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1 Introduction

In many engineering disciplines numerical simulations with a high number of degrees of freedom are often
necessary. Mixed-dimensional modeling can decrease the number of degrees of freedom dramatically without
harming the desired mesh resolution.

If the discussed problem consists of a 3D domain in which the solution is expected to be actually 2D,
namely the solution does not depend on one of the coordinates, it is a waste to use a high resolution 3D
computational mesh in this domain. Instead, one can attempt to decrease the number of nodes in a mesh
by modeling a part of the domain as two-dimensional.

The dependency of the solution on one of the coordinates can be weakened mainly by the geometry of the
problem and the boundary conditions.

This report will focus on elastodynamics problems. The main objective of this report is to analyze under
what circumstances the solution of the hybrid problem is a good approximation of the full problem's solution
using the Panasenko coupling method, considering coupling of 3D and 2D sub-models.

2 Statement of the problem and solution scheme

2.1 Full 3D problem

Consider a three-dimensional structure made of linear isotropic material. We are interested in �nding
the time-accurate displacements �eld due to a non-zero initial state or inhomogeneous tractions boundary
conditions.

2.1.1 The strong form

The governing equations of an undamped structure denoted Ω, written with :

ρüi = σij,j + fi, inΩ (1)

σij = Cijklεkl, inΩ (2)

εij =
1

2
(ui,j + uj,i) , inΩ (3)
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ρ is the material density, ui (x, t) are the displacements, fi are body forces and Cijkl is the material properties
tensor. For an isotropic material, Cijkl is given by:

Cijkl = δijδklλ+G (δikδjl + δilδjk) (4)

where λ,G are Lame's parameters of the material and δij is the Kronecker delta. The boundary conditions
are given by:

ui = ūi, onΓui (5)

σijnj = T̄i, onΓTi (6)

ūi (x, t) and T̄i (x, t) are the given displacements and traction vectors on the boundary of the domain Ω.
Γui is the part of ∂Ω in which the displacements in the direction of xi are known and ΓTi is the part of ∂Ω
in which the tractions in the direction of xi are known, such that for each i independently:

∂Ω = ΓTi
⋃

Γui (7)

Nsd is the number of space dimensions: 3 for a 3D problem and 2 for a 2D problem. nj is a unit vector
normal to ΓTi .

The initial conditions are written as:

ui (x, 0) = U0i (x) , inΩ (8)

u̇i (x, 0) = V0i (x) , inΩ (9)

2.1.2 The weak form

Let us multiply Eq. 1 by a weighting function wi (x) and integrate over Ω:∫
Ω

ρüiwidΩ =

∫
Ω

σij,jwidΩ +

∫
Ω

fiwidΩ (10)

Using the chain rule and the divergence theorem we can write:∫
Ω

σij,jwidΩ =

∫
Ω

(σijwi),j dΩ−
∫

Ω

σijwi,jdΩ

∫
Ω

σij,jwidΩ =

∫
∂Ω

σijwinjdΩ−
∫

Ω

σijwi,jdΩ (11)

Plug Eq. 11 into Eq. 10:∫
Ω

ρüiwidΩ =

∫
∂Ω

σijwinjdΩ−
∫

Ω

σijwi,jdΩ +

∫
Ω

fiwidΩ (12)

Using Eq. 7: ∫
∂Ω

σijwinjdΩ =

∫
ΓTi

σijwinjdΓ +

∫
Γui

σijwinjdΓ

From Eq. 6:
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∫
∂Ω

σijwinjdΩ =

∫
ΓTi

T̄iwidΓ +

∫
Γui

σijwinjdΓ

Let us choose wi such that wi = 0 on Γui :∫
∂Ω

σijwinjdΩ =

∫
ΓTi

T̄iwidΓ

Substitute into Eq. 12 to obtain:∫
Ω

ρüiwidΩ +

∫
Ω

σijwi,jdΩ =

∫
ΓTi

T̄iwidΓ +

∫
Ω

fiwidΩ

Using Eq. 2, Eq. 3 and the symmetry of Cijkl:

Cijkl = Cijlk

∫
Ω

ρüiwidΩ +

∫
Ω

Cijkluk,lwi,jdΩ =

∫
ΓTi

T̄iwidΓ +

∫
Ω

fiwidΩ

Therefore, the weak form formulation:

Find u ∈ S such that ui(x, 0) = U0i(x), u̇i(x, 0) = V0i(x) and for all w ∈ S0:

b(w, ü) + a(w,u) = l(w) (13)

Where:

S =
{
u|u ∈ C0, ui = ūi onΓui

}
S0 =

{
w|w ∈ C0, wi = 0 onΓui

}
b(w,u) =

∫
Ω

ρuiwidΩ

a(w,u) =

∫
Ω

Cijkluk,lwi,jdΩ

l(w) =

∫
ΓTi

T̄iwidΓ +

∫
Ω

fiwidΩ

a(w,u), b(w,u) are symmetric and bi-linear, and l(w) is linear.

2.1.3 Galerkin FE approximation

Let us approximate the functions ui, wi by a linear combination of shape functions {φA (x)}:

ui (x, t) ≈ uhi (x, t) =
∑
A∈η̂

d̂(Ai) (t)φA (x) =
∑
A∈ηi

d(Ai)(t)φA(x) +
∑
A∈ηui

ū(Ai)(t)φA(x)

wi(x) ≈ whi (x) =
∑
A∈ηi

C(Ai)φA(x)
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uh = uhi ei, wh = whi ei

Where ei is a unit vector in the direction of xi, and:

ηi = {set of all nodes that are open (with unknown displacements) in direction i}

ηui = {set of all nodes that are closed (with known displacements) in direction i}

η̂ = {set of all nodes}

2.1.4 The semi-discrete problem

Plug the approximation to the weak form (Eq. 13):

b(wh, üh) + a(wh,uh) = l(wh)

b(whi ei, u
h
j ej) + a(whi ei, u

h
j ej) = l(whi ei)

b

∑
A∈ηi

C(Ai)φAei,
∑
B∈η̂

¨̂
d(Bj)φBej

+ a

∑
A∈ηi

C(Ai)φAei,
∑
B∈η̂

d̂(Bj)φBej

 = l

∑
A∈ηi

C(Ai)φAei


Using the linearity of a(w,u), b(w,u), l(w):

