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Abstract

Wind modelling is relevant to many fields, such as aircraft performance, wind energy, fatigue
loads and others. Wind is a stochastic process that is effected by many factors such as season,
geographic and meteorologic conditions, topography and the list goes on and on. Hence, wind has
a wide range of behaviors and can be analyzed and modelled in many ways. The main goal of
our research is to model wind in different scales, starting with a long-scale model that will provide
one value per hour, and proceeding to a short-scale model that will use this value as a mean. The
latter will model such phenomena as gusts, turbulence and dust devils. The shorter scale models
will be more useful for aircraft in a context of landings, takeoffs and maneuvers.
In this project we will focus on the long scale model, which will eventually produce hourly values
of wind speed and direction. This model can be useful for estimating wind energy production
from wind turbines, or a wise design of runways for aircraft, since the performances of aircraft in
takeoffs and landings is highly effected by the relative wind speed. For example, takeoffs are more
effective when there is headwind, since this increases the airspeed and, hence, the lift. The typical
wind behavior in the airport area is a crucial factor.
The wind magnitude and direction will be treated separately. The wind magnitude will be mod-
elled using a method based on stochastic differential equations (SDEs). The resulting model will
be able to produce stochastic processes with a given probability distribution, for both magnitude
and direction. The model of the wind magnitude will also show an exponentially decaying auto-
correlation (and autocorrelation coefficient).
Wind speed is usually modelled by non-Gaussian distributions. For instance, The Weibull dis-
tribution is a popular probability distribution used to model wind speeds, since it has shown a
good fit to observed wind speed data in many locations around the world in a time scale of hours.
Therefore, this distribution particularly will be used.
The direction of the wind will be modelled using a mixture of Von Mises distributions, which is the
circular analogue of the normal distribution. This was chosen due to the flexibility of the model
that can represent many different wind regimes. Real world data from a meteorological station in
New Zealand Wellington, that is taken from the national climate database in [1], will be analyzed,
and the model will be examined according to this data. A comparison between the statistical
properties of the data and the stochastic process generated by the model is also provided.
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1 Introduction

In this work we take from literature two known wind models - one for the wind magnitude and one
for wind direction, and we will examine the two models separately so that each variable has its own
known pdf.

For the magnitude of the wind: We will use a systematic method to build a wind speed model
based on stochastic differential equations. This model is taken from [3] and produces a stochastic pro-
cess with a desired probability distribution (such as Weibull, Beta, Gamma, etc), and an exponentially
decaying autocorrelation function. Exponentially decaying autocorrelations are very common in con-
text of wind modelling, both for hourly wind speed measurements in the time frame of hours [5], and
for wind speed measurements on a 1-s basis in the time frame of minutes [7]. In many wind regimes,
as time goes by, the effect of former states is weakening. Recent values have a stronger influence on
the future values compared to previous values. This statement is valid usually in a time frame of few
hours, and outside this range, non-stationary phenomena related to seasonal effects can be observed,
as was explained in [5]. The model strives to reproduce an exponential autocorrelation, however does
not guarantee this due to reasons reviewed in Section 2. We must note that the autocorrelation behav-
ior of wind can vary depending on the location, time frame, and atmospheric conditions. Therefore,
the validity of the proposed model is limited to cases for which the autocorrelation is approximately
decaying exponentially.
From a statistical point of view, the wind speed is characterized by its probability distribution and
autocorrelation, hence the wind speed model should be able to reproduce these defined characteristics.
There are probability distributions that are most frequently used in the literature in context of wind
modelling, and the most common one - Weibull, will be used in this research. In [3] the approach is to
transform Ornstein–Uhlenbeck (OU) process to stochastic processes with various distributions using
a memoryless transformation. In [21] only the Weibull distribution is used due to its commonness in
wind statistical modelling, and a decent fit to the data is shown. The model exhibited in these two
articles will be used here. It is important to note that transformation of the OU process is not the only
way to model wind in an hourly scale described in the literature. In [22] an SDE based wind model is
constructed from different probability distributions by customizing the drift and the diffusion terms of
the SDE, using regression theory. This model also assures an exponentially decaying autocorrelation.

