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1 Background and Introduction

In recent years, due to technological advancements and the decrease in manufacturing
costs, the field of unmanned aerial vehicles (UAV) is in rapid growth. Most of UAV are
propelled by a rotating wing popustion systems. An unwanted by product of using a rotating
wing propulsion system is a fairly high noise level, and while most of UAV are planned to
operate at low altitudes and frequently at civil environment, this issue takes priority in design
and development. One of the main sources to this high noise levels is the unsteady forces
acting on the propeller. At hovering conditions, the incoming flow consists of vortex sheets
detached from the blade itself and from other blades in propeller that generates a highly
unsteady flow regime. This unsteadiness takes form of an unsteady force acting on the blade,
and due to the periodic nature of the rotating propeller at hovering conditions, this force also
takes a periodic form.

This project is focusing on modeling the tonal noise component driven by both quasi-
steady and unsteady forces of a propeller at hover in far-field conditions, using a frequency
domain analysis to decompose the noise levels into harmonies and including the unsteady
vortex sheets effect by a lift deficiency function. Furthermore, an approximated spanwise
force and chord distribution function are suggested and effect of each distribution is reviewed
and functions of this type are suggested as an acoustic design parameter.

2 Governing Equations

2.1 Lighthill’s Analogy

In order to model tonal noise components, first we derive the governing equation under
two main assumptions, acoustical far-field R� λ and geometrical far-field R� r′ , where R
is the distance from source, λ is the acoustical wavelength and r′ is the characteristic length
of the source.

Define small perturbations around mean pressure

p = p0 + p′ (1)

and density
ρ = ρ0 + ρ′ (2)

where 0 indicates mean quantity and ′ is the perturbation.
For isentropic flow the relation between the two perturbations presented above is

p′ = ρ′c2
0 (3)

where c0 is the speed of sound in standard conditions. Continuity equation:

∂ρ

∂t
+
∂ρui
∂xi

= 0 (4)

Momentum consevation equation:

∂ρui
∂t

+
∂ (ρuiuj + pij)

∂xi
− Fi = 0 (5)
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where Fi is an external force and pi,j = (p−p0)δij−σij are viscous stress tensor and pressure
perturbation contribution. Using conservation Eqs. (4) and (5), we can derive Lighthill’s
analogy [1]. Derive the continuity equation (4) by time:

∂

∂t

(
∂ρ

∂t
+
∂ρui
∂xi

)
= 0 (6)

Take the divergence of the momentum Eq. (5):

∂

∂xi

(
∂ρui
∂t

+
∂ (ρuiuj + pij)

∂xi
− Fi

)
= 0 (7)

Subtract Eq. (6) from Eq. (7):

∂2ρ

∂t2
=

∂2

∂xi∂xj
(ρuiuj + (p− p0)δij − σij)−

∂Fi
∂xi

(8)

Subtract the Lapalacian of the pressure perturbation in terms of Eq. (3) from both sides of
Eq. (8) and obtain:

∂2ρ

∂t2
− c2

0

∂2ρ′

∂x2
i

=
∂2

∂xi∂xj

(
ρuiuj + (p′ − c2

0ρ
′)δij − σij

)
− ∂Fi
∂xi

(9)

Assuming that ρ0 is constant in time we can derive the final form of Lighthill’s wave equation:

∂2ρ′

∂t2
− c2

0

∂2ρ′

∂x2
i

=
∂2Tij
∂xi∂xj

− ∂Fi
∂xi

(10)

where Tij = ρuiuj + (p′ − c2
0ρ
′)δij − σij is Lighthill’s stress tensor and represents Reynolds

stresses, the effect of pressure and density perturbations and viscous stress tensor. Assuming
acoustic wavelength based Reynolds number, Re = c0λ

ν , means that the inertial forces are
much greater than the viscous related terms, therefore it can be neglected from Lighthill’s
tensor. Furthermore, the term (p′ − c2

0ρ
′) is small in subsonic flows thus can be neglected as

well.