∑
A∈ηi

C(Ai)

b
φAei,∑

B∈η̂

¨̂
d(Bj)φBej

+ a

φA(x)ei,
∑
B∈η̂

d̂(Bj)φBej

− l(φAei)
 = 0

Since the weak form should be satis�ed for all w ∈ S0, C(Ai) are linealy independent:

b

φAei,∑
B∈η̂

¨̂
d(Bj)φBej

+ a

φAei,∑
B∈η̂

d̂(Bj)φBej

− l(φAei) = 0, A ∈ ηi, i = 1, ..., Nsd

Using the linearity of a(w,u), b(w,u):∑
B∈η̂

[
b (φAei, φBej)

¨̂
d(Bj) (t) + a (φAei, φBej) d̂(Bj)

]
= l(φAei), A ∈ ηi, i = 1, ..., Nsd

Nsd∑
j=1

∑
B∈ηj

[
b (φAei, φBej) d̈(Bj) + a (φAei, φBej) d(Bj)

]
= F(Ai), A ∈ ηi, i = 1, ..., Nsd (14)

Where:

F(Ai) = l(φAei)−
Nsd∑
j=1

∑
B∈ηuj

[
b (φAei, φBej) ¨̄u(Bj) + a (φAei, φBej) ū(Bj)

]
ū(Bj) = ūj (xB)
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Eq. 14 can be written in matrix form as:

M · d̈ + K · d = F

Where:

d =
{
d(Ai)

}
M =

[
M(Ai)(Bj)

]
= [b (φAei, φBej)] =

[∫
Ω

ρφBejφAeidΩ

]
=

[
δij

∫
Ω

ρφBφAdΩ

]

K =
[
K(Ai)(Bj)

]
= [a (φAei, φBej)] =

[∫
Ω

φA,kCikjlφB,ldΩ

]

F =
{
F(Ai)

}
=


∫

ΓTi

T̄iφAeidΓ +

∫
Ω

fiφAeidΩ−
Nsd∑
j=1

∑
B∈ηuj

[
M(Ai)(Bj) ¨̄u(Bj) +K(Ai)(Bj)ū(Bj)

]
M is the global mass matrix, K is the global sti�ness matrix and F is the global force vector. The initial
conditions of the system of equations above can be derived from Eq. 8 and Eq. 9:

d(Ai) (0) = U0i (xA) , ḋ(Ai) (0) = V0i (xA)

Thus the semi-discrete problem formulation:
M · d̈ + K · d = F

d (0) = d0

ḋ (0) = v0

(15)

M =
[
M(Ai)(Bj)

]
, K =

[
K(Ai)(Bj)

]
, F =

{
F(Ai)

}
, d =

{
d(Ai)

}
d0 =

{
d0(Ai)

}
= {U0i (xA)} , v0 =

{
v0(Ai)

}
= {V0i (xA)}

M(Ai)(Bj) = δij

∫
Ω

ρφBφAdΩ, K(Ai)(Bj) =

∫
Ω

φA,kCikjlφB,ldΩ

F(Ai) =

∫
ΓTi

T̄iφAeidΓ +

∫
Ω

fiφAeidΩ−
Nsd∑
j=1

∑
B∈ηuj

[
M(Ai)(Bj) ¨̄u(Bj) +K(Ai)(Bj)ū(Bj)

]
A ∈ ηi, B ∈ ηj , i, j ∈ [1, · · · , Nsd]
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2.1.5 The element level

The global matrices and vectors will be calculated by the assembly of the element level contributions. Let
as de�ne the element level mass and sti�ness matrices:

me
(ai)(bj) = δij

∫
Ωe
ρφaφbdΩ, ke(ai)(bj) =

∫
Ωe
φa,kCikjlφb,ldΩ (16)

Where Ωe is the element domain and a, b are element level indices. The element level force vector:

fe(ai) =

∫
ΓeTi

T̄iφaeidΓ +

∫
Ωe
fiφaeidΩ−

Nsd∑
j=1

∑
b∈ηuj

[
me

(ai)(bj)
¨̄ue(bj) + ke(ai)(bj)ū

e
(bj)

]
(17)

A uniform mesh will be used, with hexahedral tri-linear elements for the 3D domain and rectangular bi-
linear elements for the 2D domain. Speci�cally, cubic and squared elements will be used. Consider the
hexahedral element in �gure 1a. In order to solve the integrals in Eq. 16, one can trnasform the domain
Ωe in �gure 1a to the domain Ωeξ in �gure 1b using the transformation:

x (ξ) =

8∑
a=1

φa (ξ)xea (18)

Where xea are the coordinates of node number a in the domain Ωe, and:

φa (ξ) =
1

8
(1 + ξaξ) (1 + ηaη) (1 + ζaζ) (19)

a ξa ηa ζa

1 -1 -1 -1
2 1 -1 -1
3 1 1 -1
4 -1 1 -1
5 -1 -1 1
6 1 -1 1
7 1 1 1
8 -1 1 1

Table 1: Coordinates of the nodes in the 3D tranformed element.
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(a) General hexahedral element. (b) Transformed hexahedral element.

Figure 1: 3D element.

Apply the transformation to Eq. 16:

me
(ai)(bj) = δij

∫
Ωe
ρφaφbdΩ = δij

∫
Ωeξ

ρφa (ξ)φb (ξ) |J | dΩ (20)

|J | is the transformation Jacobian, de�ned as:

|J | =
∣∣∣∣∂x∂ξ

∣∣∣∣
One can �nd with the help of a symbolic calculator that for a cubic element with a volume of h3:

|J | = h3

8
(21)

It is the ratio of the volumes of the two elements in Figure 1. Substitute Eq. 21 and Eq. 19 into Eq. 20:

me
(ai)(bj)3D

=
ρδij
82

∫ 1

−1

(1 + ξaξ) (1 + ξbξ) dξ

∫ 1

−1

(1 + ηaη) (1 + ηbη) dη

∫ 1

−1

(1 + ζaζ) (1 + ζbζ) dζ |J |

me
(ai)(bj)3D

=
ρδij
82

(∫ 1

−1

(1 + ξaξ) (1 + ξbξ) dξ

)3
h3

8
=
δijρh

3

64

(
1 +

ξaξb
3

)(
1 +

ηaηb
3

)(
1 +

ζaζb
3

)
For the element level sti�ness matrix, plug Eq. 4 into Eq. 16:

ke(ai)(bj) =

∫
Ωe
φa,k (δikδjlλ+G (δijδkl + δilδkj))φb,ldΩ

Apply the transformation:

ke(ai)(bj) =

∫
Ωeξ

φa,k (ξ) (δikδjlλ+G (δijδkl + δilδkj))φb,l (ξ) |J | dΩ
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ke(ai)(bj) =
h3