For the wind direction: We will use a directional model given in [8], comprised of a finite mixture
of von Mises (vM-pdf) distributions. The von Mises distribution, also known as the circular normal
distribution, is a continuous probability distribution on the circle, and is commonly used for direc-
tional statistics. In [8] the model is used for directional data of wind, from two different stations in the
Canarian Archipelago. As the directional wind speed in this location has a seasonal behaviour, the
proposed model was applied for two monthly intervals: winter and autumn months (January–March
and October–December), and spring and summer months (April–September). The same model was
applied in [9], as four different stations were selected, which are representative of the most complex
wind speed and direction distributions in the Canary Islands. In this article there was no separation
to seasons. Both articles showed valid estimations for different wind regimes, proving the flexibility
of the proposed model. Important to note that in [9], a joint probability density function of wind
speed and direction was used, as the wind direction and speed can be modelled as either independent
or dependent variables. However, the model produced slightly better results when the variables were
treated as dependent. In [9] and [8] the parameters of the mVM (multiple Von Mises) pdf were es-
timated using the Least Squares and Maximum Likelihood methods. In this project the Maximum
Likelihood method will be adopted. This algorithm is the key to adjust a distribution of VM functions
to a variety of real wind distributions.
In [17] the isotropic model is suggested. The isotropic Gaussian model is derived from the following
assumptions: (1) the wind speed component along the prevailing wind direction is normally distributed
with non-zero mean and a given variance; (2) the orthogonal wind speed component is independent
and normally distributed with zero mean and the same variance. A joint density function of wind
speed and direction can be obtained from polar coordinate transformation, and a distribution of the
direction alone can be computed by integrating over the speed.
In [20] the anisotropic Gaussian model is proposed, it uses the same hypotheses as the isotropic model,
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but the two variances do not have to be the same.
In [9] the suggested model, based on von Mises distributions, is compared to the isotropic and
anisotropic models. The proposed VM model provided better fits to the real world data in all analysed
cases. Hence the model given in [9] will be used.

Project Organization: One section is dedicated to each variable - the wind speed magnitude, and
the wind speed direction. Next, a combination of the two is considered, in order to create a wind field
in space.

2 Wind Speed

2.1 The Ornstein–Uhlenbeck process

The governing SDE is:
dX(t) = a(X(t), t) · dt+ b(X(t), t) · dW (t)

X(0) = X0

(1)

where X(t) is the variable at time t; X0 is a deterministic value or a random value; W (t) is the Wiener
process at time t and it is used to represent the integral of a white Gaussian noise; dW (t) ∼ N(0, dt) is
the random increment of the Wiener process; a(x(t), t) is the drift term; b(x(t), t) is the diffusion term.
The drift term is the deterministic part of the system and directly determines the expectation. The
diffusion term characterizes the variance of X(t), and determines the noise intensity in the system.
This kind of equation can be viewed as an ordinary differential equation where an additional term is
included to model the stochastic dynamical behavior related to variable X(t).
Despite the fact that the differential formulation is widely used in the literature, since Wiener process
is nowhere differentiable, in a strictly mathematical sense, Eq.1 is not fully correct. The truly correct
form of the equation is the integral form:

X(t)−X0 =

∫ t

0

a(X(t), t) · dt+
∫ t

0

b(X(t), t) · dW (t), t ∈ [0, T ] (2)

The first integral is an ordinary Riemann-Stieltjes integral, and the second one is a stochastic Ito’s
integral. Nevertheless, in this project we will be using the heuristic differential form of the SDE.
For stationary processes:

a(X(t), t) = a(X(t))

b(X(t), t) = b(X(t))
(3)

We will use a specific form of the SDE where a(X(t), t) = −α · (X(t)− µ) and b(X(t), t) = b:

dX(t) = −α · (X(t)− µ)dt+ b · dW (t), t ∈ [0, T ] (4)

The initial condition of X is:

X(0) ∼ N(µ,
b2

2α
) (5)

The resulting process X(t) is the Ornstein–Uhlenbeck process and it has the following properties:

E[X(t)] = E[X0]e
−αt + µ · (1− e−αt) (6)

V ar[X(t)] =
b2

2α
(1− e−2αt) + V ar[X0] · e−2αt (7)

RXX [t1, t2] =
b2

2α

(
e−α·|t1−t2| − e−α(t1+t2)

)
+ V ar[X0] · e−α(t1+t2), ∀ t1, t2 ∈ [0, T ] (8)

For simplicity, the Ornstein-Uhlenbeck process is adapted to a standard Normal distribution, so µ = 0,
and b =

√
2α. When assuming X0 ∼ N(0, 1):

E[X(t)] = µ = 0 (9)

V ar[X(t)] =
b2

2α
= 1 (10)

RXX [τ ] =
b2

2α
e−α·τ = e−αt (11)
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In this case, the first moment does not vary with respect to time and the autocorrelation only depends
on τ , so the process is wide sense stationary. Moreover, since X(t) is a Gaussian process, the process
becomes strict sense stationary. It is important to note that the process is also Markov, meaning that
the future value is independent of its past history, and depends only on the current value.
For obtaining a process that is distributed differently it is required to apply a memoryless transforma-
tion on the OU process.

