first it is
required to derive it:

Snell's law states that while a beam of light travels between one medium to another it will
deflect according to the following relation:

ny sinf; = n, sin 6,

While 6 is the angle between the beam of light and the perpendicular to the medium
transition line, and n is the refractive index - the ratio between the speed of light in vacuum
and the speed of light in the given medium.

n=—
v

Snell's law is the implementation of Fermat's principle, which at the time was an ampirical
law that stated light would find the path to travel between two given points at the minimal
time. At later dates, with a better understanding of the nature of light Fermat's principle was
proven using Maxwell's equations of electromagnetism, and by the wave-particle duality
using quantum mechanics.

Given points A4, and B which lie in different mediums n;, and n, accordingly. Define the
horizontal length m between A, and B, and the vertical length [. The length between A4 and
the medium transition line is a. Mark x as the horizontal length between A and the point of
transition between the mediums, which is unknown.



m

The velocity in the mediums n, and n,, are v, and v, accordingly.

The distance between A4, and the point of transition:

d, =Vx?+a?

The distance between B, and the point of transition:

dy, = /(L — a)? + (m — x)2
Since the light velocity is constant in each medium, the time of travel is:

dq da
ti1=—, t, =—
1 2 2 V2

Thus, the total time of travel between A4, and B is:

d, d, Vx2+a? l—a)?+ (m—x)?
v Uy LY) LY)

Using Fermat's principle, we wish to minimize the time as function of x:

d _

dx
dt 2x 2(m —x) _ 0
dx  2vVx2+a? 2v5/(l— a)? + (m — x)?

x (m—x)
— — 0
v1dy vy d;
x ) m-—x )
— =sinf,, = sin 6,
dy 2

sinf; sin6,

51 U3



We've received Snell's law:

sinf; sinf,

(4] ()
By applying the relation n = % the better known equation is obtained:
nqsinf; = n, sin 6,
[ |

Bernoulli used an analogy between the motion of the point mass on the surface, and a
motion of a light beam between infinitely many varying mediums.

Assume a point mass travels from point A4, to B using only the gravitational force. Set a
Cartesian coordinate system such that A is located at (0,0), and B at known (L, H) beneath
point A. 8 is the angle between the tangent to the surface and y axis.




Since the only force applied on the mass is gravity, the total energy is conserved.

muv?

E=V+T=—mgy+T=const

EA =0
mv?
—mgy+T =0

From Snell's law:

sin @
= const

sin @
= const

29y

Squaring both sides and adding g to the constant:

sin? @

= const

This relation represents the differential equation of a cycloid. To show how, a geometric
proof by mathematician Mark Levi is provided.

Consider the following sketch:

Since the cycloid is created from a rolling circle with a radius R, at any given time F is the
instant center of rotation of the circle, so every point on the circle rotates around F at that
moment and performs a circular motion around that point. M moves in a circular motion
with respect to F at any given time, so it's velocity is perpendicular to the line MF. The



velocity vector is in the same plane as the surface the mass slides on, so the tangent line of
the surface at any given moment is perpendicular to MF. Continue the tangent on a straight
line until it reaches the circle on point D, such that XFMD = 90°. A circumferential angle
that equals 90° lies on the diameter, so FD is the diameter of the circle.

Define the angle <FDM = 0. @ is a circumferential angle, so the central angle that lies on

the same arc, ¥FOM = 26. 0 is also the angle of the mass because they're parallel angles.

The angle between a chord in the circle to the tangent of the circle is the same as the
circumferential angle that lies on this chord from the other side, so:

<FDM = «<MFA =10

Using the law of sines:

MF _ DF
sin(«FDM) ~ sin(<FMD)

MF _ 2R
sin@®  sin90°

= MF = 2Rsin6

2= sin(«MFA)

MF
y
JRsmg _ Sno
sin29_ 1 .
y —ZR—COTlS

We've received the same equation that was derived by Bernoulli. This equation represents
the cycloid equation:

{x = R(260 — sin 20)
y = R(1 — cos 26)

While @ is the angle between the tangent to the surface and y axis, it is half the angle of the
circle's rotation. R is the radius of the circle:

R_H
2



Calculus of variations

Calculus of variations is a branch in calculus that deals with finding the minima of
functionals. A functional is a function which its variables are functions as well. An example
for a functional is an integral:

X2
FOW) = | v©ds
X1
The functional used in variational calculus is called a cost function:
X2 ,
J0) = | F(uye0.y ()dx
X1

It is required to find y(x) such that the solution to J(y) is minimal. In order to find the
minimal solution, F must satisfy the Euler-Lagrange equation:

OF d OF _

dy dxa_y' B
Example - Shortest path problem:

It is required to find the path with the shortest possible length between two points A, and B.
Define the coordinates system so that A = (0,0), B = (L, H).

4
4

The differential length of the path:

dl = \/dx? + dy?