2.2 Free Space Green’s Function - Solution to Lighthill’s Wave Equation

The commonly known solution to Lighthill’s wave equation is obtained by the free space
Green’s function which represent a point source with a strength δ(x− y)δ(t− τ):

G =
δ
(
t− τ − |x−y|c0

)
4πc2

0|x− y|
(11)

where x is an observer, y is a source and τ is retarded time.
So the solution to Lighthill’s wave equation Eq. (10) is:

ρ′(x, t) =

∫
t

∫
V

(
∂2Tij
∂xi∂xj

)
G(y, t− τ)dτdV −

∫
t

∫
S

(
∂Fi
∂xi

)
G(y, t− τ)dτdS =

∫
t

∫
V

(
∂2Tij
∂xi∂xj

) δ
(
t− τ − |x−y|c0

)
4πc2

0|x− y|
dτdV −

∫
t

∫
S

(
∂Fi
∂xi

) δ
(
t− τ − |x−y|c0

)
4πc2

0|x− y|
dτdS (12)
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Recall the relation between pressure perturbation and density Eq. (3) and notice that the
Eq. (12) contains a convolution integral:

p′(x, t) =
1

4π

∫
V

∂2

∂xi∂xj
Tij

(
y, t− |x− y|

c0

)
1

|x− y|
dV−

1

4π

∫
S

∂

∂xi
Fi

(
y, t− |x− y|

c0

)
1

|x− y|
dS (13)

A rotating propeller can be modelled as a dipole, thus the pressure perturbation for a this
case is:

p′(x, t) = − 1

4π

∫
S

∂

∂xi
Fi

(
y, t− |x− y|

c0

)
1

|x− y|
dS (14)

2.3 Far-Field Approximation

Recall the assumption of geometrical far-field, hence |x/y|� 1, thus:

|x− y|=
(
|x|2−2xy + |y|2

)1/2
= |x|

(
1− 2x · y

x2
+

y2

x2

)1/2

≈ |x|−x · y
|x|

(15)

Furthermore:
1

|x− y|
=

1

|x|−x·y
|x|
≈ 1

|x|

(
1 +

x · y
|x|

)
≈ 1

|x|
(16)

Notice that the integrand in Eq. (14) can be simplified:

∂

∂xi
Fi

(
y, t− |x− y|

c0

)
=

∂τ

∂xi

∂

∂τ
Fi

(
y, t− |x− y|

c0

)
= − 1

Dc0

x− y

|x− y|
∂Fi
∂τ

(17)

where D = 1−M x−y
|x−y| is Doppler correction.

Thus the pressure perturbation under far-field approximation takes the form of:

p′(x, t) =
1

4πc0

∫
S

Ri
DR2

∂

∂τ
Fi

(
y, t− |x− y|

c0

)
dS (18)

where Ri = xi − yi and R = |x− y|.
In order to keep simplifying Eq. (18), assume the source is compact, i.e. He = R/λ� 1

where λ is the acoustic wavelength, then the S collapse into a point so Eq. (18) can be written
as:

p′(x, t) =
Ri

4πc0DR2

[
∂F

∂τ

]
(19)

where
[
∂F
∂τ

]
is the unsteady forces acting on fluid by the rotating blade.

2.4 Frequency Domain Analysis

Recall that the dipole source is a propeller rotating at angular velocity of Ω, thus it holds
a periodic nature. In order to find the contribution of each harmony a Fourier Transform is
needed to be done in terms of Ω.

p′(x,Ω) =
Ω

2π

∫ ∞
−∞

Ri
4πc0DR2

[
∂F

∂τ

]
eiΩtdt (20)
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D

Figure 1: rotating blade & observer coordinate system and definitions.