8

[
λ

∫
Ωeξ

φa,i (ξ)φb,j (ξ) dΩ +Gδij

∫
Ωeξ

φa,k (ξ)φb,k (ξ) dΩ +G

∫
Ωeξ

φa,j (ξ)φb,i (ξ) dΩ

]
(22)

Calculate the shape functions derivatives φa,i by:

φa,i (ξ) =
∂φa (ξ)

∂xi
=
∂φa
∂ξj

∂ξj
∂xi

=
∂φa
∂ξj

(J−1)ji (23)

J−1 is the inverse of the transformation Jacobian martix:

J−1 =
∂ξ

∂x

(J−1)ij =
∂ξi
∂xj

where the Jacobian matrix is calculated by:

Jij =
∂xi
∂ξj

=

8∑
a=1

∂φa (ξ)

∂ξj
xeai (24)

The calculations are done with the help of a symbolic calculator. As for the element level force vector, it is
zero for all cases in this report since we discuss cases with:

ūi = 0 ∀x ∈ Γui , fi ≡ 0, T̄i = 0 ∀x ∈ ΓTi

The 2D element level matrices are calculated the same way. Consider the 2D original and trnasformed
element in �gure 2. The transformation between �gure 2a and 2b is given by:

x (ξ) =

4∑
a=1

φa (ξ)xea (25)

φa (ξ) =
1

4
(1 + ξaξ) (1 + ηaη) (26)

Where the coordinates of the transformed element:

a ξa ηa

1 -1 -1
2 1 -1
3 1 1
4 -1 1

Table 2: Coordinates of the nodes in the 2D tranformed element.

For a squared element with an area of h2:

|J | = h2

4
(27)

Similar to the 3D case, it is the ratio of areas of the elements in Figure 2. The 2D element level matrices
are calculated by plugging Eq. 25, 26, 27 into Eq. 20, 22, 23, 24.
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(a) General rectangular element. (b) Transformed rectangular element.

Figure 2: 2D element.

After obtaining the element level matrices, the global matrices are assembled by the following algorithm:

- Initialize M,K

- Loop over all elements e = 1→ Nel

- Loop over all nodes in the element a = 1→ Nen

- Loop over all nodal DOF i = 1→ Nsd

- Get unknown number p

- Loop over all nodes in the element b = 1→ Nen

- Loop over all nodal DOF j = 1→ Nsd

- Get unknown number q

- if q, p 6= 0

- M(p, q) = M(p, q) +me
(ai)(bj)

- K(p, q) = K(p, q) + ke(ai)(bj)
- Close if

- Close j loop

- Close b loop

- Close i loop

- Close a loop

- Close e loop

Nel is the number of elements in the computational mesh and Nen is the number of nodes in an element.

Remark: In elastodynamics problems, the number of spatial dimensions Nsd equals the number of nodal
degrees of freedom Nndof . Therefore, while they are interchangeable in this report, they night not be when
discussing other types of problem, such as �uid �ow.

Let us denote the assembly operation of the global matrix or vector M from the element level matrix/vector
me by M = ANele=1 {me}. The semi-discrete problem formulation, with the assembly operation is therefore:

M · d̈ + K · d = F

d (0) = d0

ḋ (0) = v0
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M =
[
M(Ai)(Bj)

]
, K =

[
K(Ai)(Bj)

]
, F =

{
F(Ai)

}
, d =

{
d(Ai)

}
d0 =

{
d0(Ai)

}
= {U0i (xA)} , v0 =

{
v0(Ai)

}
= {V0i (xA)}

M = ANele=1 {me} , K = ANele=1 {ke} , F = ANele=1 {fe}

me =
[
me

(ai)(bj)

]
, ke =

[
ke(ai)(bj)

]
, fe =

{
fe(ai)

}
me

(ai)(bj) = δij

∫
Ωe
ρφaφbdΩ, ke(ai)(bj) =

∫
Ωe
φa,kCikjlφb,ldΩ

fe(ai) =

∫
ΓeTi

T̄iφaeidΓ +

∫
Ωe
fiφaeidΩ−

Nsd∑
j=1

∑
b∈ηuj

[
me

(ai)(bj)
¨̄ue(bj) + ke(ai)(bj)ū

e
(bj)

]

A ∈ ηi, B ∈ ηj , a, b ∈ [1, · · · , Nen] , i, j ∈ [1, · · · , Nsd]

2.2 Hybrid problem

Consider the structure described in section 2.1. Assume it consists of a sub-domain in which the solution is
alomst independent of one of the coordinates. This sub-domain will be modeled as two-dimensional, such
as the �nite element model of the entire structure consists of a 3D sub-domain and a 2D sub-domain. The
interface boundary between the 3D and 2D sub-domains will be denoted ΓB . The 3D and 2D sub-domains
will be denoted Ω3,Ω2, respectively. Examples of hybrid models are presented in section 4 and are explained
thoroughly later. In those cases, ΓB = {(x, y, z)|x = xB} and so we will assume this kind of boundary in
the derivation of the strong and the weak form.

2.2.1 The strong form

Without loss of generality, assume that the solution in Ω2 is independent of the coordinate x3. The governing
equations are:

ρü
(3)
i = σ

(3)
ij,j + f

(3)
i , i = 1, 2, 3 in Ω3 (28)

ρü
(2)
i = σ

(2)
ij,j + f

(2)
i , i = 1, 2 in Ω2 (29)

Where:

σ
(n)
ij = Cijklε

(n)
kl = Cijkl

1

2

(
u

(n)
k,l + u

(n)
l,k

)
= Cijklu

(n)
k,l

The superscripts (3), (2) stand for a 3D and 2D quantities, respectively. The boundary conditions in the
domain Ω3 are the same as in the full 3D problem, except for the new boundary ΓB which is chosen to be
traction free. The boundary conditions in Ω2 are reduced by averaging ūi and T̄i with respect to x3 for
i = 1, 2.

The initial conditions in Ω3 are as in the full problem:

U
(3)
0 = U0,V

(3)
0 = V0 in Ω3

The initial conditions in Ω2 are reduced by averaging with respect to x3 as before.

