
Shock-Fitting Computational Method for
the Inviscid Blunt-Body Problem

Research Project

Author: Iliya Milman
Advisor: Dr. Michael Karp

Flow Physics Lab, Faculty of Aerospace Engineering
Technion - Israel Institute of Technology

November 2023

Abstract

This study proposes an improved approach to simulate the supersonic blunt-
body problem using a time-dependent shock-fitting algorithm. This new method
overcomes previous challenges by utilizing boundary conditions with Riemann
variables for shock acceleration and a new coordinate system which enhances
the mesh at the outflow. The program provides accurate base flow for future
research on the stability of flows over blunt-bodies.

1 Introduction

The blunt-body in supersonic flow is an important problem in aerodynamics because
all high-speed vehicles have blunt noses to reduce aerodynamic heating. Such heating is
a crucial design factor for most high-speed vehicles and its prediction requires accurate
knowledge of the flow field around the body. To solve this problem numerically, a
time-dependent shock-fitting algorithm is employed. The algorithm treats the shock
wave as a boundary, with the flow behind the shock given analytically, using the
Rankine-Hugoniot shock relations. The unsteady Euler equations are then solved
until a steady state is obtained, allowing for the determination of the shock shape
and the flow field between the shock and the body. This study builds upon Research
Project 1 (Ref. [1]), in which the blunt-body problem was solved using the approach
outlined by Anderson [2]. However, the results were unsatisfactory for several reasons,
such as oscillations near the outflow boundary, limited flow field in the axisymmetric
case, and sub-optimal mesh at the outflow boundary. To address these issues, a new
and improved approach based on the method proposed by Salas [3] is utilized in the
current work.

1



Notations

a Speed of sound
p Pressure
ρ Density
s Entropy
Θ Temperature
t Time
u Radial velocity component
v Angular velocity component
r Radial coordinate
c Shock radial coordinate
b Body radial coordinate
θ Angular coordinate
γ Heat capacity ratio
fx subscript implies partial derivation by x
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Fig. 1: The Blunt Body Problem

2 The Blunt-Body Problem

Consider the steady flow over a blunt-body moving at supersonic speed. A schematic
sketch of the problem is shown in Figure 1. The shock wave in front of this body is
detached and curved. The incoming flow undergoes through variable shock angles,
ranging from a normal shock wave at the nose tip and approaching a weak Mach
wave away from the tip. The region between the shock and the body is called the
shock layer, and it contains both subsonic and supersonic flows, divided by sonic
lines. Behind the normal, and nearly normal, portions of the shock wave, the flow is
subsonic which is mathematically elliptic, whereas behind the more oblique portion
of the shock wave the flow is supersonic which is mathematically hyperbolic.

3 The Governing Equations

In order to solve the inviscid problem, it is necessary to use the Euler equations
in the appropriate form. The first step is to non-dimensionalize the equations by
normalizing the flow variables with respect to their freestream values, as detailed in
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appendix A. In addition, instead of using in-plane Cartesian coordinates as in our
previous work [1], we switch to in-plane cylindrical coordinates to facilitate simulation
of a larger portion of the outflow boundary. The governing equations, when one
dimension is reduced, are written in cylindrical and spherical coordinate systems, for
two-dimensional (2D) and axisymmetric flows, respectively. Since only the flow at
the high-pressure side of the shock is solved, the flow is isentropic, thus, the energy
equation can be replaced by an entropy convection equation. As a result of these
modifications, the Euler equations take the following form

ρ

(
ut + uur +

v

r
uθ −

v2

r

)
= −pr,

ρ
(
vt + uvr +

v

r
vθ +

vu

r

)
= −pθ,

ρt + ρur + uρr +
ρ

r
vθ +

v

r
ρθ + k = 0,

st + usr +
v

r
sθ = 0,

(1)

where

k =

u
r cylindrical (2D)
2u+v cot θ

r spherical (axisymmetric).
(2)

Introducing the variable P = ln p the equations can be written as
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v2

r
+ΘPr
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r
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)
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v

r
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(
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vθ
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+ k
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st = −
(
usr +

v

r
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)
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(3)

3.1 Coordinate Transformation

To transform the governing equations from the physical domain (t, r, θ) to the com-
putational domain (T,Z, Y ), the following transformation is defined

T = t,

Z =
r − b(θ)

c(t, θ)− b(θ)
,

Y = π − θ.