The limits of the integral in Eq. (20) can be adapted to fit the periodic nature of the physical
system:

p′(x,Ω) =
Ω

8π2c0

∫ 2π/Ω

0

Ri
DR2

[
∂F

∂τ

]
eiΩtdt (21)

Applying the relation between retarded time derivative and time derivative ∂t
∂τ = D:

p′(x,Ω) =
Ω

8π2c0

∫ 2π/Ω

0

Ri
R2

[
∂F

∂τ

]
eiΩ(τ+R/c0)dτ (22)

In order to eliminate the partial derivative in Eq. (22) an integration by parts is used:

p′(x,Ω) =
Ω

8π2c0

[
Ri
R2

FeiΩ(τ+R/c0)

∣∣∣∣2π/Ω
0

−
∫ 2π/Ω

0

Ri
R2

iΩFeiΩ(τ+R/c0)dτ

]
So the Fourier transform of the pressure perturbation is:

p′(x,Ω) = − iΩ2

8π2c0

∫ 2π/Ω

0

Ri
R2

FeiΩ(τ+R/c0)dτ (23)

Because of the periodic nature of the source, the pressure perturbation felt by the observer
must be a multiple of the rotation frequency of the source. Define n-th harmonics as the
n-th multiple of the pressure perturbation created by the source:

Cn = − niΩ
2

8π2c0

∫ 2π/Ω

0

Ri
R2

FeiΩ(τ+R/c0)dτ (24)

2.5 The Physical System

Assume a rotating blade with an angular velocity of Ω, where the center of rotation is
at the origin and x1, x2 is the rotation plane. The force acting on the fluid by the blade is
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composed by T thrust component and D drag component. Assume an observer O, located
at a distance l from the origin, at an angle θ from axis of rotation k̂ and at an angle φ on
the rotation plane x1, x2. So according to Fig. 1:

x ≡ O = l
[
sin θ cosφî+ sin θ sinφĵ + cos θk̂

]
F = −D sin Ωt̂i+D cos Ωtĵ − T k̂

y = r
[
cos Ωt̂i+ sin Ωtĵ + 0k̂

]
2.6 n-th Harmonic Pressure Perturbation

Applying the physical system definitions as presented in Fig. 1 on the appropriate terms
in Eq. (24):

Ri = x− y = (l sin θ cosφ− r cos Ωt)̂i+ (l sin θ sinφ− r sin Ωt)ĵ + l cos θk̂

then
RiF = Dl sin θ sin(φ− Ωt)− T l cos θ

by applying far-field approximation Eqs. (15)-(16):

R = |x− y|≈
(
|x|−x · y

|x|

)
≈ l
(

1− r sin θ cos (φ− Ωτ)

l

)
1

R
=

1

|x− y|
≈ 1

|x|
=

1

l

The pressure perturbation Eq. (24) can be rewritten in terms of the physical problem:

Cn = − niΩ
2

8π2c0

∫ 2π/Ω

0

[
D sin θ sin (φ− Ω(τ +R/c0))− T cos θ

l

]
einΩ(τ+R/c0)dτ (25)

Recall that the coordinates system described in Figure 1 is placed arbitrary on plane of
rotation, thus this degree of freedom can be harnessed into simplifying the problem. Assume
that coordinate system is placed so that φ = π/2 then Eq. (25) takes the form of:

Cn = − niΩ
2

8π2c0

∫ 2π/Ω

0

[
D sin θ cos (Ω(τ +R/c0))− T cos θ

l

]
einΩ(τ+R/c0)dτ (26)

Under the assumption that the system hold a periodic nature, the unsteady force fluctuations
are as well periodic functions, therefor can be well represented by a Fourier series.

F =
∞∑

λ=−∞
Fλe

−iλΩτ (27)

where Fλ consist of thrust and drag components. In order to solve the integral in Eq. (26)
the following transformation is suggested:

ξ = Ωτ

dξ

dτ
= Ω

(28)
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Apply Eqs. (27) & (28) to Eq. (26):

Cn = − niΩ

8π2c0

∫ 2π

0

∞∑
λ=−∞

[
Dλ sin θ cos (ξ + ΩR/c0)− Tλ cos θ

l

]
×

e
inΩl
c0 e

i(n−λ)ξ− inΩr
c0

sin θ sin ξ
dξ

(29)

and assuming cos (ξ + ΩR/c0) ≈ cos ξ. Furthermore, the main purpose in the development

of the pressure perturbation term is to find its magnitude therefor the term e
inΩl
c0 can be

neglected, bounded by unity.