Deriving the relations between dx, and dy:

dx = d dy_dxd_,()d
x_xdy_dy y=xy)ay



It is desired to find a path with minimal length, so it is the cost function:

Y2 ,
J =10 = f F(yx(),x 0)dy

V1

y=H y=H
minlzfdlz f Jdx? +dy? = f /(x'(y))2+1dy
y
y y=0 y=0

Therefore:

/ , 2
Fly,x(),x ) = (' ) +1
Applying Euler-Lagrange equation:

oF d oF _

dx dyw -

JF o0 f ,
a=a (X(y))2+1=0

oF o [, ‘O
Wzax’\](x(”)z‘i'l:#
x)) +

OF doF _d x(¥) o

ox dyox dy [,
/(x () +1

x (y)
ﬁ —_—
/(x'(y))2 +1

Squaring both sides of the equation:

= ¢ = const

(x,(y))z — 2
(x'(y))2 +1
(x' )" = 2(x )" + 2

CZ

1—c2

(x' ) =

2
1—c2

x'(y) = = a = const

=xy)=a-y+b



We've obtained a linear function, so the path that provides the shortest possible length is in
fact a straight line. Of course this is trivial because it is obvious that the path with the
shortest length between two points on a cartesian plane is a straight line.

Applying the initial, and the terminal conditions:

x(y=0)=0, x(y=H)=1L

L
x(y) =77

Brachistochrone solution using variational calculus

The differential length of the path:

dl = \/dx? + dy?

Deriving the relations between dx, and dy:

dr=de- = oY) -d
x=dx = dy =2 () dy

From conservation of energy:

v =429y

It is required to find the path of minimal time, so the time of descent is our cost function:

’ 2
, , 1
F(y,x(»),x (¥)) = %



Euler-Lagrange equations:

oF d OF
ax  dyox
oF _
=
F _ 3 o) +1_1 X))
ax  9x y
\/_ x (y)) +1
OF doF d x () o
ox dyox dy , a
YD (0t )
x () B
= const
' 2
Jy (<o) +1)
Square both sides:
(x' 1)° 1
4 = — = const

y( )’ +1) 2a
2a(x )" = y(x )’ +y
() 2a-y) =y

Y
2a—y

y
0= | 2y
y=0 Y

y=a—acosf

x () =

Use parameter substitution:

dy = asin6df

i
a—acosf 1—-cosb
x(0) = _[ asdeB = j sdeH
atac

+c059

1+ cosé@

0 0
f 1—cosé 2 J‘ \](1—cos@)(l—cos@)(l+cos@)
T - cos =



0 0
f (1 —cos0)2do = f(l—cose)de—a(e—sme)
{x(@) = a(® —sin0)
y(6) = a(1l —cos8)
We've obtained the equations of a cycloid.
Ford =0:x(0) =0, y(0) =0
For6 = 6p:x(6;) =L, y(6;) =H
Time of movement on a cycloid

We would like to compute the time it takes for the point mass to move from the top of the
cycloid, at y = 0, to the bottomaty = H.

The time differential:
dt = —
v

The cycloid equations:

x(6) = a(® —sin0)
{y(@) = a(l —cos8)

dx = (a—acos8)do, dy = asin6 dé

dl = \Jdx? + dy? = \Ja? — 2a2 cos 6 + a? cos? 6 + a2 sin? 6 df = av2Z — 2 cos 6 df

v =,/2gy =/2ga(1 - cos8) = /ga(2 — 2 cos )

dl_ aV2—2cos0
S Ll d0=\/§d0

v _\/ga(Z—Zcosé?)

9
a a
t= j —df = |[—0
9 g
9=0

The mass reaches the bottom of the cycloidat 8 =7

a, is the radius of the rolling circle, so:



If the mass starts to slide from an intermediate point 6:
yo = a(l — cos6y)
Xo = a(By — sinB;)

E =E, = const

mUZ

> mgy = —mgjyop

v =29(y = y9) = y/2ga((1 = cos6) — (1 — cos fy))

= /2ga(cos @, — cos h)

The time differential:

dl av2—2cos6 a 1—cosf
v J2ga(cos 8, — cos ) g ,/cosby —cosb
f 1—cosf

cosQO - c050

0=2 ——1
cos cos® 2

a ; 1—2c052%+1
t= —j 5 g do =
990 2c05270—1—2c0527+1

’ sine
. [
- ’_f 2 do
g 6o \/cosz —020 - coszg

7] 6
290 il
Ccos > Ccos >

Q| Q

H 1-— coszg
f dae
6o

Parameter substitution:




6
a 1 a
= -2 —f—du = —2 |—-arcsinu
99 1—u? g
0

0

a COS% a COS% a T
= —2 |—-arcsin ) = —2 |—-arcsin 9 +2 |- =
g c0570 g cos70 g 2

8o

a COS% a
t = —2 |[—-arcsin 9 +m |-
g c057O g

At the bottom of the cycloid: 8 = &

T
a . COs7m a a ] 0 a
t =—2 |—-arcsin 5 +m |—=—2 |—-arcsin 5 +m |-
2 2
a
t=m |—
\/;

From any point the mass starts sliding on the cycloid it will reach the bottom of the cycloid
at the same time. A mass placed at the top of the cycloid, and a mass placed half way
through will reach the bottom together.

