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Abstract 

This research studies the supersonic Blunt-Body Problem. A computational program is written 

which solves the inviscid steady-state flow around a blunt-body using an artificial time-

marching technique. Flow fields around parabolic, cubic, and hyperbolic bodies are simulated 

and studied, these results are compared to previous research and their physical behaviour is 

assessed. Numerical experiments on the nature of the blunt-body problem are conducted. An 

oscillatory effect at the downstream boundary of the flow is observed and investigated. 

 

 

 

1. Introduction  

The blunt-body in supersonic flow is an important problem in aerodynamics because all high-

speed vehicles have blunt noses to reduce aerodynamic heating. Such heating is a crucial 

design factor for most high-speed vehicles  and its prediction requires accurate knowledge 

about the flow field around the body. 

Historically, the inviscid supersonic blunt-body problem was appreciatively hard to solve 

because in the steady, subsonic regions of the flow the governing steady Euler equations are 

of elliptic nature, whereas in the supersonic regions they have hyperbolic nature. The situation 

changed in 1966 when Moretti and Abbett [1] published the first practical supersonic blunt-

body solution. Their approach utilizes a time-marching finite-difference solution of the 

governing unsteady Euler equations. The unsteady Euler equations are hyperbolic with 

respect to time for both flow regions – subsonic and supersonic. Therefore, a time-marching 

approach allows a simultaneous solution of the flow in both regions. 

The solution approach used in this study is the shock-fitting method. The shock wave is 

introduced in the solution as a boundary condition, and the Rankine-Hugoniot shock relations 

are used to relate the freestream to the flow behind the shock. The shock shape, therefore, is 

found as part of the solution. Using this approach, the whole flow field can be assumed to be 

isentropic, leading to a simplified energy equation. 



 
2 

 

Table of Contents 
 

1. Introduction .................................................................................................................. 1 

2. The Blunt-Body problem ............................................................................................. 3 

3. The Governing equations ............................................................................................ 4 

4. The Numerical scheme ................................................................................................ 6 

4.1. Boundary conditions ........................................................................................................ 7 

5. Results .......................................................................................................................... 9 

5.1. Shock wave location ...................................................................................................... 11 

5.2. Sonic line Location ......................................................................................................... 12 

5.3. Entropy field .................................................................................................................... 13 

5.4. Pressure field .................................................................................................................. 14 

5.5. Velocity field .................................................................................................................... 15 

5.6. Surface pressure distribution ........................................................................................ 16 

5.7. Centreline wave velocity and Stagnation pressure history ...................................... 17 

5.8. Axisymmetric case  ........................................................................................................ 18 

6 . Numerical experiments on the sensitivity of the blunt-body solution to selected 

parameters ........................................................................................................................ 19 

7. Conclusions and future research ............................................................................. 21 

References ........................................................................................................................ 22 

 

 

 

  



 
3 

 

2. The Blunt-Body problem 

Consider the steady flow over a blunt-body moving at supersonic speed. A schematic sketch 

of the problem is shown in Figure 1. The shock wave in front of this body is detached and 

curved. The incoming flow undergoes through variable shock angles, ranging from a normal 

shock wave at the nose tip and approaching a weak Mach wave away from the tip. The region 

between the shock and the body is called the shock layer, and it is a mixed subsonic–

supersonic flow, with both regions divided by sonic lines. Behind the normal, and nearly 

normal, portions of the shock wave, the flow is subsonic, whereas behind the more oblique 

portion of the shock wave the flow is supersonic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The blunt-body flow field 
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3. The Governing equations 
The two-dimensional Euler equations describing the inviscid flow, are  

x momentum 

(1)      𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑥
, 

y momentum 

(2)      𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
 ) = −

𝜕𝑝

𝜕𝑦
, 

continuity 

(3)      
𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑢)

𝜕𝑥
+

𝜕(𝜌𝑣)

𝜕𝑦
+ 𝑧

𝜌𝑣

𝑦
= 0, 

where 𝑧 = 0 for the planar two-dimensional case and 𝑧 = 1 for the axisymmetric case. 

The energy equation is replaced by the isentropic flow requirement, meaning it becomes an 

entropy equation. 