10



2.2.2 The weak form

In Panasenko's method, the continuity of the solution at the interface is enforced strongly. If ΓB =
{(x, y, z)|x = xB} this condition can be simply written as:

u
(3)
i (xB , y, z) = u

(2)
i (xB , y) ; i = 1, 2 (30)

De�ne the function sets S, S0:

S =
{
u =

(
u(2);u(3)

)
|u(2) ∈ C0 (Ω2) ,u(3) ∈ C0 (Ω3) ,u(3) (xB , y, z) = u(2) (xB , y) , ui = ūi on Γui

}

S0 =
{
w =

(
w(2);w(3)

)
|w(2) ∈ C0 (Ω2) ,w(3) ∈ C0 (Ω3) ,w(3) (xB , y, z) = w(2) (xB , y) , wi = 0 on Γui

}
The notation u =

(
u(2);u(3)

)
should be interpreted by:

u =

{
u(2) (x, y) , x ∈ Ω2

u(3) (x, y, z) x ∈ Ω3

Multiplying Eq. 28, 29 by a weighting function w ∈ S and integrating over Ω3

⋃
Ω2 yields:∫

Ω3
⋃

Ω2

wiρüidΩ =

∫
Ω3

⋃
Ω2

σij,jwidΩ +

∫
Ω3

⋃
Ω2

fiwidΩ

Considering a hybrid model in which the structure in the reduced sub-domain was originally of thickness
ε, the integrals over the domain Ω3

⋃
Ω2 are calculated by:∫

Ω

g (x, y, z) dΩ ≈
∫

Ω3

g(3) (x, y, z) dΩ3 + ε

∫
Ω2

g(2) (x, y) dΩ2

Where g(2) (x, y) is the 2D representation of the original g (x, y, z) in the domain Ω2. The repercussion of
this on the element mass matrices in the domain Ω2 is that they should be multiplied by ε. Consider the
case where fi = 0:∫

Ω3

w
(3)
i ρü

(3)
i dΩ3 + ε

∫
Ω2

w
(2)
i ρü

(2)
i dΩ2 =

∫
Ω3

σ
(3)
ij,jw

(3)
i dΩ3 + ε

∫
Ω2

σ
(2)
ij,jw

(2)
i dΩ2

Using the divergence theorem yields:

∫
Ω3

w
(3)
i ρü

(3)
i dΩ3 + ε

∫
Ω2

w
(2)
i ρü

(2)
i dΩ2 =

∫
∂Ω3

σ
(3)
ij w

(3)
i njdΩ3 −

∫
Ω3

σ
(3)
ij w

(3)
i,j dΩ3

+ ε

∫
∂Ω2

σ
(2)
ij w

(2)
i njdΩ2 − ε

∫
Ω2

σ
(2)
ij w

(2)
i,j dΩ2

Let us choose w such that wi = 0 on Γui . Additionally, the problem we are interested in has homogeneous
Neumann boundary conditions on ΓTi , thus:∫

Ω3

w
(3)
i ρü

(3)
i dΩ3 + ε

∫
Ω2

w
(2)
i ρü

(2)
i dΩ2 = −

∫
Ω3

Cijklu
(3)
k,lw

(3)
i,j dΩ3 − ε

∫
Ω2

Cijklu
(2)
k,lw

(2)
i,j dΩ2

Denote:
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b (w,u) =

∫
Ω3

w
(3)
i ρu

(3)
i dΩ3+ε

∫
Ω2

w
(2)
i ρu

(2)
i dΩ2, a (w,u) =

∫
Ω3

Cijklu
(3)
k,lw

(3)
i,j dΩ3+ε

∫
Ω2

Cijklu
(2)
k,lw

(2)
i,j dΩ2

Therefore, the weak form of the problem:

Find u ∈ S such that u (x, 0) =
(
U

(2)
0 ;U

(3)
0

)
, u̇ (x, 0) =

(
V

(2)
0 ;V

(3)
0

)
and for all w ∈ S0:

b (w, ü) + a (w,u) = 0

b (w,u) =

∫
Ω3

w
(3)
i ρu

(3)
i dΩ3 + ε

∫
Ω2

w
(2)
i ρu

(2)
i dΩ2

a (w,u) =

∫
Ω3

Cijklu
(3)
k,lw

(3)
i,j dΩ3 + ε

∫
Ω2

Cijklu
(2)
k,lw

(2)
i,j dΩ2

2.2.3 The semi-discrete problem and assembly of M,K

One can discretize the equations of the weak form using Galerkin FE approximation. The approximation
is done at the element level for each sub-domain individually:

u
(2)h

i =
∑

A∈η2D
d(Ai)(t)φ

(2)
A (x) +

∑
A∈η2Dui

ū
(2)
(Ai)(t)φ

(2)
A (x) ; i = 1, 2

u
(3)h

i =
∑

A∈η3D
d(Ai)(t)φ

(3)
A (x) +

∑
A∈η3Dui

ū
(3)
(Ai)(t)φ

(3)
A (x) ; i = 1, 2, 3

η2D = {set of all nodes in the 2D sub-domain which are open in direction i}

η2D
ui = {set of all nodes in the 2D sub-domain which are closed in direction i}

η3D = {set of all nodes in the 3D sub-domain which are open in direction i}

η3D
ui = {set of all nodes in the 3D sub-domain which are closed in direction i}

ū
(2)
(Ai) = ū

(2)
i (xA) , ū

(3)
(Ai) = ū

(3)
i (xA)

The shape functions φ(2), φ(3) are bi-linear and tri-linear shape functions de�ned by Eq. 26, 19 in ξ domain,
respectively. The coupling between the two approximations by Eq. 30 is carried out by assigning the same
open node numbers to all the nodes at a certain point on the interface plane on plane XY (xB , y0), from
both 3D and 2D sub-domains. Substituting the approximation in the weak form results in the linear system
of equations: 

M · d̈ + K · d = 0

d (0) = d0

ḋ (0) = v0

It di�ers from the full 3D case semi-discrete problem by the number of unknowns and by the assembly of
the matrices M,K. The hybrid assembly algorithm consists of two loops over the elements in the model -
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one loop for the 3D elements and one loop for the 2D elements. Obviously, when looping over 3D elements
one should use the 3D element matrices and when looping over 2D elements one should use the 2D element
matrices (multiplied by ε). Let us denote the hybrid assembly operation of the global matrix or vector M

from the element level matrix/vector me by M = AHNele=1 {me}. The full semi-discrete problem formulation
for the hybrid case, with the assembly operation:

M · d̈ + K · d = 0

d (0) = d0

ḋ (0) = v0

M =
[
M(Ai)(Bj)

]
, K =

[
K(Ai)(Bj)

]
, F =

{
F(Ai)

}
, d =

{
d(Ai)

}
d0 =

{
d0(Ai)

}
= {U0i (xA)} , v0 =

{
v0(Ai)

}
= {V0i (xA)}

M = AHNele=1 {me} , K = AHNele=1 {ke} , F = AHNele=1 {fe}

me =
[
me

(ai)(bj)

]
, ke =

[
ke(ai)(bj)