Comparison to a straight line

In this paper it was proven mathematically that the time of descent of a cycloid is the
minimal possible of all path shapes, we'd like to justify this proof by comparing it to other
paths.

The equation of a straight line is linear:
y(x)=ax+b

providing the initial, and terminal conditions:

B H
y(x) = fx
dy = H d
y=7%
The time differential:
dl
dt = —



v=.,2g9y= |2g—x
H? H?
d 1tz 1+77 1
dt =—= dx = 7 —dx
H 291 VX
29X L
2 2
1+IZ—2 F1 1+IZ—2
t= j—dxz Vx
H N H
29T x=0 29T
At the end of the path, x = L:
HZ
1+F L2+H2
tiine = 2 H ‘/Zz 2gH

The descent time for a cycloid:

a H
Leycloid =T E =T E

For a full cycloid where the mass is released from the top of the cycloid:

nH
L=ma=—

2
H\? 2
L L2+H2_2 (7) +H”  n2+4 |H
line = 2gH 20 | 2 g
fn2+4
t.
e _N_2 1185

- Vs
tcycloid —

V2

The descent time of a straight line is indeed slower than the cycloid path.




Gravitational potential inside, and outside the earth

It is required to obtain an expression for the gravitational potential at a point inside the
earth. The derivation is done using Gauss's law for gravitational fields:

f g-ds = —4nGM;,
S

While S is the area vector of a closed surface, M;, is the total mass enclosed within the
surface, and g is the gravitational field.

First, deriving the gravitational field at a point with radius r outside the earth. The earth is

assumed to be a perfect solid sphere with radius R, and density p. The mass of the earth:

4
M=fpdV=§nR3p
v

The closed surface chosen is a sphere with radius r, the surface area:

Since there is radial symmetry, the integral is simplified as:

$g-ds=g-5=(gf) - (4nr’¢) = 4mgr?
S

Applying Gauss's law:
4mtgr? = —4nGM,,

r > R, so the mass enclosed within S is the entire mass of the earth:

@M
9 2
From the radial symmetry:
GM |
=——7
g=-"t

The gravitational potential at a point r > R:

GM GM
V(r)=—fg-d£= —dr=—-—+c
= r r

It is customary to define the potential such that:

limV(r) =0

T —00

Soc=0



Overall, the gravitational potential outside a solid sphere:

GM
V(T) = - T

The gravitational field inside the earth is computed using Gauss's law as well. For r < R the
surface S is chosen a sphere with radius r:

Since the surface is inside the earth, the mass inside is proportional to the volume enclosed
within the surface:

My = s
in =3P

The ratio between the total mass and the enclosed mass:

M 4 .5 R3
37TRp
T3
:>Min_FM

Gauss's law:

3
2 = 4G M
4rgrc = —4n R3
T
9=-GpsM
From the radial symmetry:
GM |
g=-pt

It is obtained that the gravitational field inside a solid sphere is linearly proportional to the
radius, similar to harmonic oscillators.

The potential inside the earth at a point r < R:

GM GM :
V(r):—fg-dtz—[?rd’r':ﬁr +c

Since the gravitational potential is required to be continuous, it is equal to the potential
outside the sphere on the border atr = R:



V(R) = ——
®) =~

_3GM
=727

Overall, the potential of the earth:

(GM(rZ 3) - R
—(=-3), -
v = 1 2R \R
GM
i r=R



Snell's Law derivation for polar coordinates

Using Fermat's principle of minimum time, it is desired to compute Snell's law while the
refractive index changes radially on an axis-symmetric sphere, so in polar coordinates:

n=f(r)

Given two mediums, one outside a sphere with radius r = a, and the second inside the
sphere. The refractive index is therefore:

_(ny, r>a
n(r) = {nz, r<a

Choosing two arbitrary points: A is outside the sphere, and B is inside the sphere.
T(64) =12, r(0p) =15
9 = 93 - 9.4

It is required to find the point at which the light would choose to pass from n; to n, in order
to travel from point A4 to point B at the minimum possible time.

The light would travel from point A to the sphere intersection point an angular distance of y,
the linear distance traveled over this angle is obtained via the cosine theorem:

112 =a® + 1% — 2ar, cosy



Similarly, for the distance from the intersection to B:
lzz =a® + 1% — 2arg cos(6 — y)

The light travels in a given medium at a velocity of:

vV=-
n
While c is the speed of light in vacuum.