(4)

In (4) the function b(θ) is the body radial coordinate and it is stationary, and
c(t, θ) is the shock radial coordinate which is time dependent. The component of the
bow shock velocity along a radial line is indicated by w.
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For this transformation, the derivatives of an arbitrary function f(t, r, θ) are
transformed to

∂f

∂t
=

∂f

∂T
+ Zt

∂f

∂Z
,

∂f

∂r
= Zr

∂f

∂Z
,

∂f

∂θ
= Zθ

∂f

∂Z
+ Yθ

∂f

∂Y
.

(5)

Applying the transformation to the governing equations

uT = −
(
UuZ + V uY − v2

r
+ΘZrPr

)
,

vT = −
(
UvZ + V vY +

vu

r
+

Θ

r
(ZθPZ + YθPY )

)
,

PT = −
(
UPZ + V PY + γ

(
ZruZ +

Zθ

r
vZ +

Yθ
r
vY + k

))
,

sT = − (UsZ + V sY ) ,

(6)

where the contravariant velocity components are defined by

U = Zt + uZr +
v

r
Zθ,

V =
v

r
Yθ,

(7)

and the transformation metrics are given by

Zt =
−Zw

c− b
,

Zr =
1

c− b
,

Zθ =
Z(bθ − cθ)− bθ

c− b
,

Yθ = −1.

(8)

The transformation from the physical plane to the computational plane is depicted
in Figure 2. Specifically, the symmetry line is mapped onto the line Y = 0, while
the bow shock is mapped onto the line Z = 1. Additionally, the outflow boundary is
mapped onto the line Y = θmax, and the wall is mapped onto the line Z = 0.

4 Numerical Methods

Several possible explicit integration schemes exist. Among them is the Lax-Wendroff
scheme, which was utilized by Moretti and Abbett when this problem was first
solved [4]. Another option is the MacCormack predictor-corrector scheme, which
became very popular later. Additionally, the lambda scheme can also be applied to
this particular problem. Herein, MacCormack’s scheme is used due to of its simplicity.
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Fig. 2: The physical and computational grids

4.1 MacCormack’s Scheme

The MacCormack scheme is applied to the above equations in two steps, starting
with a predictor step and followed by a corrector step. These steps are applied to the
solution variables u, v, s, P , w, c, ηr and ηθ.

First, a predicted value of an arbitrary variable, A, is calculated from the first
two terms of a Taylor series expansion

A
t+∆t
i,j = At

i,j +

(
∂A

∂t

)t

i,j

∆t. (9)

The calculation of (∂A/∂t)t involves the use of forward differences for the spatial
derivatives.

Next, as a corrector step, the value of the time derivative is calculated by inserting
the predicted values and using backward differences for the spatial derivatives

(
∂A

∂t

)t+∆t

i,j

. (10)

The final value of the variable is calculated by averaging the derivatives obtained
from the previous predicted and corrected values

At+∆t
i,j =

1

2

[(
∂A

∂t

)t

i,j

+

(
∂A

∂t

)t+∆t

i,j

]
. (11)
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After enough steps, i.e. for large times, a steady state will be approached, at
which At+∆t

i,j ≈ At
i,j .

Regarding the numerical accuracy of this method, which uses forward and back-
ward differences on the predictor and corrector steps, the combination of the two
steps results in a second-order accurate technique in space.

For a time-marching approach, the value of ∆t must be addressed. The finite-
difference method used here is an explicit method, and therefore ∆t is subject to
a stability criterion. The stability criterion is a version of the Courant–Friedrichs–
Lewy (CFL) criterion, which governs the stability of explicit methods dealing with
hyperbolic equations [5],

∆t < K

[
min

(
∆r

u+ a
,

∆θ

v + a

)]
, (12)

where ∆r and ∆θ the are the distances between adjacent grid points in the r and θ

directions, and a is the nondimensional local speed of sound, given by a =
√
γΘ.

The CFL criterion is derived based on an assumption of linearity. Therefore, for
the nonlinear Euler equations a prefactor K is added, which is smaller than 1. In the
current study a value of K = 0.8 is used.