]
, fe =

{
fe(ai)

}

me
(ai)(bj) =

{
εδij

∫
Ωe
ρφ

(2)
a φ

(2)
b dΩ2, e ∈ Q2D

δij
∫

Ωe
ρφ

(3)
a φ

(3)
b dΩ3, e ∈ Q3D

, ke(ai)(bj) =

{
ε
∫

Ωe
φ

(2)
a,kCikjlφ

(2)
b,l dΩ2, e ∈ Q2D∫

Ωe
φ

(3)
a,kCikjlφ

(3)
b,l dΩ3, e ∈ Q3D

fe(ai) =

ε
∫

ΓeTi
T̄iφ

(2)
a eidΓ2 + ε

∫
Ωe
f

(2)
i φ

(2)
a eidΩ2 − ε

∑2
j=1

∑
b∈ηuj

[
me

(ai)(bj)
¨̄ue(bj) + ke(ai)(bj)ū

e
(bj)

]
, e ∈ Q2D∫

ΓeTi
T̄iφ

(3)
a eidΓ3 +

∫
Ωe
f

(3)
i φ

(3)
a eidΩ3 −

∑3
j=1

∑
b∈ηuj

[
me

(ai)(bj)
¨̄ue(bj) + ke(ai)(bj)ū

e
(bj)

]
, e ∈ Q3D

a, b ∈


[
1, · · · , N (2)

en

]
, e ∈ Q2D[

1, · · · , N (3)
en

]
, e ∈ Q3D

, i, j ∈

{
[1, 2] , e ∈ Q2D

[1, 2, 3] , e ∈ Q3D

, A ∈ ηi, B ∈ ηj

Q2D = {set of all 2D elements} , Q3D = {set of all 3D elements}

2.3 Solution of the semi-discrete problem: Newmark family of time stepping

methods

Consider the time-dependent linear system of equations 15. Let us denote:

∆t - time increment, n - time step number, tn = n∆t

dn,vn,an are the approximations d, ḋ, d̈at t = tn, respectively:

dn ≈ d (tn) , vn ≈ ḋ (tn) , an ≈ d̈ (tn)

Fn = F (tn) is the exact force vector at t = tn.

Newmark time-stepping method approximates dn+1,vn+1 by:

vn+1 ≈ vn + ∆t [(1− γ)an + γan+1] , 0 ≤ γ ≤ 1
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dn+1 = dn + ∆tvn +
(∆t)

2

2
[(1− 2β)an + 2βan+1] , 0 ≤ β ≤ 1

2

Starting from the initial vector d0, the time stepping is carried out using a predictor-corrector algorithm:

Predictor:

d̃n+1 = dn∆tvn +
(∆t)

2

2
(1− 2β)an

ṽn+1 = vn∆t (1− γ)an

Corrector:

dn+1 = d̃n+1 + β (∆t)
2
an+1 (31)

vn+1 = ṽn+1 + γ∆tan+1 (32)

Solution:

M · an+1 + K · dn+1 = Fn+1

M · an+1 + K ·
(
d̃n+1 + β (∆t)

2
an+1

)
= Fn+1

M + β (∆t)
2
K︸ ︷︷ ︸

M∗

 · an+1 = Fn+1 −K · d̃n+1︸ ︷︷ ︸
F∗
n+1

(33)

Solve 33 and plug into 31, 32 to obtain the solution at time step n + 1. d0,v0 are given and a0 is found
from Eq. 33 with n+ 1 = 0.

3 Description of the Computer Program

In each of the cases (1,2a,2b) described in section 4 the structure of the program is the same. The di�erences
are in the geometric and mesh parameters and in the mesh generation. In each case the function �main� is
divided into 5 sections:

1. Parameters: De�nition of geometric, mesh, material, time stepping and initial conditions parameters.

2. Mesh: Generation of the mesh and the matrices ID(i, Â) = A, IEN(a, e) = Â, LM(i, a, e) = A where
Â is the global node number, A is the global unknown number, i is the spatial dimension index -
representing the number of the DOF in a certain node, e is the element number and a is the element
level node number. If node Â is not an unknown in direction i (or, node a in element e is unknown in
direction i) the global unknown number of Â is A = 0. These matrices are used to obtain the initial
conditions vectors and identify the unknowns in the assembly algorithm.

3. Assembly: The assembly of the global mass and sti�ness matrices.

4. Initial Conditions: Get the initial conditions vectors d0,v0.

5. Time Stepping: Implementation of Newmark time stepping to obtain the time-accurate solution.

The relevant functions in each of the sections mentioned above are listed below.
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Mesh

� Mesh Generation: There are 4 functions which generate the computational mesh: Two for case 1
(�FullMeshCase1� for full & �HybridMeshCase1� for hybrid problem) and two for case 2 (�FullMeshCase2�
for full & �HybridMeshCase2� for hybrid problem).

� Matrices: The function �Gena_bc� where a is �ID�/�IEN�/�LM� b is �Full� or �Hybrid� and c is �1�
or �2� returns the matrix a of the b (full/hybrid) problem in case c. For example, �GenID_Full2�
returns the matrix ID of the full problem in case 2. In the hybrid problems, the matrices ID,IEN,LM
are splitted in two - the matrices ID_H, IEN_H, LM_H are of the higher-dimension sub-domain and
ID_L, IEN_L, LM_L are of the lower-dimension sub-domain. In the assembly process, the higher-
dimension matrices are used in the �rst element loop (over the higher-dimension elements), and the
lower-dimension matrices are used in the second loop (over the lower-dimension elements).

Assembly

� The functions �asmMK� and �asmMK_Hybrid� return the global mass and sti�ness matrix of the full
and hybrid problem, respectively. These functions remain unchanged between cases 1 and 2. The full
and hybrid assembly algorithms are as written in sections 2.1.5, 2.2.3.

Initial Conditions

� The function �IC_bc� where b is �Full� or �Hybrid� and c is �1�, �2a� or �2b� returns the initial
conditions vectors d0,v0 of the b (full/hybrid) problem in case c. The initial conditions in each case
are presented in detail in section 4.

Time Stepping

� The function �Newmark_bc� where b is �Full� or �Hybrid� and c is �1� or �2� carries out Newmark
time-stepping and plots the solution at each time step (via a sub-function which plots the solution).
It returns a matrix �sol� which contains the solution at all the nodes at all time steps, and an array
�frames� which is used to export the solution to a video. The calculations and storage of the matrix
�sol� require a lot of memory and it increases the computational time signi�cantly. It is used only
when calculating the error. Therefore, when not needed, it should not be computed or stored. Eq.
33 is being solved iteratively using Preconditioned Conjugate Gradients Method, implemented by
MATLAB function �pcg�. The maximum number of iterations is limited to 50, and the iterative
process ceases when an error of 10−4 is achieved.