The time that takes the light to cover the distances:

L Ja? + 12 — 2ar, cosy b Ja? + 12 — 2arg cos(6 — y)

typ =—= t,=—=
%1 U1 ’ U3 U3

The total time of travel:

Ja? + 12 —2arycosy Ja? + 12 — 2arg cos(d — y)
t = tl + tz = v + v,

Applying Fermat's principle of minimum time:

at 0
dy
dt ary siny arg sin(6 —y)

dy viyJa? + 142 — 2arycosy  vyi/a? +rg?2 — 2arg cos(6 — y) -

rpsiny  rgsin(6 —y)

0
V1 ll Uzlz
Using the sine theorem:
L TA _n l; _ T
siny sin(m—6;) sin6;’ sin(@ —y) sin6,

14sinf; 71psind,

Vi1 UaTp

sinf; sinf,

121 v,
= nysinf; = n,sin6,
This result is the same as the law derived in linear coordinates.
Bouguer's Law derivation:
n(r) -rsinf = const

rsin@

v(r)

= const



Assume homogenous spherical medium, the velocity inside the sphere is constant:
v(r) = const
It is only required to prove that:
rsin@ = const

Since there is no refraction while n = const the fastest route would be a straight line, and
that is the path in which the light travels.

The angle between the trajectory of the light and the initial radius vector 7, is constant.
6 = const

Using the sine theorem for every r, 8(r) throughout the course between points 4, and B:

sind _ sin(180 — 6)

r T4
rsinf =r,sind = const
Since n(r) is constant as long as the movement is a straight line:
n(r) -rsinf = const

Assuming there is a medium change between points A, and B:



During the movement of the light through l;, and through [, there is no medium change so
it has been showed that the equation holds for these parts of the course.

At the point of the refraction it was proven that Snell's law applies:
n,sinf; = n, sin 6,
Since the radius is the same on that point it can be multiplied on both sides of the equation:
nia-sinf; = ny,a-sinf,

Since the equation is true on the refraction points and also between refractions it applies
throughout all of the movement between points 4, and B.

So, overall:

n(r)-rsinf = const



Solving the Brachistochrone problem for a spherical earth

Assume a spherical earth with a gravitational field:

The center of the earth in ECI coordinates is at 7, = [0 0 0]”.

It is required to find the course from point A(xy4, ¥4, 24) to point B(xg, yg, Zg) which a point
mass would travel at the shortest time while applied only a gravitational force directed to

p.
1y => ;]

Since the earth is assumed to be a perfect sphere, and the gravity is assumed to be only
dependent on r, there exists a coordinate system where A, and B both lie on the same
plane. So using polar coordinates:

A(ry,6y), B(rg,05)
The transformation from cartesian to polar coordinates:

x=r1rcosf,y=rsinf

ox gay_ ing
5, = c0s8, o =sin

ox eay_ 0
i rsin 15g = T CoS

9x\ 2 9x\2 -
dl, = (—) + (—) dr =+/cos? 0 +sin? 8 dr = dr
Jar Jar

9x\ > dx\>
dly = (—) + (60) do = \/rz sin? @ + r2 cos20d6 = rdo

2

doy* do
dl = 4dly? =4/d r2+r2d92—J r2+r2<a) dr2=\]1+r2 (—) dr
The kinetic energy of the mass during its course:

T = —mv?

The gravitational potential energy of the mass during its course:

GMm
T

V=-

Conservation of energy:



) GMm
E=T+V=§mv —T=const

At point A the mass starts the movement:

B o=V, = GMm
A =Va = ™
1 ) GMm GMm
—mv* — = —
2 T 1
1 1
=>v= ZGM(———)
r 1y

It is desired to find the course that minimizes the time function:

2 2 B ,
_ T+r 1 14720 (r)?
mint = f f dr = f ———dr

b V2GM 11

26M ( N

1 J‘ (1+7120 (12)rry 4
=— r
V2GM Ta—T
r=rp

1 +726' (n)rry

F(r,0,6 (1) = J —e

00 draf’

6F_O
90

JoF 5 | TTa 0'(r)

—F =T
00 T —T /1+T29’(T)2

OF d OF d oF d{ ,|rm 0'(r)

FTR  TA o Aia | LAl ol ron

JoF , | T4 0'(r)
=T - = const
26 =T J1+7120 (r)?
Squaring both sides:
T, 0'(r)?
4__4 () = c = const

1y —11+7120'(r)?



TST'A

0' (1?2 =c+cro (r)?

Ty —7T
5
: roT,
9(r)2< A—cr2>=c
Ty —T

. c clry—r
9(7")22 - — (A )

A 2 o1 —cr2(ry — 1)

Ty —T

o) = + j \/ c(ry—1) dr

o1y —cri(ry — 1)
r=ry

The initial and terminal conditions:

0(1y) = by, 0(rg) = 0p

This is solved numerically:

BrachistochroneWith Changing Gravitational Field
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BrachistochroneWith Changing Gravitational Field

120

920

Bernoulli's Method:

270

300

The path of shortest time must satisfy Bouguer's law:

rsing

v(r)

= const

330

¢ is the angle between the tangent to the surface and the radius vector.