4.2 Initial Conditions

The task of defining initial conditions for the blunt body problem can be challenging
as it requires devising a suitable shape for the bow shock and assigning appropriate
initial values to the flow variables within the shock layer. Salas [3] notes that the
program is not very sensitive to the initial shape of the shock wave, and a parabolic
profile was used to approximate the bow shock reasonably. However, our findings
suggest the opposite, and we found that the program is indeed sensitive to the initial
shock wave shape.

It is worth noting that Salas examined flows over relatively small portions of
blunt bodies in his book, whereas in our work various types of bodies with different
lengths are analyzed. Our research indicated that for small bodies, the program is
not sensitive to the shape of the initial shock wave in accordance with the findings
of Salas. However, for larger bodies, the initial shock wave shape has a significant
influence on the program’s performance.

Nevertheless, after conducting numerous runs of program for various body shapes
and Mach numbers, we found that the parabolic profile was suboptimal. The best-
suited initial shape, particularly for large bodies, where the program becomes highly
sensitive to the initial shock, is the hyperbolic shock. This shape provides a good
approximation away from the body, where the curved shock wave gradually becomes
a Mach wave. Therefore, the following initial shape is used for the bow shock in the
blunt body problem
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c0(x) =

√
(x+ δ)2 − d2

m
, (13)

where δ and m are two free parameters addressed below and d is an offset parameter
which is taken from the body. For a convenience and simplicity, the initial body shape
is provided in a standard Cartesian coordinate system (x, y) and then transformed
into the working (r, θ) coordinate system.

The two free parameters are used to tune the bow shock shape. The parameter
δ determines the shock detachment distance, while m controls the shock curvature.
Both of these parameters require manual adjustment. It is worth noting that for
small bodies, these parameters may have a single value that covers the entire range
of Mach numbers. However, for larger bodies, these parameters need to be readjusted
for each variation in order to get a solution.

By approximating the bow shock shape using equation (13), the flow field on the
high pressure side of the shock can be determined by applying the Rankine-Hugoniot
conditions. The stagnation conditions at the nose of the blunt body are precisely
known, as the streamline that touches the body coincides with the streamline on the
symmetry line. With the modified Newtonian pressure distribution and no penetration
condition, the flow field on the body can be defined using these known stagnation
conditions. The remaining part of the shock layer is initialized by linearly interpolating
the flow variables between the bow shock and the body along lines of constant Y .

4.3 Wall Computation

At the wall, a fixed frame of reference is taken (η, τ) whose axes are normal and
tangent to the wall at the point of interest. Let η̂ be the unit normal pointing to the
wall, such that

η̂ = ηrr̂ + ηθθ̂,

τ̂ = ηθr̂ − ηrθ̂,
(14)

where

ηr =
−1√

1 +
(
cθ
c

)2 ,
ηθ =

cθ
c√

1 +
(
cθ
c

)2 ,
(15)

and cθ is the derivative of the shock shape, c, in the θ direction.
Let ũ, ṽ be the velocity components in the η, τ directions, respectively. The

boundary condition at the wall is ũ = 0, which implies that ũT = 0. Combining
the two momentum equations in (6) into a momentum equation in the tangential
direction at the wall we are left with
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ṽT = −
(
V ṽY +

Θ

r
YθPY ηr

)
,

PT = −
(
V PY + γ

(
ZrũZ
ηr

+
YθvY
r

+ k

))
,

sT = −V sY ,

(16)

and
vT = −ṽT ηr,

uT = ṽT ηθ.
(17)

Equations (16) and (17) are integrated using MacCormack’s scheme, which is
employed for the rest of the field.

4.4 Shock Computation

The Rankine-Hugoniot equations are used to determine all the flow variables at
the shock boundary, but for the calculation of the shock velocity at the next step
its derivative, i.e. the shock acceleration, wT , is required. Fortunately, by utilizing
the method of characteristics, it is possible to obtain an equation for wT . On the
characteristic cones λ+, λ− information is propagated, and a combination of flow
variables remains constant. This information is encapsulated in the following Riemann
invariants

R =
2a

γ − 1
+ u on λ+,

Q =
2a

γ − 1
− u on λ−.