(4)      
𝜕

𝜕𝑡
(

𝑝

𝜌𝛾) + 𝑢
𝜕

𝜕𝑥
(

𝑝

𝜌𝛾) + 𝑣
𝜕

𝜕𝑦
(

𝑝

𝜌𝛾) = 0. 

Coordinate Transformation 

A simple computational grid is chosen where the physical variables 𝑥, 𝑦, 𝑡 are transformed to 

the computational space variables 𝜉, 𝑌, 𝑇 such as 

(5)      𝜉 =
𝑥−𝑏

𝛿
    𝑌 = 𝑦   𝑇 = 𝑡, 

where 𝛿 is the local shock-detachment distance, 𝛿 = 𝑠 − 𝑏, 𝑏 is the body 𝑥 coordinate and 𝑠 

is the shock 𝑥 coordinate. The grids are shown below, the body is transformed to 𝜉 = 0, and 

the shock to 𝜉 = 1. 

 

Figure 2: The physical and computational grids 
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For this transformation, any function 𝑓(𝑥, 𝑦, 𝑡) is transformed to 

(6)    
𝜕𝑓

𝜕𝑥
=

1

𝛿

𝜕𝑓

𝜕𝜉
               

𝜕𝑓

𝜕𝑦
=

𝜕𝑓

𝜕𝑌
+

𝐶

𝛿
 
𝜕𝑓

𝜕𝜉
              

𝜕𝑓

𝜕𝑡
=

𝜕𝑓

𝜕𝑇
−

𝑊𝜉

𝛿

𝜕𝑓

𝜕𝜉
, 

where 

(7)       𝐶 = (𝜉 − 1)
𝑑𝑏

𝑑𝑦
− 𝜉𝑐𝑜𝑡𝛽 , 

(8)       𝑊 =
𝑑𝑠

𝑑𝑡
,  

(9)      𝛽 =
𝜋

2
− atan

𝑑𝑠

𝑑𝑦
, 

where 𝑊 is the shock wave velocity and 𝛽 is the shock angle. 

For convenience, Moretti and Abbett’s transformed variables will be used 

(10)    𝑃 = ln 𝑝          𝑅 = ln 𝜌         𝜓 = 𝑃 − 𝛾𝑅           𝐵 =
𝑢−𝑊𝜉+𝑣𝐶

𝛿
, 

Using all the relations described above the transformed Euler equations become  

x momentum 

(11)     
𝑑𝑣

𝑑𝑇
= − [𝐵

𝜕𝑣

𝜕𝜉
+ 𝑣

𝜕𝑣

𝜕𝑌
+

𝑃𝐶

𝜌𝛿

𝜕𝑃

𝜕𝜉
+

𝑝

𝜌

𝜕𝑃

𝜕𝑌
], 

y momentum 

(12)     
𝜕𝑢

𝑑𝑇
= − [𝐵

𝜕𝑢

𝜕𝜉
+ 𝑣

𝜕𝑢

𝜕𝑌
+

𝑝

𝜌𝛿

𝜕𝑃

𝜕𝜉
], 

Continuity 

(13)     
𝜕𝑅

𝜕𝑇
= − [𝐵

𝜕𝑅

𝜕𝜉
+

1

𝛿

𝜕𝑢

𝜕𝜉
+

𝐶

𝛿

𝜕𝑣

𝜕𝜉
+

𝜕𝑣

𝜕𝑌
+ 𝑣

𝜕𝑅

𝜕𝑌
+ 𝑧

𝑣

𝑌
], 

Energy 

(14)     
𝜕𝜓

𝜕𝑇
= − [𝐵

𝜕𝜓

𝜕𝜉
+ 𝑣

𝜕𝜓

𝜕𝑌
]. 
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4. The Numerical scheme 
Choice of technique  

Originally, Moretti and Abbett [1] used the Lax–Wendroff finite-difference technique. Later, 

MacCormack [2] developed a simpler explicit, predictor-corrector, finite-difference method 

which became very popular throughout the 1970s and 1980s. Because of its simplicity, it is 

used here. 

MacCormack’s Scheme 

First, we calculate a predicted value of flow variable 𝐴 from the first two terms in a Taylor’s 

series 

(15)      𝐴̅𝑖,𝑗
𝑡+Δt = 𝐴𝑖,𝑗

𝑡 + (
𝜕𝐴

𝜕𝑡
)

𝑖,𝑗

𝑡
Δ𝑡, 

where 𝜕𝐴 𝜕𝑡⁄  is calculated using forward differences for the spatial derivatives. 