2.2 Memoryless transformation

As mentioned previously, the two-parameter Weibull distribution has shown a good fit to the wind
empirical distributions in many locations around the world for long time scales, and is the most
frequent choice for representation of wind speed data for wind energy calculation purposes. However,
there are other non-Gaussian distributions that are commonly used for wind models, such as Rayleigh,
Beta, Gamma, Nakagami and so on. These distributions can be utilized by applying a memoryless
transformation.
For a Gaussian process X(t), the transformation is:

Y (t) = g[X(t)] = F−1[ϕ[X(t)]] (12)

where ϕ is the standard Gaussian cumulative distribution function, and F is the non-Gaussian con-
tinuous cumulative distribution function. The excepted stochastic process Y (t) will have the desired
distribution F . This transformation is said to be memoryless since the value of the new process Y (t)
at an arbitrary t depends only on the value of X(t) at t. It is known that since X(t) is a Gaussian
process, Y (t) will be Gaussian only if the transformation is linear. So we will receive a non-Gaussian
distribution only if the transformation is non-linear. Additionally, Y (t) is stationary and Markov, since
X(t) is stationary and Markov and since the transformation is memoryless.
If the OU process is not standard normal, it is necessary to normalize it to obtain the standard process:

Y (t) = g[X(t)] = F−1

[
ϕ

[
X(t)− µ

b√
2α

]]
(13)

where ϕ, the standard Gaussian cumulative distribution function, is:

ϕ

[
X − E[X]√

V ar[X]

]
=

1

2

(
1 + erf

[
X − E[X]√
2V ar[X]

])
(14)

If X is standard normal, then:

ϕ [X] =
1

2

(
1 + erf

[
X√
2

])
(15)

where erf , the error function, is defined as:

erf(x) =
2√
π

∫ x

0

e−t2dt (16)

In this project we will use the Weibull distribution as the distribution of the wind model, while
keeping in mind that the model is versatile and enables the use of other distributions. For the Weibull
distribution F is computed as follows:

FWeibull(u) = 1− exp

[(u
λ

)k]
, ∀u > 0 (17)

where λ > 0 and k > 0 are the scale and shape parameters, respectively. The resulting process Y ,
obtained by applying the transformation, is a Weibull distributed stochastic process. The statistical
properties of Y (t) are:

E [Y (t)] = µw = λ · Γ
[
1 +

1

k

]
(18)

V ar[Y (t)] = σ2
w = λ2 · Γ

[
1 +

2

k

]
− µ2

w (19)

ρY Y (ti, tj) ≈ ρXX(ti, tj) = RXX(ti, tj) = e−α|tj−ti| (20)
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where Γ is the Gamma function and is defined as follows:

Γ(x) =

∫ ∞

0

e−ttx−1dt (21)

Eq.20 states that the autocorrelation coefficient of Y (t) is approximately same as the autocorrela-
tion coefficient of the Ornstein-Uhlenbeck process. This result has been determined empirically by
analyzing a number of realizations. The goodness of this appoximation depends on the parameters
of the Weibull distribution, as discussed in Section 2.3. Important to note that this is not true for
the autocorrelation itself because of the difference in the definition. For a stationary process X, the
definition of autocorrelation function between times t and t+ τ is

RXX = E[XtXt+τ ] (22)

And the autocorrelation coefficient is:

ρXX =
E[(Xt − µ)(Xt+τ − µ)]

σ2
(23)

For OU process the two terms are identical because µ = 0 and σ2 = 1. For the Weibull process it is
not the case (µ ̸= 0 and σ2 ̸= 1), so there is a significant difference between the autocorrelation and
autocorrelation coefficient.
It is worth noting that in [3], five other distributions were tested in addition to Weibull: Three
Parameter Beta, Four-parameter generalized Gamma, Log-Pearson 3, Nakagami, and One-parameter
Rayleigh. The autocorrelation coefficients of all six generated processes were exponentially decaying,
as in Eq.20. Therefore, this approximation is also correct for other kinds of PDFs. Parameters λ and
k are directly taken from the Weibull fit of the wind speed data, while α can be easily computed from
the exponential fit to the autocorrelation coefficient of the wind speed data.