The functions listed above are independent, namely the functions do not call each other, but only being
called from �main�. �main� stores all the parameters, matrices and arrays, and sends the relevant input to
each function.

4 Numerical experiments

4.1 Case 1: Plane stress problem

We'll �rst consider a simple case where the solution is expected to be almost entirely two-dimensional, and
examine wether the hybrid solution can or cannot approximate the reference solution well. The reference
solution in this case is the �nite elements solution of the full 3D problem. If the reference solution is
entirely 2D on the interface plane, then the error associated with the dimension reduction is expected to
be negligible. However, the coupling error might not be.

Plane stress problems involve a very thin plate in which the stresses are zero in the direction normal to
the plate plane. Since the stresses are zero in this direction the problem is essentially two-dimensional. For
that reason this is the �rst case that will be inspected to validate the hybrid solution.
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4.1.1 Full problem speci�cation

A thin plate is subjected to non-zero initial displacements. It has one �xed face, a smooth contact type
of boundary condition is enforced on the upper and lower surfaces (namely the displacements normal to
the top and bottom faces are zero and in the other directions they are traction free) and the rest faces are
traction free.

Figure 3: The plane stress problem discussed in case 1.

The initial displacement �eld is chosen to take the form:

U0 (x) =

{
A cos (−4πr + π) r̂, r ≤ Lp

4

0, otherwise
(34)

V0 (x) ≡ 0

where r is the distance from the center of the plate andr̂ is a unit radial vector:

r =

√(
x− Lp

2

)2

+

(
y − Wp

2

)2

r̂ = cos θx̂ + sin θŷ

θ = arctan
y − Wp

2

x− Lp
2

The direction of the initial displacement �eld is purely radial with respect to the center of the plate. The
chosen initial conditions are continuous and di�erentiable in the entire domain. It is shown on plane XY
in Figure 4.
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Figure 4: The initial conditions on plane XY, case 1.

Geometric parameters: Lp = 12 [m] , Wp = 2 [m] , ε = 0.2 [m].

Computational mesh: a uniform cubic tri-linear elements mesh with an edge length of h = 0.025 [m] was
used. The mesh consists of 307,200 elements, 350,649 nodes and 972,000 degrees of freedom.

Time-stepping: an implicit method with γ = 0.5, β = 0.25 was used, and the chosen time increment is
∆t = 10−5 [sec] with a simulation time of 3 · 10−3 [sec] (300 time steps).

Material properties: ρ = 2.7
[
gr
cc

]
, G = 25.92 [GPa] , λ = 60.49 [GPa] (of aluminum).

The amplitude of the initial displacements: A = 0.04 [m].

4.1.2 Hybrid problem speci�cation

The hybrid problem domain is presented in the �gure below. A part of the domain is remained unchanged
while the other part is modeled as two-dimensional.

Figure 5: Hybrid plane stress problem discussed in case 1.

The same geometric parameters where chosen with interface location of xB = 6 [m], meaning that the
interface plane is at the center of the plate. In the 3D sub-domain the same mesh as in the full 3D
con�guration was used, and a uniform squared elements mesh was used in the 2D sub-domain with h =
0.025 [m]. The mesh consists of 172,800 elements, 195,210 nodes and 523,584 degrees of freedom. The same
time-stepping scheme as in the full 3D problem is considered. Since the initial conditions discussed in the
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full problem are independent of the coordinate z, the exact same initial conditions are considered and there
is no need to take the average (Eq. 34). The boundary conditions of the 2D sub-domain are all traction
free, as well as the boundary conditions on the interface plane. The smooth contact boundary condition on
the top and bottom faces is enforced naturally in the 2D sub-domain.

4.1.3 Results

The solution of the full and hybrid problems are presented in Figure 6 at a number of time steps. The
interface plane in the hybrid problem's solution is marked by a thin red line.

The di�erence between the hybrid and reference solution is clearly small. The displacement �eld seems to
be almost identical in both solution, while the hybrid solution has a signi�cantly lower number of DOF.
Now that it seems possible to bene�t from the hybrid con�guration, we can examine a more complicated
problem in which the solution is not fully two-dimensional in the entire domain. A thorough analysis of the
error will be carried out later.

4.2 Case 2: General 3D problem

4.2.1 Full 3D problem speci�cation

Consider the structure shown in Figure 7. It consists of a cubic part with one of its faces �xed, and a thin
plate with smooth contact boundary condition on the top and bottom faces. The rest of the boundaries are
traction free. The structure is made from a linear isotropic material, such as aluminum. We are interested
in the displacement �eld of the structure as a function of time due to non-trivial initial conditions.

Geometric parameters: Lc = 2 [m], Lp = 10 [m], ε = 0.2 [m] in case (2a) and ε = 0.25 [m] in case (2b) (both
cases will be presented in detail later).

Computational mesh: uniform mesh, tri-linear cubic elements with edge length of h = 0.025 [m]. The grid
is shown in Figure 8 for ε = 0.2 [m]. The mesh consists of 832,000 elements, 887,841 nodes and 2,579,040
degrees of freedom with ε = 0.25 [m], and 768,000 elements, 823,041 nodes and 2,384,640 degrees of freedom
with ε = 0.2 [m].

Time-stepping: ∆t = 10−5 seconds, total simulation time of 3 · 10−3 seconds, a total of 300 time steps. The
time stepping parameters are γ = 1

2 , β = 1
4 .

Case (2a) The initial displacements �eld is:

U0 (x) =

{
A cos (−4πr + π) r̂, r ≤ Lc

4

0, otherwise
(35)

V0 (x) ≡ 0

With:

A = 0.04 [m]

r =

√(
x− Lc

2

)2

+

(
y − Lc

2

)2

+ z2

r̂ = sin θ cosφx̂ + sin θ sinφŷ + cosφẑ

θ = arctan

√(
x− Lc

2

)2
+
(
y − Lc

2

)2
z
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(a) t = 3 · 10−4 [sec]

(b) t = 6 · 10−4 [sec]

(c) t = 9 · 10−4 [sec]

(d) t = 1.2 · 10−3 [sec]

Figure 6: The solution of the full and hybrid problems at a number of time steps. Displacements in x
direction are shown at the top o� each sub-�gure, displacements in y direction are at the bottom. The left
part of each sub-�gure shows the solution to the hybrid problem and the right part to the full problem.
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Figure 7: Full 3D problem structure discussed in case 2.