Next, as a corrector step, we calculate the value of the time derivative by inserting the 

predicted values using rearward differences for the spatial derivatives. 

(16)       (
𝜕𝐴̅

𝜕𝑡
)

𝑖,𝑗

𝑡+Δ𝑡

. 

Then, by averaging those derivatives, we calculate the final corrected value of the variable. 

(17)      𝐴𝑖,𝑗
𝑡+Δt =

1

2
[(

𝜕𝐴

𝜕𝑡
)

𝑖,𝑗

𝑡
+ (

𝜕𝐴̅

𝜕𝑡
)

𝑖,𝑗

𝑡+Δ𝑡

]. 

In the limit of large times, after enough steps, a steady state will be approached, at 

which 𝐴𝑖,𝑗
𝑡+Δt ≈ 𝐴𝑖,𝑗

𝑡 . 

Regarding the numerical accuracy of this method, we are using first-order forward and 

rearward differences on the predictor and corrector steps, the combination of the two steps 

results in a second-order accurate technique. 

For a time-marching approach, the value of Δ𝑡  must be addressed. The finite-difference 

method used here is an explicit method, and therefore Δ𝑡 is subject to a stability criterion. 

The stability criterion is a version of the Courant–Friedrichs–Lewy (CFL) criterion, which 

governs the stability of explicit methods dealing with hyperbolic equations [6], 

(18)      Δ𝑡 < 𝐾 [min (
𝛥𝑥

𝑢+𝑎 
,

𝛥𝑦

𝑣+𝑎 
)], 

where 𝛥𝑥 and 𝛥𝑦 the are the lengths between adjacent grid points in the x and y directions, 

and 𝑎 is the local speed of sound, 𝑎 = √𝛾𝑅𝑇. 

The CFL criterion is derived based on an assumption of linearity. Therefore, for the nonlinear 

Euler equations a prefactor 𝐾 is added, which is smaller than 1, in the current study a value 

of 𝐾 = 0.8 is used. 
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4.1. Boundary conditions 
For the shock wave boundary condition Moretti and Abbett [1] used a local, one-dimensional, 

unsteady method of characteristics obtained from the Rankine-Hugoniot relations for a moving 

shock. Similarly, for the body they used a local, unsteady, one-dimensional method of 

characteristics approach along the local body-normal direction. The approach used in the 

current study is simpler and reminiscent of the method provided by Anderson [3]. 

 

Shock wave 

The quantities at the shock are calculated analytically using the Rankine-Hugoniot and oblique 

shock relations for the freestream values. In addition, the movement parameters of the shock 

must be calculated, mainly 𝑊 and Δ𝑠 - the shock movement distance. This is done by first 

calculating the flow properties at the shock boundary at time 𝑡 + Δ𝑡, by employing the internal 

flow algorithm, using rearward differences in the predictor step. Using this method, the 

pressure at the next time step, 𝑝(𝑡 + Δ𝑡), is calculated. In turn, from this pressure, and the 

known freestream condition, the static-pressure ratio, 𝑝2 𝑝1⁄ = 𝑝(𝑡 + Δ𝑡) 𝑝∞⁄ , is obtained. 

Using this ratio and the wave angle, 𝛽, the shock wave is well-defined. As such, the Mach 

number of the flow upstream of the shock relative to the shock, 𝑀1, is directly obtained from 

the shock relations. Then, the shock movement, 𝑊, is recovered by 𝑊 = 𝑎∞(𝑀∞ − 𝑀1), where 

𝑎∞ is the freestream speed of sound. 

With the wave velocity 𝑊 at a given grid point the movement distance Δ𝑠 in the 𝑥 direction is 

calculated, where Δ𝑠 is based on the average velocity between times 𝑡 and 𝑡 + Δt, that is 

(19)    Δ𝑠 =
1

2
[𝑊(𝑡 + Δt ) + 𝑊(𝑡)]Δ𝑡. 