(18)

The information carried on the high-pressure side of the shock is in the λ− direction.
Then the appropriate Riemann invariant to use is

Q2 =
2a2
γ − 1

− ũ2, (19)

where the subscript 2 denotes values on the high-pressure side of the shock. Here,
ũ = (ur̂ + vθ̂) · η̂, and the shock acceleration can be determined by relating Q2 to
M1,rel using the Rankine-Hugoniot jump, where M1,rel denotes the relative Mach
number, signifying the Mach number utilized in Rankine-Hugoniot relations. It differs
from the freestream Mach number since the shock wave is moving.

The Rankine-Hugoniot relations in terms of the relative Mach number are
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p2
p1

=
2γM2

1,rel − (γ − 1)

γ + 1
,

ρ2
ρ1

=
(γ + 1)M2

1,rel

(γ − 1)M2
1,rel + 2

,

M2
2,rel =

(γ − 1)M2
1,rel + 2

2γM2
1,rel − (γ − 1)

,

(20)

where

Mi,rel =
ũi − w̃

ai
, i = 1, 2. (21)

The velocity of the shock along the normal direction is denoted by w̃, whereas
in the code the shock moves in the radial direction with velocity w. Therefore, the
suitable conversion between the two is

w̃ = wηr. (22)

The speed of sound on the high pressure side, a2, is obtained from the first and second
equations in (20), whereas ũ2 is provided by the third equation.

a2 =

√
γp2
ρ2

,

ũ2 =

√√√√γp2
ρ2

(
(γ − 1)M2

1,rel + 2

2γM2
1,rel − (γ − 1)

)
+ ũ1 − a1M1,rel.

(23)

The above equation is formulated using the variables denoted by the subscript 1,
with the aim of establishing a connection between Q2 and the pre-shock variables.
Ultimately, this connection between Q2 and M1,rel is established by substituting the
first and second expressions from (23) into (19) and simplifying.

γ + 1

2a1
(Q2 − ũ1) = g(M1,rel),

g(M1,rel) =

√√√√(2γM2
1,rel − (γ − 1)

)(
(γ − 1)M2

1,rel + 2
)

(γ − 1)2M2
1,rel

−
1 + γM2

1,rel

M1,rel
.

(24)

The equation for the shock acceleration can be obtained by differentiating equation (24)
with respect to T ,

gT =
γ + 1

2a1
(Q2,T − ũ1,T ) , (25)

The function g is differentiated by the chain rule with g′ = ∂g/∂M1,rel

gT = g′ ·M1,rel,T = g′ ·
ũ1,T − wT ηr − wηr,T

a1
=

γ + 1

2a1
(Q2,T − ũ1,T ) , (26)
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where

ηr,T =
−
(
wY + w cθ

c

)√
1 +

(
cθ
c

) 3
2

,

ηθ,T =
−
(
wY + w cθ

c

)
cθ
c√

1 +
(
cθ
c

) 3
2

.

(27)

It should be noted that the computation of ηr,T and ηθ,T involves the addition of
two small quantities, wY and wcθ/c, which become zero in the steady state. However,
this computation may suffer from odd-even oscillations that can be mitigated by
employing a weighted average of ηr,T and ηθ,T .

Finally, the shock acceleration is given by

wT =
1

ηr

((
1 +

γ + 1

2g′

)
ũ1,T − γ + 1

2g′
Q2,T − wηr,T

)
. (28)

In order to evaluate Q2,T , it is expressed in terms of primitive variables

a2,T =
γ − 1

2γ
a1

(
PT +

sT
γ − 1

)
,

ũ2,T = uT ηr + uηr,T + vT ηθ + vηθ,T ,

(29)

Q2,T =
a1 ((γ − 1)PT + sT )

γ(γ − 1)
− ũ2,T (30)

The internal predictor-corrector algorithm can be used to obtain the time derivatives
of the primitive variables (PT , sT , uT , vT ), which can then be used to evaluate Q2,T .

The flow chart of the code is given in appendix B.

5 Results

5.1 Blunt Body Program

The shape and position of the shock wave for different blunt bodies and freestream
Mach numbers (3, 5, 7, and 12) is shown in figures 3, 4, 5 and 6, based on the analysis
presented in our previous report [1]. The calculations were performed using a 40x80
grid points for a calorically perfect gas with a specific heat ratio of 1.4. Similarly to
the initial shock shape, the blunt body shapes are given in the standard Cartesian
coordinate system (x, y). The offset is defined as the distance between the tip of the
body and the origin.