φ = arctan
y − Lc

2

x− Lc
2

A snapshot of the initial conditions in XY plane is presented in Figure 9.

The initial displacements in z direction at the center of the cube x = y = Lc
2 are shown in Figure 10.

Figure 10: IC in z direction as a function of z at the center of the cube.

Figures 9, 10 emphasize the strong dependency of the initial conditions in all three coordinates, thus the
solution in the cubic domain is expected to be fully three-dimensional and cannot be approximated using
a 2D model. The solution in the thin plate, however, might be independent of the z coordinate far away
from the cubic domain due to its small thickness and smooth contact boundary conditions.

Case (2b) In this case the initial conditions are given by:

U0x (x) =

{
cos
(
nπ(x−l/2)

l

)
cos
(
nπ(y−l/2)

l

)
cos
(
nπz
2l

)
, x ∈ [0, l] , y ∈ [0, l] , z ∈ [−l, l]

0, otherwise
(36)
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(a) Side view.

(b) Top view.

(c) Trimetric view.

Figure 8: Full problem's grid, case 2. Black grid is the cubic structure and red grid is the thin plate.

U0y ≡ U0z ≡ 0

V0 (x) ≡ 0

Where the parameters n, l are chosen arbitrarily. Obviously, l ≤ Lc. The parameter l determines the volume
of the non-trivial initial conditions domain and n determines the number of cycles of the displacement �eld
(as it is periodic) in this domain. As n increases, the initial displacements are more oscillatory in the
non-trivial IC domain. Notice that for even values of n the initial displacements are not continuous on the
boundary of the non-trivial initial conditions domain.

For example, the initial displacements �eld for n = 0, 1, 2 and l = Lc/2 is presented in Figure 11.

In this case as well the solution in the cubic domain cannot be approximated as two dimensional.
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Figure 9: The initial conditions in case (2a).

4.2.2 Hybrid problem speci�cation

Because the plate is assumed to be much thinner than the cube and a smooth contact boundary condition
is enforced along the thin plate, the variation of the solution in the direction of z is expected to be small in
the thin plate. Therefore, let us approximate the model shown in Figure 7 by the model in Figure 12.

Figure 12: Hybrid problem model discussed in case 2.

The same geometric parameters as in the full problem are considered with interface location xB = 4. A
uniform mesh made of tri-linear cubic elements was used in the 3D sub-domain and a uniform squared
bi-linear elements mesh was used in the 2D sub-domain, both with a mesh parameter h = 0.025 [m]. It
is shown in Figure 13 for ε = 0.2 [m]. The hybrid mesh consists of 601,600 elements, 628,722 nodes and
1,825,740 degrees of freedom with ε = 0.25 [m], and 588,800 elements, 615,762 nodes and 1,787,184 degrees
of freedom for ε = 0.2. The same time-stepping and material properties as in the full problem are discussed.
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Figure 11: Initial displacements for n = 0, 1, 2 and l = Lc/2 (top to bottom).
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In both cases (2a) and (2b) the initial conditions are zero in the 2D sub-domain, thus the initial conditions
in the hybrid problem are the same as in Eq. 35, 36.

Full, ε = 0.2 [m] Hybrid, ε = 0.2 [m] Full, ε = 0.25 [m] Hybrid, ε = 0.25 [m]

Number of elements 768,000 588,800 832,000 601,600
Number of nodes 823,041 615,762 887,841 628,722
Number of DOF 2,384,640 1,787,184 2,579,040 1,825,740

Table 3: Comparison between full and hybrid grid's number of elements, nodes and degrees of freedom

Table 3 shows a saving of about 600,000-800,000 (depending on ε) degrees of freedom with the use of a
hybrid model.

(a) Side view.

(b) Top view.

(c) Trimetric view.

Figure 13: Hybrid problem's grid, case 2. Black grid is the cubic structure (3D), red grid is the 3D part of
the thin plate and green grid is the 2D sub-domain.
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4.2.3 Results

Case (2a) The magnitude of the displacements on plane XY at di�erent times is presented in Figure 14,
comparing between the full and the hybrid con�guraions. The interface of the hybrid model is marked by a
red line. Similar to case 1, the di�erence between the solution of the hybrid problem and the full problem
is hardly noticeable. However, recall that the full problem's solution in case 1 was inherently 2D, where in
this case it is not.

(a) t = 1.6 · 10−4 [sec] (b) t = 5.6 · 10−4 [sec]

(c) t = 1.67 · 10−3 [sec] (d) t = 2.53 · 10−3 [sec]

Figure 14: Magnitude of the displacements on plane XY at a number of time steps, hybrid and full problems
comparison, case (2a). The solution to the hybrid problem is shown at the top of each sub-�gure, and the
solution to the full problem at the bottom.

Case (2b) Snapshots of the solution at several time steps are shown in Figure 15. In the hybrid solution,
the interface plane is marked by a red line. The chosen initial conditions parameters are n = 1, l = Lc

2 .
Once again the hybrid solution follows the full solution with an unnoticeable error.
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(a) t = 3.8 · 10−4 [sec] (b) t = 7.5 · 10−4 [sec]

(c) t = 1.13 · 10−3 [sec] (d) t = 2 · 10−3 [sec]

Figure 15: Magnitude of the displacements on plane XY at a number of time steps, hybrid and full problems
comparison, case (2b). The solution to the hybrid problem is shown at the top of each sub-�gure, and the
solution to the full problem at the bottom.
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4.3 Error Analysis

The error analysis will be carried out for the non-trivial cases (2a),(2b). Speci�cally, we will examine the
variation of the error with the interface plane location xB and thickness of the plate ε in case (2a) and the
dependency of the error on the initial conditions parameters n, l in case (2b). It is expected to obtain that
the error drops as the interface gets farther away from the 3D sub-domain in the hybrid model in case (2a),
as the reference solution becomes less dependent on z with the distance along the thin plate. Additionally,
the solution is less 3D when the plate is thin, therefore we also expect the error to grow when discussing
thicker plates.