Cn = − niΩ

8π2c0

∫ 2π

0

∞∑
λ=−∞

[
Dλ sin θ cos ξ − Tλ cos θ

l

]
e
i(n−λ)ξ− inΩr

c0
sin θ sin ξ

dξ (30)

Denote Mθ = Ωr
c0

sin θ:

Cn = − niΩ

8π2c0

∫ 2π

0

∞∑
λ=−∞

[
Dλ sin θ cos ξ − Tλ cos θ

l

]
ei(n−λ)ξ−inMθ sin ξdξ (31)

Assuming that the Fourier series converges, the integral and sum can be replaced. Thus
the solution to the integral in Eq. (31) could be achieved by the integral definition of Bessel
function of the first kind:

Jν(x) =
1

2πi−ν

∫ 2π

0
ei(νη−x sin η)dη

Jν(x) = − x

ν2πi−ν

∫ 2π

0
ei(νη−x sin η) cos ηdη

(32)

So Eq. (31) in manners of Bessel functions is:

Cn =
nΩ

4πlc0

∞∑
λ=−∞

i1−n+λ

[
Tλ cos θ +

(n− λ)

nMθ
Dλ sin θ

]
Jn−λ(nMθ) (33)

An important attribute of Bessel function of the first kind that the maximal amplitude of
Jν(x) decreases as ν increases, thus the terms containing λ ≤ 0 can be neglected. Further-
more, applying Eq. (33) on a propeller multiple blades (B), the n-th Harmonic must be
multiplied by the number of blades:

CmB =
mB2Ω

4πlc0

∞∑
λ=1

i1−(mB−λ)

[
Tλ cos θ +

(mB − λ)

mBMθ
Dλ sin θ

]
JmB−λ(mBMθ) (34)

Recall that the aerodynamic force acting on the fluid equals to the spanwise force integral,
hence:

F =

∫ d/2

0

2

d
F (r)dr (35)

where d is blade diameter. Therefor, Eq.(34) can be modified to fit this notion:
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CmB =
mB2Ω

4πlc0

∞∑
λ=1

i1−(mB−λ)

∫ d/2

0

2

d

[
Tλ(r) cos θ +

c0(mB − λ)

mBΩr sin θ
Dλ(r) sin θ

]
×

JmB−λ

(
mBΩr

c0
sin θ

)
dr

(36)

0 1 2 3 4 5 6 7

-0.5

0

0.5

1

Figure 2: Relation between Besssel function of the 1st kind and n-th harmony of a two
bladed 14-inch propeller at 4000 RPM.

In order to grasp the relationship between Bessel functions and the n-th harmonic pressure
perturbation, a typical values regarding the physical system assumed and plotted as seen in
Fig. 2. As depicted in Fig. 2, as the order of Jν grows, i.e. ν grows, the magnitude of Jν
decrease. Thus it can be said that the lower harmonies are the dominant ones.

2.7 Loewy’s Deficiency Function

In hover flight, the aerodynamic force acting on the fluid by the blade exhibits an unsteady
behavior. One reason for this force fluctuations is due to returning wake effect. In order to
model the effect of a returning wake generating the unsteady force, Loewy [2] suggested a
deficiency function representing the magnitude of the mentioned force. Loewy [2] assumed a

8
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thin airfoil subjected to sinusoidal motion, thus the downwash velocity and its vorticity can
be represented by

va = v̄ae
iωt

γa = γ̄ae
iωt

(37)

Assuming only the vorticity within the proximity of the blade has significant contribution,
the rows of vortex sheets may be allowed to extend to infinty in order to simplify the problem
mathematically.

Thus, according to the Biot-Savart theorem, the induced velocity at some point x′ is:

dva =
γnq(x

′ − ξ′)dξ
2π [(x′ − ξ′)2 + (nB + q)2(h′)2]

(38)

where γnq is the vortex sheet shed by q-th blade in the n-th revolution, B is the number of
blades and h′ is the vertical distance between successive rows of sheets. Loewy’s model is
depicted in Fig. 3.

 

u = Ωr0

Bh0

γ00(x
0; t)

n q

0 0

0 1

...

0 B − 1

...

1 0

1 1

h0

γ01(x
0; t)

γ0B�1 (x0; t)

γ11(x
0; t)

Figure 3: Lowey’s aerodynamic model of a multi-blade propeller.