2.3 Numerical Results

Firstly, in order to produce the OU process, a numerical integration must be applied. This will be
done using Milstein integration. The Milstein approximation to the true solution X is the Markov
chain defined as follows:

Xi+1 = Xi + a[Xi] ·∆t+ b[Xi]∆Wi +
1

2
b[Xi]

∂b

∂x
[Xi]((∆Wi)

2 −∆t) (24)

However, in our case b =
√
2α and does not depend on X, hence:

Xi+1 = Xi − α ·Xi ·∆t+
√
2α ·∆Wi (25)

where ∆t is the integration step, and ∆Wi ∼ N(0,∆t)
Secondly, the transformation is applied for X, where the inverse cumulative distribution is known from
Eq.17 and equals to:

F−1
w = λ · [−ln(1− u)]

1
k (26)

In order to extract specific constants we will deal with wind data that has been used in [21]. This data
was measured in Baring head, New Zealand (latitude 41°25’ south, longitude 174°52’ east), during the
whole year of 2014. Each element of the data is an hourly mean wind speed: 8760 elements in total.
The decision to use such a long time period stems from the assumption that the process is ergodic,
meaning that the statistical properties of the process observed over a long time period (time average)
will be similar to the statistical properties of the process observed across many different samples of
the process (ensemble average).
In Fig. 1 a histogram of the data PDF is exhibited with the Weibull fit. The Weibull distribution
describes the data set well, mainly in the higher speeds range. There are deviations due to the random-
ness of the data, and the quantity of values may not be big enough to observe a better fit. However,
due to the general similarities to the Weibull distribution (the right tail that characterizes the Weibull
distribution), and due to its simplicity, we will continue with this distribution.
The autocorrelation coefficient of the data with an Exponential fit is shown in Fig. 2. The autocor-
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Figure 1: Data histogram and the Weibull PDF fit

Figure 2: Data-driven autocorrelation coefficient and the exponential fit

relation coefficient was taken for future comparison to the generated process Y (as was introduced in
Eq.20). The autocorrelation coefficient of the given data is decaying, however fluctuates around zero
after 50 hours lag. The periodicity after 50 hours is a usual phenomena, caused by prevailing regional
wind patterns and systematic recurrence of local wind regimes. For expanded explanations in the
matter see [5]. Therefore, the exponentially decaying approximation is acceptable for the considered
location only for time frame of approximately 50 hours. The exponent coefficient of the fit is −0.07142.
We will difine this coefficient to be the parameter α of the SDE.
Overall, the parameters of the fits are:

α = 0.07142

λ = 11.0792

k = 1.96744

(27)
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λ and k are from the Weibull fit, and α is from the exponential fit. These parameters will be used
for generating the wind trajectories based on the suggested model. A few simulated wind trajectories
based on the extracted parameters can be observed in Fig. 3. The statistical properties of the process

Figure 3: Four wind speed trajectories generated by the model

generated by the model will be obtained on the basis of 1000 realizations. The mean and standard
deviation of the fitted Weibull distribution are:

µ = 9.822

σ = 5.2106
(28)

In comparison to the data:
µdata = 9.8623

σdata = 5.1267
(29)

By applying ensemble average on 1000 realizations, we can find the mean and the standard deviation of
the generated stochastic process, as shown in Fig. 4. As expected, there is a match between the mean
and standard deviation of the model to the properties of the Weibull fit. The statistical properties
match from the very beginning of the time axis, because the process is stationary from t = 0 due to
our choice of the initial condition as a standard normal variable. Important no note that the process
is ergodic, meaning that we can also find the mean and standard deviation from time average if we
simulate one realization for long enough time, as shown in Fig. 5. The mean and standard deviation
converge with time to the statistical mean and standard deviation, as expected.
As was done for the mean and standard deviation, we will find the autocorrelation coefficient using
ensemble average and time average. It will be computed from t = 0 since the process is stationary. If
the initial value X0 were deterministic, the process would not be stationary from initial time (as can be
seen in Eq. 6,7,8). In this case, we would have to find from which time t the process may be considered
stationary. The autocorrelation coefficient shown in Fig. 6 was computed from the ensemble average
of over 1000 realizations, each one was simulated for 120 steps (dt = 1[hr], tfinal = 120[hr]). The
autocorrelation coefficient of Y is almost identical to the theoretical expression ρyy(τ) = e−0.07142τ .
This expression represents the exponential fit of the data (recall Fig.2), and it is both the autocor-
relation RXX(τ) and the autocorrelation coefficient ρXX(τ) of process X. The plot clearly shows
that the approximation in Eq.20 is valid, and can be used for this example, for the time scale of 50
hours (approximately two days). In order to see how many realizations are needed for obtaining an
accurate estimate of ρY Y , we will compute the RMSE as a function of a number of sample functions
( tfinal = 120[hr] remains as above). The RMSE is decaying significantly until 1000 realizations, and
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Figure 4: Statistical properties of the Weibull distribution vs. the generated process using ensemble
average