It was seen from energy conservation that v satisfies:

Therefore:

1 1
v = ZGM(———)
r 1y
rsin¢
B = const
26M(7—a)
rsin¢
= const
1 1
Tr Iy



rsing

= const
Ty —T
Ty

31y

sin ¢ = const
Ty —7T

In order to find the path it is required to identify the relation between ¢, and 6.

] _ rdf
sin¢g = T
r3ry rdO
4 = const =+
ry—1 dl

Squaring both sides:

1 2402 2 2 4 2402
———7r“d0* = cdl® = c[dr* + r“d6-]
Ty —7T
T3T'A
r2de? — ¢ | = cdr?
Ty —7T

B ¢ c(rg—r)
6(r) == f \]rSrA ey ) dr

=Ty
The initial and terminal conditions:
0(ry) = 6, 0(rg) = 05

The same expression has been obtained from both methods.



Solving the brachistichrone problem inside the earth

Assume a spherical earth with an internal gravitational field:

GM

Conservation of energy:

1 GMm
E = T+V—§mv +W ﬁ—3 = const
At point A the mass starts the movement:
E =V, = GMm (14> 3
A7 747 2R \R?

1, GMm(r? GMm (1,2
Sw? 4 (o3 ) = (A3

2 2R \RZ? 2R \ R?
1, GMm ,
omvt = —r (- )

GM
= F(rAZ —1?)

dr\? -
dl =+dr? +r2df? = J(—) do? + r2dh? = \/r (0)2 +r2do

do

It is desired to find the course that minimizes the time function:

_ J‘ Jr (@72 +r2 R3 r (9)2 Jr (@2 +r2
mint =
6 GM _ rz
(rA —TZ)
. r' ()% + r?
F(Q, T (9)) = L

T-AZ —r2



The Euler-Lagrange equations:

OF d OF _

or door

Since Z—z = 0, Beltrami's identity is applied:

. _OF
F—r (G)W = const

9F _ r (6)
NG OErD

, _OF r'(0)% + 12 r (6)2
F—r(0)—= (2) > — ( ), = const
or Qe —r J@Z2 =) (6)2 +12)
r (0)2 + 1% —1 ()2 r?
= const

JOZ =D 02 +1D) a2 — D) @)F +17)

Squaring both sides:

T‘4

=1 @2 + )  © ot

r4 !
———=c(r (6)? +71?)
Ty —r
6)? r4 , Tt —cr?(n? —r?)
r - _7r4 =
c(ry?2 —r?) c(ry? —12)

A non linear differential equation has been received. A simple private solution may be
obtained by assuming both points A, and B are of radius 4. From the symmetry of the
problem the path would have its minimum radius at the middle of the course:

, 6,+ 80
r (Qm) = 0' em = %
2
rm
T T o m =7(0n)
4 40,2 2
r'(g)zz r _rzzr(rA —rm)_rz
. T2 (a7 = 12)

m 2 2
(a2 —1.,2) (T4 r4)

4.. 2 2,. 2

r*(rg? — 1,2 =215, 2 (% =12 il —rtn,? =, + i, 2

T ? (14 —1%) T2 (% = 1%)
4102 — 121, %14 (rAr)z r? —r,?
it —r2)  \n,/ r,2-r?




Rewriting in the form of 6(r) obtains an integral equation. Since the curve is symmetric 8
can be integrated from the minimum point 7;, tor

The solution:

T [r2—1,%\ 1, r2—r1,2
0(r) = arctan| — |[—— | ———arctan| |——— |+c
TmAlTa”—T 1y Ty —r
Tm 9A +93
0(r,) = arctan0 ——arctan0+c=c=6,, = ————
1y 2
T T Ty,
O(ry) = arctanoo — —arctan© +c =———-—+c =0,
Iy 2 2 1y

T Thy, O4+6p

2 21y 2 O

rm
T[—T[_+9A+93 =29A
A

rm
GA—93=7T—7T_
TA

This is the relation for the angular distance between points A, B, and the ratio between the
initial radius and the minimum radius of the path.

Overall, the equation:

T T2 =12\ 7y
6(r) = arctan| — [—— | — ——arctan
Tm = —r Ty

While the end points:

T
A



And the midpoint is:

0, +86
0(1p) = 6y = ———2

Bernoulli's Method:

The path of shortest time must satisfy Bouguer's law:

rsing

v(r)

¢ is the angle between the tangent to the surface and the radius vector.

= const

It was seen from energy conservation that v satisfies:

GM
v = F(TAZ —r?)
Therefore:
rsing¢
— = const
,/ﬁ(TAZ —1?)
rsing
= const
142 — 12
The relation between ¢ and 8:
) _ rdf
sing = i
,rdo
— 4l _ const
142 — 12
Squaring both sides:
rt  de?
= ¢ = const

142 — 12 dI?

r4

md@z = Cdl2 = C(dT'z + r2d62)
A

d92 <ﬂ - CT2> = CdT'Z
e —

d@z(r4 —cr?(ry? — rz)) = c(ry? — r?)dr?

ar?  r*—cr?(r? —1r?)