The downwash can be calculated as the sum of all first-order effects of wake, i.e. the
effects on wake on itself is neglected, therefor:
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va(x
′, t) = − 1

2π

[∫ b

−b

γa(ξ
′, t)dξ

x′ − ξ′
+

∫ ∞
b

γ00(ξ′, t)dξ′

x′ − ξ′
+

B−1∑
q=1

∞∑
n=0

∫ ∞
−∞

γnq(ξ
′, t)(x′ − ξ′)dξ′

(x′ − ξ′)2 + (nB + q)2(h′)2
+

∞∑
n=1

∫ ∞
−∞

γn0(ξ′, t)(x′ − ξ′)dξ′

(x′ − ξ′)2 + n2B2(h′)2

]
(39)

where the 1st term on the RHS represent the effect of the reference blade, 2nd term the effect
of the attached shed vortex sheet, 3rd term the effect of both attached and separated vortex
sheets created by other blades and 4th term the effect of separated sheets from the reference
blade.

Recall the sinusoidal motion assumption in Eq. (37), thus the vorticity shed by the qth
blade at the n-th rotation with respect to the reference rotation can be presented by:

γnq = γ̄0qe
iω[t−(2πn/Ω)] = γ̄0qe

−i2πn(ω/Ω)eiωt (40)

thus:
γ̄nq = γ̄0qe

−i2π(ω/Ω)n (41)

Define the following quantities:

m
∆
= ω/Ω; k

∆
= (ω/Ω)(c/2r′) = m(c/2r′); Γ̄

∆
= (2Γ̄′0/c)e

ik

where m is the ratio between the oscillatory frequency and the angular velocity of the blade,
that helps defining the reduced frequency k which gives an indication for the unsteadiness of
the system. Typically a flow is considered unsteady when k > 0.05. Including the definitions
above and the appearance of a phase between shed vortex sheets:

γ̄nq = −ikΓ̄eiψqe−i(mξ
′/r′)e−i2π(q/B)me−i2πnm (42)

Substituting Eqs. (37) & (42) into the downwash Eq. (39):

v̄a(x
′) = − 1

2π

[∫ b

−b

γ̄a(ξ
′)dξ′

x′ − ξ′
− ikΓ̄

∫ ∞
b

e−i(mξ
′/r′)dξ′

x′ − ξ′
−

ikΓ̄

B−1∑
q=1

∞∑
n=0

e−i{2πm[n+(q/B)]−ψq}
∫ ∞
−∞

e−i(mξ
′/r′)(x′ − ξ′)dξ′

(x′ − ξ′)2 + (nB + q)2(h′)2
−

ikΓ̄

∞∑
n=1

e−i2πmn
∫ ∞
−∞

e−i(mξ
′/r′)(x′ − ξ′)dξ′

(x′ − ξ′)2 + n2B2(h′)2

] (43)
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Divide Eq. (43) by semi-chord b in order to non-dimensionalize it:

v̄a(x) = − 1

2π

[∫ 1

−1

γ̄a(ξ)dξ

x− ξ
− ikΓ̄

∫ ∞
1

e−ikξdξ

x− ξ
−

ikΓ̄

B−1∑
q=1

ei[ψq−2πm(q/B)]
∞∑
n=0

e−i2πmn
∫ ∞
−∞

e−ikξ(x− ξ)dξ
(x− ξ)2 + (nB + q)2(h)2

−

ikΓ̄
∞∑
n=1

e−i2πmn
∫ ∞
−∞

e−ikξ(x− ξ)dξ
(x− ξ)2 + n2B2h2

] (44)

Notice the last two terms on the RHS, both include an integrals of the form:∫ ∞
−∞

e−ikξ(x− ξ)dξ
(x− ξ)2 +A2

by a simple transformation x− ξ = −Aλ the integral above can be solved:∫ ∞
−∞

e−ikξ(x− ξ)dξ
(x− ξ)2 +A2

= iπe−k(ix−A) (45)

Furthermore, the terms containing summation over n are cornvergent geometric series
(kBh always positive). Substituting the integral solution Eq. (45) to the mentioned terms
and using the converging geometric series yields:

−ikΓ̄
B−1∑
q=1

ei[ψq−2πm(q/B)]
∞∑
n=0

e−i2πmn
∫ ∞
−∞

e−ikξ(x− ξ)dξ
(x− ξ)2 + (nB + q)2(h)2

=

kΓ̄πe−ikx
∑B−1

q=1 e
iψq−(q/B)[2πmi+kBh]

1− e2πmi+kBh

(46)

−ikΓ̄

∞∑
n=1

e−i2πmn
∫ ∞
−∞

e−ikξ(x− ξ)dξ
(x− ξ)2 + n2B2h2

=

kΓ̄πe−ikx
e2πmi+kBh

1− e2πmi+kBh

(47)

So Eq. (45) can be rewritten as:

v̄a = − 1

2π

[∫ 1

−1

γ̄a(ξ)dξ

x− ξ
− ikΓ̄

∫ ∞
1

e−ikξdξ

x− ξ
+ πkΓ̄e−ikxW

]
(48)

where

W = W (kh,m,B, ψq) =
1 +

∑B−1
q=1

(
ekBhei2πm

)(B−q)/B
eiψq

ekBhei2πm − 1
(49)

In order to calculate W , the phase angle between successive vortex sheets is needed to be
approximated. Since the vortex is shedding frequency is ω and the phase occurs between two
successive sheets, i.e. between a vortex sheet shed at previous rotation of the reference blade,
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the phase angle ψq ∼ 2πω/Ω. Furthermore, in the general case of a multibladed propeller,
the phase angle must be related to the blade index, thus ψq = 2π(q/B)(ω/Ω).

Recall that W was derived from a mathematical simplification of the terms related to
effect of vortex shed by preceding blades and previous revolutions of the reference blade, so
W can be treated as a weighting function for these effects.

Keeping in mind that in order to calculate the pressure perturbation, the vorticity is
needed, i.e. the inverse problem to the one presenten in Eq. (48). In order to do so, Söhn-
gen’s [3] derivation is used, as presented by Loewy [2]. Assume an expression of the form:

g(x) =
1

2π

∫ 1

−1

f(ξ)dξ

x− ξ
(50)

so according to Söhngen [3], the inverse problem is:

f(x) = − 2

π

√
1− x
1 + x

∫ 1

−1

√
1 + ξ

1− ξ
g(ξ)dξ

(x− ξ)
(51)

if f(1) is finite. In order to apply the inverse problem form presented above to Eq. (48), γ̄a(1)
must be finite, the Kutta condition must be employed, therefor:

γ̄a(x) =
2

π

√
1− x
1 + x

[∫ 1

−1

√
1 + ξ

1− ξ
v̄a(ξ)dξ

(x− ξ)
−

ikΓ̄

2π

∫ 1

−1

√
1 + ξ

1− ξ
1

(x− ξ)

∫ ∞
1

eikηdη

ξ − η
dξ +

kΓ̄

2
W

∫ 1

−1

√
1 + ξ

1− ξ
eikξdξ

(x− ξ)

] (52)

Evaluating the circulation over the airfoil Γ̄ via

Γ̄ = eik
∫ 1

−1
γ̄a(x)dx

yields:

Γ̄ =
2
∫ 1
−1

√
1+ξ
1−ξ v̄a(ξ)dξ

iπk
[

1
2(H

(2)
1 (k) + iH

(2)
0 (k)) +W (J1(k) + iJ0(k))

] (53)

where H
(2)
ν (k) is Henkle function.