Figure 5: Statistical properties of the Weibull distribution vs. the generated process using time
average
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Figure 6: The autocorrelation coefficient of the process computed by ensemble average vs. theoretical
and data

Figure 7: RMSE between ρY Y computed by ensemble average and the analytical approximation
e−0.07142τ

from this value the RMSE stabilizes around 0.01. There is no significant improvement from around
this value, so there is no advantage in running more realizations.
Since the process is ergodic, it is expected that the estimated correlation computed from one real-
ization will approach the analytical curve as t becomes larger. This is demonstrated in Fig. 8 for
tfinal = 10, 000[H]. The autocorrelation coefficient computed from this one realization is almost iden-
tical to the theoretical expression, same as the ensemble average.
We can also understand the ergodicy by the correlation, by a graph showing the RMSE between the
calculated autocorrelation coefficient of one realization and the analytical expression, as a function of
the final time of the generated process: As we can see the RMSE is getting smaller as the final time is
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Figure 8: Autocorrelation coefficient of the process computed by time average vs. theoretical and
data

Figure 9: RMSE between ρY Y computed by time average and the analytical approximation e−0.07142τ

getting bigger. From tfinal ≈ 12, 000 [hr] the RMSE stabilizes at 0.01. From around this value there
is no significant improvement in accuracy of the estimation of ρY Y .
As it was mentioned in subsection 2.2, the goodness of the approximation in Eq.20 depends on the
Weibull parameters. We will test this statement by calculating the RMSE between the computed
autocorrelation coefficient of the Weibull process (from time average of 10000 [hr], although ensemble
average can be used as well) and the theoretical ρY Y as a function of k and λ, as shown in Fig. 10.
We can conclude that the value of the shape parameter k has a significant effect on the RMSE. For
values above k = 2.5 the RMSE converges to 0.01. The scale parameter λ, on the other hand, barely
effects the error. This graph is useful for future work of modelling wind with the Weibull distribution,
since it indicates when the approximation of Eq.20 is correct.
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Figure 10: RMSE between the autocorrelation coefficient of the generated process computed from
time average and the theoretical autocorrelation coefficient as a function of k and λ

We are also interested in investigating the PSD of the process, and comparing it to the PSD of the real
world data. Power spectral density is the distribution of the power of a signal in the frequency domain.
Analyzing the PSD of the wind can provide insights on the behavior of the wind, if it is turbulent or
laminar, and it also may by relevant when we refer to aircraft stability and natural frequencies.
The definition of periodogram for a continuous time process is as follows:

px(f) =
1

T
x̃(f)x̃∗(f) =

1

T

∫ T

0

x(ζ)e−j2πfζdζ

∫ T

0

x(η)ej2πfηdη (30)

However, in the simulation the expression will be used numerically. The numerical form of x̃(f) is:

x̃(f) =

∫ T

0

x(ζ)e−j2πfζdζ =

T
∆t∑
k=1

xke
−j2πfk∆t∆t (31)

With this implementation, we can find the PSD of the data. For comparison purposes, we will simulate
the process we modelled for the same time period - one year, with a time step of 1 hour (8760 values),
and compute its PSD, as shown in Fig. 11. It is clear that the lower frequencies are dominant, meaning
that the wind is characterized by constant prime modes, while higher frequencies modes (that can be
referred to as turbulence or circulation) are relatively minor. These results are expected since the
data and the generated values are hourly mean values, hence phenomena of high frequencies such as
turbulence and gusts, can not be observed in this long time scale results. Thus, the wind speed in
hourly scale can be considered as a simple low-pass filter corresponding to the daily, seasonal, and
annual effects (long term effects).

3 Wind Direction

3.1 Directional Data

The previously investigated model dealt only with the wind magnitude, but hasn’t addressed wind
direction. Wind direction is an essential information for aircraft performances in landings and takeoffs,
wind energy, and many other research fields. Airports plan and design the use of runways on the

11



Technion - Israel Institute of Technology Maayan Shimoni

Figure 11: Power spectral density of data and the simulated process

basis of the wind direction. For the wind energy research, the direction of the wind is important for
determining the location and the orientation that turbines should be imposed. Wind direction can
change dramatically with the season, hence from looking on the direction distribution through one
year, a meaningful data may not be found. We suggest taking data from a certain season over several
consecutive years and fitting a distribution.
The seasons in Wellington fall under the following months:

• Summer – December, January and February

• Autumn – March, April and May

• Winter – June, July and August

• Spring – September, October and November

We will use data from four consecutive years- March 2014 until March 2018. A large amount of
samples will raise the chance to find reliable statistical distribution and properties. Obviously the
separation of the seasons is not deterministic and may change, however since we examine several
years, perhaps special patterns of each season will be apparent. One way to exhibit the directional
data is a wind rose, which is a graphic tool, usually used by meteorologists to give a succinct view
of how wind speed and direction are typically distributed at a particular location. The code for the
generation of the wind roses is taken from [12], and the results are shown in Fig. 12. As we can see this
area is characterized by primarily northern and southern winds in all four seasons. There are slight
differences between the winter/ autumn and spring/ summer seasons: in the spring and summer the
south winds also tend east. However, there are no significant differences between the seasons, hence
we will investigate the wind without referring to specific seasons (as was done in [9]). This does not
necessarily happen in other locations, which may have clear seasonal differences, and in which case the
directional modelling should consider the season. Furthermore, the model that will be used for wind
direction is very flexible, and it was already proved in the literature that it is capable of describing
many kinds of directional behaviors. Indeed, the histograms in Fig. 13 are not significantly different
from one another and roughly represent the same wind behavior. The wind rose for the whole year of
2014, which corresponds to the wind speed data that was used in section 2 is shown in Fig. 14. This
rose diagram is not dramatically different from any of the other four diagrams describing different
seasons for the years 2014-2018, hence we will refer to this diagram as a reliable representation of
the typical wind in the tested location. The model we will develop in this project will be examined
according to this data, and the model will be two dimensional in order to match the collected data.
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Figure 12: Wind roses for the four seasons for a duration of four years

3.2 Mixture of Von Mises Distributions as a Wind Direction Model

Von Mises distribution is a continuous probability distribution on the circle. It is often used to model
wind direction data because it is well-suited to circular or directional data that exhibit a unimodal
(single-peaked) distribution around a central direction. However, it may not be appropriate for data
with complex multimodal (multi-peaked) distributions. In such cases, it is possible to use a mixture
of Von Mises distributions.
The proposed continuous probability distribution mVM(θ) is comprised of a sum of N different Von
Mises probability densities:

mVM(θ) =

N∑
i=1

ωiVM j(θ) (32)

13



Technion - Israel Institute of Technology Maayan Shimoni

Figure 13: Comparison between the wind direction histograms of spring and summer, and autumn
and winter

Figure 14: Wind Rose for the year 2014

where ωi are non-negative quantities that satisfy the following conditions:

0 ≤ ωi ≤ 1 (i = 1, ...N),

N∑
i=1

ωi = 1 (33)

A Von Mises probability density function is:

fVM (θ) =
1

2πI0(ki)
exp [kicos(θ − µi)]

−π ≤ θ ≤ π

(34)
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where µi is the mean direction, and the parameter ki is known as the concentration parameter. The
distribution is unimodal and is symmetrical about θ = µi. For large values of k, the distribution is
concentrated around the mean direction, and when k = 0, the pdf is a uniform distribution on [0, 2π].
I0(ki) is the modified Bessel function of the first kind and order zero:

I0(ki) =

∞∑
j=0

1

(j!)2

(
kj
2

)2j

(35)

Therefore, in total, the wind direction pdf is:

fmVM (θ) =

N∑
i=1

ωi

2πI0(ki)
exp [kicos(θ − µi)]

−π ≤ θ ≤ π

(36)

Important to note that zero degrees matches the north direction and π,−π is the south (positive
is clockwise). The parameters of the mixture of von Mises distributions that fit the data set, are
approximated based on the Expectation-Maximization algorithm. The code is taken from [10], and
explanations on the algorithm itself can be found in [4].

The suggested model is very flexible and can match many wind behaviors, since the superposition
of the density functions can produce a variety of distributions with one or several modes. We want
to examine the fit of the model to the data set (2014, Wellington), while looking at different number
of components of VM distributions, as shown in Fig. 15. It is worth noting, that each distribution

Figure 15: Frequency histogram of wind directions with different mVM fits

function has the same value in the edges [−π, π]. It is the same angle so it has to have the same value
of probability. The parameters of the distribution functions used in Fig. 15 are given in Table 1.
The fit for N = 1 is a single von Mises pdf, and it exhibits the characteristics of a von Mises distri-
bution - it has a mean value and a concentration factor that effects the dispersion around the mean.
However, it is obvious that this fit hardly represents the data, while the alternative fits, (comprised
from multiple von Mises distributions) represent the data decently. The main difference between the
fits for higher N, is the level of accuracy of the fit in the edges −π and π. It appears that the mixtures
that include more distributions in the superposition (bigger N), are more accurate.
In order to verify this assumption, we will use the coefficient of determination R2, defined as:

R2 = 1− SSres

SStot
(37)
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Numerical values of the parameters of the mVM-pdfs
PDF 1 PDF 2 PDF 3 PDF 4
µ1 = 0.294
k1 = 0.586
ω1 = 1

µ1 = 0.064
k1 = 23.797
ω1 = 0.578

µ1 = 2.984
k1 = 5.224
ω1 = 0.3442

µ1 = 3.007
k1 = 5.475
ω1 = 0.3375

µ2 = 2.989
k2 = 23.797
ω2 = 0.422

µ2 = 0.067
k2 = 30.595
ω2 = 0.5311

µ2 = 0.0686
k2 = 28.647
ω2 = 0.5516

µ3 = −0.028
k3 = 0.956
ω3 = 0.1247

µ3 = 1.2853
k3 = 0.993
ω3 = 0.0699
µ4 = −0.861
k4 = 3.427
ω4 = 0.041

Table 1: mVM parameters

where SSres is the residual sum of squares:

SSres =
∑
i

(yi − fi)
2 (38)

yi are the values of the existing data set; fi are the fitted values; SStot is the total sum of squares
(proportional to the variance of the data):

SStot =
∑
i

(yi − ȳ)2 (39)

and ȳ is the mean of the observed data.
In the best case, the modelled values exactly match the observed values, resulting in SSres = 0 and
R2 = 1. A baseline model, which always predicts ȳ, will have R2 = 0. Models that have worse predic-
tions than this baseline will have a negative R2.

We want to explore the relationship between the number N of VM distributions that produce the
mixture pdf, to the goodness of fit. Hence, for each number N we calculate R2, as shown in Fig. 16.
There is an immediate improvement when the used pdf comprises a mixture of multiple VM distri-
butions, and there is also an apparent relationship of a bigger R2 as the number of components N
increases. The possibility to use a mixture of VM distributions is the key to the high accuracy of this
model, enabling it to represent complex wind direction behaviors that may differ from one another in
season, location, and more. However, in this particular example, R2 does no change dramatically for
N > 2, since there were mostly north and south winds - two prime modes. Therefore, two components
are sufficient for a very high accuracy of modelling: for N=2 R2 = 0.987. Additionally, we can have a
shorter running time of the fit algorithm, in comparison to models with a larger number of components.

4 Modelling Wind Field in Space Using Radial Basis Func-
tions

So far, the model was built according to data gathered in a constant point in space. The model can
describe wind distribution in a specific location for an hourly time scale, however it does not give us
any information about the wind behavior in space.
Obviously, wind changes not only with time but also in space. Wind can change in different geographic
areas due to local topography, the presence of mountains, valleys, coastlines and landscapes. The
weather also causes local differences. For example, temperature gradient causes pressure gradients
since warm air is less dense, while cold air is denser, and air flows from areas of high pressure to areas
of low pressure. Hence, the wind vector may change dramatically over the area. For instance, in an
airport, wind can be southern at a certain point, but northern a hundred meters away from it. We
can simulate wind in space using radial basis functions and their interpolation.
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Figure 16: Coefficient of determination as a function of the number of components of the mixture
distribution

Radial basis function is a real-valued function whose value depends only on the distance between the
input and some fixed point c:

ϕ(x) = ϕ(|x− c|) (40)

We will use the radial function to produce ’weights’ for all squares in a grid of a size that can be
determined by the user. Suppose we generate wind speed and direction for every square in the grid,
but we are interested in creating a smooth wind field. To achieve this, we can compute the wind speed
and direction as a superposition of known values that will be defined in specific squares, according to
the weights computed by the radial functions.
The radial function we will use to set the weights is:

ϕ(r) = e−τ ·[(x−xfixed)
2+(y−yfixed)

2] (41)

where xfixed, yfixed are the values defining the square where the weight equals 1 (where a specific
wind speed and direction are inputted by the user); τ is the constant of the decaying exponent and
also can be chosen by the user. The bigger it is, the less the assigned value effects the other squares.
It is possible to assign few different models - each for one square in the grid, and the rest of the
squares will have a superposition of the neighboring models according to the radial weights assigned
for the squares. The number of models can be a parameter of the user’s choice as well. An example is
presented in Fig. 17: this wind field, is defined by three wind vectors - speed and direction (V, θ):

• square 1,1: V = 20[ms], θ = 0◦

• square 1,20: V = 10[ms], θ = −45◦

• square 20,20: V = 15[ms], θ = −120◦

and the radial function for each of them is:

• square 1,1: e−0.1·[(x−1)2+(y−1)2]