"(6)2 = =
r® do? c(ry? —r?)




4
r (0)2 = ——5——p — 12
c(ra® —7%)

The same expression has been obtained from both calculus of variations, and from
Bernoulli's method.
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Solving the brachistochrone problem with drag

Assume the constant gravity problem with a rigid body sliding on a surface with air
resistance. the drag force applied on the mass:

1, R
D =—5pr*SCp0

While p is the density of the air which is assumed constant for very low heights, S is the drag
induced cross sectional area of the body which interacts with the air, Cp is the coefficient of
drag of the body, assumed constant for low velocities.

Define:

pSCp
k =
2m

D = —mkv?d

It is assumed that the velocity vector coincides with the direction of motion on the surface
path:

D = —mkv?d]

The work of the drag force:
wp =fg-dg=—fmkv2dz-dg=—fmkvzdz

There is no energy conservation, the energy loss is equal to the work done by the drag:

muv?
E=—-—mgy

dE = mvdv — mgdy = dWp,

mvdv — mgdy = —mkv?dl



W - 9 dx = —kv? [Ty 2d
v dx—gdx = y (x)%dx

v(X)v (x) — gy (x) + kv2 ()1 +y ()2 =0

A constraint on the path course has been received:
Yx, y(x),y (%), v(x0),v (%) = v(x)v (x) — gy (x) + kv? ()1 +y ()2 =0
V() = 5057 )~ kv THY &

While:
vy =0)=0
A differential equation for v has been received.

It is required to find the path of minimal time, so the time of descent is our cost function:

mint =
X

e 1+y (x)2
I v(x) ——dx

Adding the constraint to the cost function:

=L

=

m1n 1t y ( Ji+y ()2 —————+ (%) (U(x)v’(x) —gy () + kvz(x)m)

x=

o

Therefore:

14y (0)?
- v(x)

The Euler-Lagrange equations:

+ A(x) (v(x)v'(x) — gy (x) + kvZ(x)J1 + y'(x)z)

OH _doH _ ~ OH _doH_
dy dxay v dxov

Since H is not explicitly dependant on x the Beltrami identity may be used:

,  _OH .
H—y(x)a—y,=cl=const, H—v(x)ﬁ=c2=const
M Y@ (_ . ka(x)y’(x)>
Y )Y )+ 1 I Ay G2

ye kv? (x)y' (x)

A(x)

Ty @2+ 1 WNiEze



0 "(x)2 ) ) -
H-y ()5 = 1%)(’“) 200 (v0I () — gy () + kv (YT 5 )

VWP L e kY 6

v(x)\/y (x)? + J1+y (x)?

+ (%) (v(x)v COVI+y OZ + kv () (1 + 7y (x) ))
— kv (x)y (2)?A(x) = ¢1/1 + y' (x)?

ﬁ + A vV (V1 + ¥ (0)2 + A(x0)kv2(x) = c;/1+ ¥y (x)?

Ax) =¢

y (x)?
v(x)

1+y (x)?
v(x)

% + A(0)kv? (x) = (¢ = @)V ()1 + Y (x)?

v( ) + A(x)kv? (x)
—A)v(x)v ()

1+y ()%=

) B 1+ A(x)kv3(x)
y ()= cv(x) — AV (v (x)

H =1
pa ()v(x)
0H J1+y (x)? , , ;
—v'(x )— = :(—3;)(30 + A(x) (v(x)v (x) — gy (x) + kvZ(x)J1+y (x)z)
— A v()v (x) = ¢,
J14y (x)2 ; ,
LD 20 (02 oV TH T @ -y () =
Y1+y ()2
A0 = €27~ v(x) _ cu(x) — 1+ (x)?

kw2 ()1 +y @2 — gy (1) kv3V1+y (02 — gy’ (0)v(x)

Overall:

cv(x) — 2x)v20)v (x)
$ o) = %y’(x) — k(T + Y ()2

200 = cv(x) — 1+ y (x)2
\ kv3(0)1+y ()% = gy (x)v(x)

There are two unknown constants and two integration constants, 4 constants overall.