4.3.1 Variance Calculation

The variance of the displacements �eld u(x) at a constant x section in the thin plate is de�ned as:

var(x) =
1

A

1

T

∫ Lc

0

∫ ε

0

∫ T

0

|u(x, y, z, t)− ū(x, y, t)| dtdzdy

ū(x, y, t) =
1

ε

∫ ε

0

u(x, y, z, t)dz

ū(x, y, t) is the average of the solution with respect to z, A = Lcε is the cross section area of the plate,
T is the total simulation time. The variance provides a quantitative representation of the 3D nature of
the solution in a certain x section. If the variance is zero at a certain x value, it means that the solution
does not depend on z at all in that x section. As explained before, Panasenko's coupling method strongly
enforces that the solution on the interface plane is two-dimensional. The coupling error will be reduced if
the true solution is somewhat two-dimensional on the interface plane. Expanding the variance de�nition to
the �nite elements solution uh at a constant x = xi section results in:

var (xi) =
1

A

1

T

Ny∑
j=1

Nz∑
k=1

Nt∑
n=1

∣∣uh (xi, yj , zk, tn)− ūh (xi, yj , tn)
∣∣∆t∆z∆y (37)

where ūh is the average displacement in the z direction:

ūh(xi, yj , tn) =
1

ε

Nz∑
k=1

ūh(xi, yj , zk, tn)∆z

Ny is the number of nodes along y-axis direction at x = xi, Nz is the number of nodes along z-axis at
x = xi, Nt is the number of time steps. Since we consider a uniform mesh in all cases: ∆z = ∆y = h.

Case (2a) The variance of the full solution of case (2a) along the thin plate is presented in Figure 16
with two ε values. x̂ is the normalized distance along the plate, de�ned as x̂ = x−Lc

Lp
. At the vicinity of

the intersection between the thin plate and the cubic structure the solution is still three-dimensional, and
its dependency on z grows with the thickness of the plate. Thus the variance is larger for the thicker plate
when x̂ is small. For larger values of x̂ the variance is small in both cases as discussed previously.
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Figure 16: Variance of the full 3D solution of case (2a) for ε = 8h, 10h.

Case (2b) The variance of the 3D solution of case (2b) is shown in Figure 17 for the initial conditions
parameters: n = 2, 3, l/Lc = 0.25, 0.5, 0.75, 1. At higher values of x̂ it is clear that as the region of non-
trivial initial condition grows, the variance along the thin plate increases as well. For smaller x̂ the case
l/Lc = 0.5 does not follow this conclusion, but lower values of x̂ are usually not of interest since the coupling
error would be large if the interface plane x̂B would be placed there.

4.3.2 Error Calculation

Let us de�ne the error of the considered solution uh relative to the reference solution uref :

E1 =

∑
T

∑
Ncube

∣∣uh − uref
∣∣∑

T

∑
Ncube

|uref |

It is the summation of the norm
∣∣uh − uref

∣∣ at all time steps and at all nodes in the cubic structure,
normalized by the sum of the norm |uref | at the same time steps and nodes. The error is only calculated
at the cubic part of the domain, since it is of the most interest.

Case (2a) The error of the hybrid solution relative to the full 3D �nite elements solution of case (2a)
was calculated for the same values of ε as in Figure 16, and for several values of interface location xB . The
results are shown in Figure 18. Obviously, as the interface plane is placed farther away from x = Lc the
error decreases. It follows the conjecture written at the begining of section 4.3, and is consistent with Figure
16. The error is small when the interface is positioned at a plane where the variance is adequately small.
The error reaches a constant value at around x̂B = 0.15, it is the error associated with the coupling method
and cannot be minimized with optimizing the interface location. Since the error is calculated relatively
to the full 3D �nite elements solution, it consists of both the coupling and the dimension-reduction error,
but not the spatial and time discretizations caused by using a �nite element model and a �nite di�erences
time marching scheme. Thus, it better calri�es the expenses of using the hybrid model instead of a full 3D
model.

Remark: The computer program written for this report failed to solve the hybrid problem with plate
thickness ε = 12h, probably due to an error in the program and not because of a limitation of the hybrid
model.
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(a) Variance for n = 2.

(b) Variance for n = 3.

Figure 17: Variance of the full 3D solution for n = 2, 3 and several values of l, case (2b).
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Figure 18: E1 error of the hybrid solution, case (2a).

Case (2b) The E1 error of the hybrid solution for a several values of initial conditions parameters n, l/Lc
with plate thickness of ε = 10h is shown in Figure 19. The error is the highest for n = 3, and is the lowest
for n = 1. We would expect that as the wavelength of the initial displacements decreases (namely, n is
higher and the initial displacements oscillation is at a higher spatial frequency) the error would be larger
due to a rise is the three-dimensional nature of the problem. This is the case in the average sense, namely
there is a certain rise in the error as n increases, but it is not monotonic. Recall that the initial conditions
are only continuous for odd values of n (see Figure 11), and it might has an in�uence on the error.

Figure 17 implies (given that the interface is positioned far enough from the cubic structure) that the error
should grow with l/Lc, as the variance increases with l/Lc. It seems that the error decreases when l/Lc
increases (in the average sense), allegedly in contradiction to the results from Figure 17. However, notice
that the di�erences in the error with the variation of the initial conditions parameters are about 1.5%
at the most, where the di�erences in the error with the variation of the interface location is about 6%
for the considered plate width (ε = 10h). Moreover, if observing speci�cally the in�uence of l/Lc on the
error (taking a constant n), the di�erence is about 1% at the most, and is even about 0.5% in most cases.
Therefore, the dependency of the error on the initial condition parameters, especially the dependency on
l/Lc, might be too weak to deduce solid conclusions on the dependency of the error on these parameters.
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Figure 19: E1 error of the hybrid solution, case (2b).

5 Summary and Conclusions

Several cases were inspected in order to validate the hybrid �nite-elements solution against the full solution.
All resulted in the conclusion that if the interface plane is positioned well, the di�erence between the hybrid
and full problem's solutions is small.

Di�erent geometries, boundary conditions and initial conditions a�ect the three-dimensional nature of the
solution in many ways, making the hybrid model less or more accurate. Still, if there is a domain of low
dependecy on one of the coordinates, the use of a low-dimension model in that domain will reduce the
number of DOF in the entire model signi�cantly with a very small harm to the accuracy and no harm to
the resolution at all.

31


	Introduction
	Statement of the problem and solution scheme
	Full 3D problem
	The strong form
	The weak form
	Galerkin FE approximation
	The semi-discrete problem
	The element level

	Hybrid problem
	The strong form
	The weak form
	The semi-discrete problem and assembly of M,K

	Solution of the semi-discrete problem: Newmark family of time stepping methods

	Description of the Computer Program
	Numerical experiments
	Case 1: Plane stress problem
	Full problem specification
	Hybrid problem specification
	Results

	Case 2: General 3D problem
	Full 3D problem specification
	Hybrid problem specification
	Results

	Error Analysis
	Variance Calculation
	Error Calculation


	Summary and Conclusions