• square 1,20: e−0.03·[(x−1)2+(y−20)2]

• square 20,20: e−0.05·[(x−20)2+(y−20)2]
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Figure 17: Wind field based on interpolation between three different predefined wind vectors

As we can see in the plot, the values computed in each of these three squares are not perfectly what
was defined, due to minor effects from the other two radial functions. This effect comes from the
normalization that was applied on the weights:

Vsquarexy =
w1

w1 + w2 + w3
· Vmodel1 +

w2

w1 + w2 + w3
· Vmodel2 +

w3

w1 + w2 + w3
· Vmodel3

θsquarexy
=

w1

w1 + w2 + w3
· θmodel1 +

w2

w1 + w2 + w3
· θmodel2 +

w3

w1 + w2 + w3
· θmodel3

(42)

where wi is the weight assigned for wind model i. Important to note that for the interpolation of the
angles to be correct, it is required to convert the angle to radians, between [−π, π]. We can increase
the τ parameter and that will decrease even more the small effect that exists between the 3 squares.
For instance, we can set the weights in square [1, 1] to be: w1 = 1, w2, w3 << w1, and by that receive:
V[1,1] ≈ Vmodel1, θ[1,1] ≈ θmodel1.
Additionally, the assigned values, may be generated from stochastic models, while controlling the
parameters of their distributions. For example, the wind in square [1,20] can be generated from a
speed model with a Weibull distributed speed and a direction model of northern-western winds (which
mVM distribution can generate). The wind in square [1,1] can be generated from a model of a Rayleigh
distribution and western winds, and the wind in square [20,20] can be generated from another Weibull
distribution, with different parameters, and a direction model with east as the prime mode. This
method, allows us to create a variety of wind pictures with just a few wind models, using a simple
interpolation between them. Important to note that wind fields are dynamic in time, and it can be
expressed in our method by the fact the the assigned values are originated from statistical models that
each time will produce different values.

5 Conclusions

In this project two aspects of wind modelling were investigated: wind speed magnitude and wind
direction. We analyzed a speed model based on the OU process, and then performed a memoryless
transformation to a Weibull distribution in order to receive a stochastic process that represents the
data well. This approach reproduces both the probability distribution and the exponentially decaying
autocorrelation coefficient of the wind speed data. However, for τ > 50 hours the exponentially decay-
ing autocorrelation coefficient did not represent the real data due to diurnal and seasonal effects, that
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Figure 18: Four different wind behaviors in space based on radial basis functions

are not considered in the statistical model. Thus, the goodness of this model is limited to this time
range.
The directional model had showed that a Von Mises mixture distribution with two components is
adequate for describing the directional data. This conclusion was also supported by R2 coefficient
analysis, as it was specifically concluded that increasing the number of components N of the mixture,
causes the value of the coefficient of determination R2 to increase, meaning the fit is improved. How-
ever, the variations in R2 are not pronounced for values of N greater than two. Next, we suggested a
method to simulate wind in space using an interpolation based on radial basis functions. The method
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considers known wind models (for both magnitude and direction) for specific points in space, and by
interpolation between them we can receive a solution of the wind in other points in space. This method
relies on the assumption that wind is continuous in space.

6 Future Work

Future work will focus on expanding the wind model and explore innovative models to complex phe-
nomena. Overall the model will have a superposition of a few layers:

1. Long time scales model for wind speed and direction (one value per hour). The time frame we
are interested in can be 24 hours: a day of operation of the airfield. For realistic results, a vertical
component of the wind must be modelled as well (change of the wind with altitude).

2. Short time scale models for wind speed and direction (one value per second). This will be
important during final landing stage of an aircraft/parachute, which may last 10-20 sec. May be
modeled by linear SDEs.

3. Wind gusts (speed and direction), modeled by non-linear SDEs (one or maybe even more values
per second). Can be modelled by one of the langevin-type model of turbulence - the pitchfork
bifurcation normal form. This form of SDE can represent gusts that randomly jump between
two solutions.

4. More complex wind effects, such as dust devils, which can be modeled by non-linear SDEs and
a specific structure in space, (which can be predefined, such as a cone for dust devils, but have
stochastic parameters of cone height and radius).

The analysis of wind will be deepened as well, through investigation of Navier Stokes equations. These
can be helpful for thoroughly understanding the air flow in space and time.

The model investigated here can serve as a building block for the future extended model. It has
a User Interface, which is coded in Matlab, App Designer, allows the user to tune the parameters and
observe resulting wind behaviors, and can be developed further in the future.
Matlab code and Matlab app in GUI are availave in:
https://figshare.com/articles/software/research_project_code_zip/24559900
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