Bernnoulli’s unsteady equation in non-dimentional length terms:

∂φ

∂t
+

2V

c

∂φ

∂x
+
p

ρ
= f(t) (54)

where φ is velocity potential. Recall that according Loewy model assumes a thin airfoil, i.e.
the airfoil is replaced by a vortex sheet, therefor the difference between the velocity above
and below the airfoil is equal to γa(x, t), so

∂φU
∂x
− ∂φL

∂x
=
c

2
γa(x, t)

φU − φL =
c

2

∫ x

−1
γa(ξ, t)dξ

12
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Apply the terms above to Eq. (54):

∆p
∆
= pU − pL = −ρ

[
V γa(x, t) +

c

2

∂

∂t

∫ x

−1
γa(ξ, t)dξ

]
(55)

and for sinusoidal oscillatory motion, as depicted in Eq. (37), Bernnoulli’s unsteady equation
in non-dimentional length terms takes form:

∆p̄(x∗)

ρV
= −γ̄a(x∗)− ik

∫ x∗

−1
γa(ξ

∗)dξ∗ (56)

Applying Eqs. (52)-(53) to the equation above, yields

−∆p̄(x∗)

ρrΩ
=

(2i/π)[H
(2)
0 (k) + 2J0(k)W ]

H
(2)
1 (k) + iH

(2)
0 (k) +W [J1(k) + iJ0(k)]

∫ 1

−1

√
1− x∗
1 + x∗

√
1 + ξ

1− ξ
v̄a(ξ)dξ+

2

π

∫ 1

−1

[√
1− x∗
1 + x∗

√
1 + ξ

1− ξ
1

x∗ − ξ
− ikϕ(x∗, ξ)

]
v̄a(ξ)dξ

(57)

where

ϕ(x∗, ξ) =
1

2
ln

[
1− x∗ξ +

√
1− ξ2

√
1− x∗2

1− x∗ξ −
√

1− ξ2
√

1− x∗2

]
(58)

Eq. (57) is with the same form of the two-dimensional fixed-wing oscillating in incompressible
flow derived by Theodorsen [4]. Denote the multiplier of the first term on RHS of Eq. (57):

2

π
[1− C ′(k,m, h)] =

(2i/π)[H
(2)
0 (k) + 2J0(k)W ]

H
(2)
1 (k) + iH

(2)
0 (k) +W [J1(k) + iJ0(k)]

(59)

so

C ′(k,m, h) = F ′ + iG′ =
H

(2)
1 (k) + 2J0(k)W (kh,m)

H
(2)
1 (k) + iH

(2)
0 (k) + 2[J1(k) + iJ0(k)]W (kh,m)

(60)

where h = 4πvi
cBΩ , k = cω

2V and ω = ΩmB. The function C ′(k,m, h) called Loewy’s Deficiency
Function (LDF), and due to the similar form of Eq. (57) to Theodorsen’s model it is analogues
to Theodorsen’s circulatory lift function C(k).

2.8 Unsteady Lift Calculation

When calculating the unsteady lift via LDF, the fact that C ′ is complex is needed to be
taken into account. Recall that C ′ was derived as a force response to an harmonic downwash
velocity input, thus C ′ represent both amplitude and phase between the input downwash
velocity and the output force. In aspect of blade noise, only that amplitude matters. Starting
with lift on a thin airfoil:

L =
1

2
ρV 2bc(2πα) (61)

Assuming vi � V thus α ≈ vi
V so:

13
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L = πρV vibc = πρV v̄ibce
iωt (62)

Implementing LDF in order to achieve the unsteady force amplitude:

|Lus|= πρV v̄ibc|C ′| (63)

where vi can be calculated via blade element momentum theory (BEMT) or an aero-prediction
tool such as XFOIL [5]. Applying the unsteady lift term to the n-th harmonic pressure
perturbation Eq. (36) where the quasi-steady term, i.e. the nominal thrust and drag, is the
first term in Fourier series:

CN =
mB2Ω

4πlc0

[
i2−mB

∫ d/2

0

2

d

(
Tnom cos θ +

c0(mB − 1)

mBΩr
Dnom

)
JmB−1

(
mBΩr

c0
sin θ

)
dr+

∞∑
λ=2

i1−(mB−λ)

∫ d/2

0

2

d

(
|Lus(k,N, h)|cos θ +

c0(mB − λ)

mBΩr
Dλ(r)

)
×

JmB−λ

(
mBΩr

c0
sin θ

)
dr

]
(64)

3 Acoustic Analysis of Typical Parameters

Table 1 lists the typical parameters for a two bladed propeller.

c B Ω N r T D vi V h |C ′|
0.02 2 66.67 1 0.1334 9.5 0.95 5 62 3.3 1.0328

0.02 2 66.67 2 0.1334 9.5 0.95 5 62 3.3 0.6433

0.02 2 66.67 3 0.1334 9.5 0.95 5 62 3.3 0.9272

0.02 2 66.67 4 0.1334 9.5 0.95 5 62 3.3 0.6040

0.02 2 66.67 5 0.1334 9.5 0.95 5 62 3.3 0.8104

Table 1: Typical parameters.