Y — J 1+ A00)kv3 ()




Boundary conditions:
y(xo=0) =0, y(xf =L)=H, v(xg=0)=0
Transversality condition, there is no constraint on v(xf):
0H
W(xf = L) =0

A(x)Jv(xr) = 0



Solving the Brachistochrone problem with varying density drag

Assume the constant gravity problem with a rigid body sliding on a surface with air
resistance. The drag force applied on the mass:

1 L. 1, .
D =—5pvSCht = —5pv=SCpdl

The density is expressed by troposphere Pitot-statics model:

9 4
(1 ﬁoh)RﬁO
P =Po T,
While the specific gas constant for air:
=
R =287 |——
[kg ‘K

The temperature drop rate:

K
T(h) =Ty — Boh, Bo=6.5-1073 [E]
Assuming STP conditions at sea level:
kg
T, = 288[K], po = 1.225 [ﬁ] Py = 101325[Pa]

N : h
Approximating as an exponential model for BTL <<1
0

In(1—x) = —x, x<<1

Boh\RBo
Boh\Rf7 ‘“((1‘?—0) ’
p=po(1—T—O) = poe

_h
= poe H
While:
T,
H==2 i = 10404[m]
BoZ_—1
RBo
Since the positive y direction is defined as negative altitude:
yx)
p = poe H
Define:
_ PoSCp

k
0 2m



1 G N Yo o
Q=—§poe H v*SCpdl = —mkge H v2dl

There is no energy conservation, the energy loss is equal to the work done by the drag:

mvz

Eem—mey

dE = mvdv — mgdy = dWp

y(x)
mvdv — mgdy = —mkge H v?dl

dv dy () 2
vd—dx—gd—dx——koe 1+y (x)%dx

While:

vy =0)=0

A constraint on the path course has been received:

W(xy(x),y (0, v(x),v' (1) = vV (x) — gy (x) + koe Z(X)vl +y (0)?=0

It is required to find the path of minimal time, so the time of descent is our cost function

mint = f ! :(};)(x)Z dx

X

Adding the constraint to the cost function:

x=L
mint = f ( 14y @2 ( )’ + A(x) (v(x)v' (x) — gy (x) + koeyl(:)vz(x)\/ 1+y (x)2)> dx
x=0

Therefore:

1 ! 2
- Z(—fc)(x) +200 (v () - 9y () + ke H w2 (VT + Y )

The Euler-Lagrange equations:

oH d oH _ oH d oH _
dy dxay v dxov

Since H is not explicitly dependant on x the Beltrami identity may be used:

0H

r I H
H—y(x)a—y,=cl=const, H—v(x)ﬁ=c2=const



oM @ koe T2 (x)y (
R +/1(x)<—g+ ¢ 7 VY x)>

ay v(x)\/m \/m
_Y® s 02 (y () o
vy 2 + 1 \/ Ty ()2
,  _0H 14y (x)? , ) €3] i
By @5 = 420 (40w () - 97 () + e T V2T G)
YO ey - o oy O a0 =

vy ()2 + 1 \/ +y ()2 '
’ 2 X ! 2
1 +v32x()x) +A0x) <v(x)v’ VT Ty G + ke fv2 (1) (1 + 5/ (x)Z)) _ yvg 3

ko€ T2y (DPAG) = 1Ty 2

L + 20 v (OV1+y ()2 + A(x)koe%vz(x) =1+ y (x)2

v(x)
% FAkee T 0200 = (01 — 2w EY @ WI Ty G2
1 @
m+/1(x)koe H v4(x)

14y (x)? =

c1 — AV’ (x)

: _\/ 1+/1(x)k09 3(x)
y (x) = e v(x) — A2V (x)

0H

— = A
— y

H— v'(x)% = 1++x)(x) + A(x) (v(x)v'(x) - gy’(x) + koe¥v2(x)1/ 1+ y'(x)2>

— Ax)v()v (x) = ¢,

M + A(x) <koey§;)v 1+y (x)%— ) =
v(x)
JY1+y (02

A0 = A %) cu(x) — 1+ (x)?

S () TTY G =gy () koe T3 COyTTY G = 9y (Ov(®)



Overall:

( b \/ 1+ /l(x)koe%x)iﬁ(x) )
y ()= v(x) — A0)v2(0)v (x)
v (x)= %y (x) — koeyH v(x)/1+y (x)?
cv(x) =1 +y (x)?

koe T 03 COVT Ty (2 — gy’ (v ()

There are two unknown constants and two integration constants, 4 constants overall.

Ax) =

Boundary conditions:
y(g=0)=0, y(xs=L)=H, v(x=0)=0
Transversality condition, there is no constraint on v(xf):
0H
W(xf = L) =0

Alxr)v(xr) = 0



Solving the Brachistochrone problem for a spherical earth with drag

Assume a spherical earth with a gravitational field:

A rigid body sliding on a surface with air resistance. The drag force applied on the mass:
1, R 1, R
D=—=5pvSCro=—5pv SCpdl

The density model:

_h
p = poe H
At polar coordinates the altitude is:
h=r-— R@
So, the density model:
RGB_T
p = poe H
Define:
SC
ko = Po>tp
2m
1 R@—T R@—T‘

D =—zpe H v2SCpdl = —mkee H v?d]

There is no energy conservation, the energy loss is equal to the work done by the drag:

3 mv? GMm

) r

Mm

dE = mvdv + dr = dWp

12

R@—T‘
dr = —mkgye” H v?dl

mvdv + 3
T

dv GM Re=r . [rdr z )
v%d9+r—2dr=—koe H v <@) +7r=df

dv _ GM dr Rez_—r (dr)2 2
a6 ~ vrzag ¢ " V\ag) 7T
While:

v, =0)=0



A constraint on the path course has been received:

GM Re—r ;
w(o,r(6),r (6),v(0),v (8)) =vv () + —1(0) + ke H v2/r' (0?2 +r2=0

It is desired to find the course that minimizes the time function:

dt9 + r2
Cou(O)

mint =
6

Adding the constraint to the cost function:

05
2 2 Rayy—1r
mint = f ( r(§29)+r + A(6) <vv'(9) +i—1:1r’(9)+koe ! Z /r'(é’)z +r2>> dx

Therefore:

= —”(:?‘;;’ﬂ +200) (vv' 0) + i—lfr’ ©) + koe T 2T (@7 F )

The Euler-Lagrange equations:

oH daH_O 0H d 0H _
or deor v doov

Since H is not explicitly dependant on 8 the Beltrami identity may be used:

! H 1 H
H—r(H)F=cl=const, H—v(@)ﬁ=cz=const

R -r
oH _ ' (0) ) _M . v (0)
o T @ o
! 2 2 —r
H—7(6) % - % +A(0) (vv’ ) + C;—];lr' ©) + koe T[T (@7 T r2>
r (6)? GM , koe” H v%r (6)? B

— — —_ 9 —
(0T (0)2 + 12 M8) 7T (6) —A(6) Jr (02 + r2

+2(0)vv (B)7 ()2 + 12 + A(G)koe%?i—_rvz(r' 0)? +71?) -

R

GB_r ’ 7
— A(B)kpe H v2r (0)? = ¢c14/1T (0)% + 12
2

E + A0)vv (0)y7T (0)2 + 12 + A(G)kOeR@T_rvzrz =17 (0)2 + 12

r ()2
v(0)

r (0)% +r?
v(6)

r

2
£ A ke T 0212 = (¢ — 2(6)vv' ()W (B 72
v(6)



R®_r
)+/1(9)koe H v2r?

, @
VT (O) 41t = T @)

Rgy—1
r?2 + 2(0)kge” H v3(0)r?
c,v(8) — A(8)v2(8)v' (6)

r(0)?2+r:=

Rgy—1 2
"0 = r2 + A(0)kge” H v3(0)r? 5
r@= cv(0) — 2(O)v2(O)W (0) | 4
oH
= = A(©)v(6)
- v’(e)% - %Z)”Z +A(0) (vv’(e) + i—]:'r’(e) O rZ)

—AOvO)V (0) =c,

VT (0)? + 12 GM Re—r , —
M-|').(9) (T_Zr (9)+k0€ e?'l Uzw/T (9)2+T2) =0

v(6)
VT (0)2 + 12
20) = €2~ v(B) B cv(0) — \/ 1"(9)2 + 12
GI;/I ') + koe v v2\/r 02 +12 GM =7 O)v(0) + koe v3(9)\/r (02 +12
Overall:
( R@—T 2
Y (6) = 2 + A(0)kge H v3(0)r? 2
|\ v (8) — 2(0)v2(8)v (9)
! GM , Rgy—1(0) 5 5
v (0) = —WT (0) —koe™ H v(0)Jr (6)2 +712(6)
20) = c,v(0) — w/1”(6?)2 + 12
\ GM M 0yo(0) + kye T (02 + 12

There are two unknown constants and two integration constants, 4 constants overall.
Boundary conditions:

7(64) = 12, r(0p) =1, v(0,) =0
Transversality condition, there is no constraint on v(65):

aH(B)—O
gv ~ BT

A(@p)v(6) =0



Conclusion

This paper presented and discussed the Brachistochrone problem, defined the statement of
the problem by Johan Bernoulli in 1696. In order to solve the problem and to find the
shortest path the parametrisation equations of the cycloid curve were computed from a
rolling circle on a straight line, Snell's law was derived using Fermat's principle of minimal
time. Also, there was a brief introduction to calculus of variations and the tools which were
used in the proof were presented. Afterwards, the Brachistochrone problem was solved
using Bernoulli's method of analogy to light, and by variational calculus method. The time of
descent was computed for the cycloid curve and it was received that the time to reach the
bottom of the cycloid is the same with no regard where the point mass is placed. Lastly, the
time of descent of a straight line was computed and compared with cycloid to confirm that
the time of descent of the cycloid is indeed the minimal possible time. In the second part of
the report the problem was generalized using several realistic influences and their effect on
the Brachistochrone curve was derived and analyzed. The gravitational potential of a perfect
sphere was derived both inside, and outside the sphere, and using it the Brachistochrone
problem was solved for round earth solutions via Bernoulli's method and with calculus of
variations. It was seen that both methods provided the same exact solution so they verified
each over. Afterwards the problem was solved including quadratic drag forces, for low
heights with constant drag, for varying density and lastly for a round earth. The solutions for
the drag problems were received as a set of algebraic differential equations, and solving it
requires advanced numerical integration methods.
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