Body Equation Offset

Parabolic yb =
√
2x+ 4 4

Cubic yb =
3
√
2x+ 4 4

Hyperbolic yb =

√
(x+4)2−4

2 4

Elliptic yb =
√

4−x2

2 3
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Fig. 3: Parabolic body; (left) plane flow (right) axisymmetric flow

Fig. 4: Cubic body; (left) plane flow (right) axisymmetric flow
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Fig. 5: Hyperbolic body; (left) plane flow (right) axisymmetric flow

Fig. 6: Elliptic body; (left) plane flow (right) axisymmetric flow
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Figures 3, 4, 5 and 6 demonstrate the effectiveness of the blunt body program
in producing accurate and efficient results for a wide range of Mach numbers and
various types of blunt bodies in both plane and axisymmetric flows. The figures depict
the bow shock shape and how it changes in response to the geometry of the blunt
body and the Mach number of the freestream flow. The comprehensive visualization
offered by the figures provides a valuable tool for analyzing the physical behavior of
blunt body flows. For a more detailed analysis of the physical phenomena involved in
the blunt body problem, readers are referred to our previous work (Ref. [1]).

5.2 Grid Convergence

Figures 7 and 8 investigate the spatial convergence of the solution by plotting two
parameters, namely the shock detachment distance δ and stagnation pressure p0,
against a grid parameter mr, which represents the number of points in the radial
direction, while the number of points in the theta direction is always double. The
computation was performed for a plane flow over a parabolic body at a freestream
Mach number of 4. It is evident that accurate results can be obtained with a relatively
small number of points.

Fig. 7: Normalized stagnation pressure versus the number of points in the radial
direction (mθ = 2mr)
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Fig. 8: Shock detachment distance versus the number of points in the radial direction
(mθ = 2mr)

6 Summary

The focus of this study is on improving the accuracy and efficiency of simulations
for the supersonic blunt-body problem. Our previous work has faced challenges such
as oscillations near the outflow boundary and limited flow field in the axisymmetric
scenario. In this study, a new approach is proposed to overcome these issues by
implementing boundary conditions that include utilization of Riemann variables to
obtain the shock acceleration. Additionally, a new coordinate system is introduced
which enhances the mesh at the outflow, enabling us to solve for a variety of blunt body
shapes at different speeds and flow conditions using a relatively coarse computational
mesh. The significance of our program lies in its ability to provide an accurate base
flow for the study of the stability properties of the blunt body flow, which is a critical
aspect for future research.
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Appendices

A Nondimensionalization

The pressure, density and temperature are nondimensionalized by their freestream val-
ues p∞, ρ∞, Θ∞. The velocity is normalized by

√
p∞/ρ∞, which gives the freestream

speed of sound a∞ =
√
γ and freestream velocity u∞ = M∞

√
γ.

The equation of state becomes

p = ρΘ. (31)

The entropy is normalized by cv, therefore

s = γ lnΘ− (γ − 1) ln p, (32)

and the Crocco theorem in dimensionless quantities is

ω × u =
Θ∇s

γ − 1
. (33)
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B Flowchart of the code

Main integration loop

Main.m
Gets all inputs

Reached last iteration?

initialize_variables.m
Initialize all variables 

initialize_field.m
Initialize the flow field with the initial guess 

integrate_mac_riemann.m
Predictor step using Riemann variable for shock acceleration  (teq = 1)

geometry.m
Generate the body geometry

plot_intital.m
Plots initial flow field

calculate_small_quantity.m
Calculate the small quantity using weighted averages 

calc_sigma.m
Calculate shock slope - dc_dtheta

plots.m
Plots results

save_data.m
Saves data

shock_shape.m
Generate the shock shape

animation.m
Plots current flow field

integrate_mac_riemann.m
Corrector step using Riemann variable for shock acceleration  (teq = 2)

yes

calculate_small_quantity.m
Calculate the small quantity using weighted averages 

calc_sigma.m
Calculate shock slope - dc_dtheta

no

Fig. 9: Flowchart of the code
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