3.1 Spanwise Force & Chord Distribution Approximation

In order to approximate the tonal noise components, the properties of the blade is needed
to be known. Assuming a spanwise force distribution function:

F (x) = Fnominal
1

A

[
x

r
−
(x
r

)2
]
eB

x
r

A = 1.385448019

B =
8

3

(65)
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Figure 4: Force spanwise distribution function.

The values of A,B were determined so that F (x) equals to Fnominal at 75% span. Fur-
thermore, the drag term is approximated as 10% of the nominal thrust.

Beside the aerodynamic force, the spanwise chord is needed to be approximated as well.
Assume a spanwise chord distribution function:

c(x) = cmaxA
(x
r
− 1
)

sin
(

2
x

r
+B

)
A =

−4
√

13

9

B = −0.5 + 2 arctan

(√
13− 2

3

) (66)
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Figure 5: Chord spanwise distribution function.

where the values of A and B were determined so that c(x) equals to cmax at 25% span.
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3.2 Acoustic Analysis - Spanwise Distribution Approximation

Implementing to Eq. (64), force and chord spanwise distributions Eqs. (65)-(66) and
solving numerically. The first three harmonics are presented in Fig. 6 for both unsteady and
quasi-steady cases for the typical parameters presented in Table 1, where Ω = 66.67 at a
distance of 1.5 [m] from the hub.
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Figure 6: Pressure perturbation harmonics - typical force distribution.

17



Technion - Israel Institute of Technology

As seen in Fig. 6, the effect of the unsteady force to the pressure perturbation, is significant
in comparison to quasi-steady force, especially in the second harmony. An approximation
of the acoustic signature of a typical blade represented by the sum of the first 3 pressure
perturbation harmonics is depicted in Fig. 7.
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Figure 7: Approximation of the acoustic signature of a typical blade - typical force
distribution.
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3.3 Acoustic Analysis - BEMT Data

In order to validate the assumed force and spanwise chord distributions Eqs. (65)-(66) a
values calculated via Blade Element Momentum Theory (BEMT), presented in Fig. 8, are
taken and compared to the pressure perturbations calculated by the mentioned distribution
functions.
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Figure 8: BEMT parameters.
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Figure 9: Pressure perturbation harmonics - typical force distribution versus BEMT force
distribution.
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Figure 10: Approximation of the acoustic signature of a typical blade - typical force
distribution versus BEMT force distribution.

From Figs. 9-10 it can be concluded that the force and spanwise chord distributions ap-
proximated functions (65) & (66) yields an adequate approximation to the acoustic signature
of a rotating blade.
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Furthermore, a comparison between the approximated force distribution function for
thrust and drag and the BEMT is presented in Fig. 11.
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Figure 11: Approximated force & chord distribution versus BEMT force chord distribution.
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4 Conclusions

From the analysis presented above, two main conclusions emerge:

1. The unsteady force generated by wake related effects described by Loewy [2] contribute
significantly to high order pressure perturbation harmonics, i.e. 2-nd harmony and
above. Moreover, the pressure harmonics calculated using LDF captures perturbations
at certain θ angles that the quasi-steady case seem to omit.

2. For the quasi-steady case, The effect of spanwise force distribution on seem to have a
minor effect. On the other hand when taking into account the unsteady force effect on
the pressure perturbation harmonics, the chord spanwise distribution and the induced
velocity are dominant, due to the dominant contribution of the unsteady lift compo-
nent Eq. 63. Thus the spanwise chord distribution can be used as an acoustic design
parameters, even tough the spanwise force distribution is strongly related to the chord
spanwise distribution for a given nominal quasi-steady force generated by a blade an
acoustically optimal chord spanwise distribution can be found.
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