 

Body  

The boundary condition along the body is the inviscid no-penetration (slip) condition. First, the 

velocities at the boundary points are calculated using the internal flow algorithm. In this case, 

forward differences are utilized on both the predictor and corrector steps. Both velocity 

components u and v will be obtained at time 𝑡 + Δ𝑡 at every grid point on the body. These 

components define the velocity vector 𝑉. To accomplish the desired boundary condition on 

the body, the vector 𝑉 must be rotated to be tangential to the body, such that the velocity 

component normal to the surface, 𝑉𝑛, vanishes. After rotating 𝑉 the remaining flow properties 

are treated by sending a local, one-dimensional, isentropic, expansion or compression wave 

away from the surface at the boundary point. The wave strength is calculated based on the 

pre-rotation value of 𝑉𝑛. If 𝑉𝑛 is directed out of the surface, the finite wave should be an 

expansion wave, and if 𝑉𝑛 is directed into the surface, the finite wave should be a compression 

wave. 

The relations for pressure ratio and temperature ratio through an unsteady, isentropic, one-

dimensional, finite wave are given in Chapter 7 of Anderson [5]. In our case, the equations for 

the finite wave are 

(20)      
𝑝𝑛𝑒𝑤

𝑝𝑜𝑙𝑑
= [1 ±

𝛾−1

2
(

𝑉𝑛

𝑎𝑜𝑙𝑑
)

2
]

2𝛾

𝛾−1

, 

(21)      
𝑇𝑛𝑒𝑤

𝑇𝑜𝑙𝑑
= [1 ±

𝛾−1

2
(

𝑉𝑛

𝑎𝑜𝑙𝑑
)

2
]

2

, 
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where 𝑎𝑜𝑙𝑑 is speed of sound from the previous iteration, 𝑉𝑛 is taken positive and the plus sign 

corresponds to the expansion wave, while minus to the compression wave.  

Downstream and centreline  

The values for the points on the upper boundary are extrapolated from the inner values. As 

the downstream is taken far enough from the axis, such that the whole boundary is supersonic, 

the Euler equations there are hyperbolic. Because this condition is ensured, the extrapolation 

of the data should have no influence on the whole flow field. In the results sections, for faster 

computation, zeroth-order extrapolation is used. 

For the centreline the usual symmetry condition is employed  

(22)    𝑝𝑗+1 =  𝑝𝑗−1  ;  𝑇𝑗+1 =  𝑇𝑗−1  ; 𝜌𝑗+1 =  𝜌𝑗−1  ; 𝑣𝑗+1 =  −𝑣𝑗−1. 

This symmetry condition is sufficient to form the forward and rearward differences at grid 

points along the centreline, thus allowing the use of the usual internal flow algorithm to 

calculate properties along the centreline. 

 

The initial flow field 

The computation is sensitive to the assumed initial conditions, and the initial flow field 

influences on the “go” or “no-go” nature of the blunt-body computer program. The assumed 

initial flow field is obtained by the logic presented in Anderson and Albacete [4]. 

1. A parabola as initial shock wave shape multiplied by some factor less the unity. 

2. Modified Newtonian pressure distribution along the body surface. 

3. Isentropic expansion along the body streamline. 

4. Linear interpolation between the shock and the body. 

5. A shock detachment distance assumed by trial and error. 
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5. Results 
This chapter presents the flow fields around the following blunt-bodies at 𝑀∞ of 4 and 8: 

I. Parabolic cylinder, with the cross-section 

(23)      𝑏 = 𝑎𝑦2 − 1, 

where 𝑎 = 0.769. 

 

II. Hyperbolic cylinder, with the cross-section 

(24)      𝑏 = √ (
𝑦

𝑎
)

0.5
+ 1 − 2, 

where 𝑎 = 0.769. 

 

III. Cubic cylinder, with the cross-section 

(25)      𝑏 = 𝑎2𝑦3 − 1, 

where 𝑎2 = 0.427. 

 

IV. Paraboloid of revolution, with the cross-section  

(26)      𝑏 = 𝑎𝑟2 − 1, 

where 𝑎 = 0.769. 

 

A drawing of the blunt-bodies is given in the following figure  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3: The blunt-body shapes  
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The number of grid points for each case is presented in the table below 
 
 
 
 
 
 
 
 

 

 

For the axisymmetric body, the paraboloid, only results for 𝑀∞ = 4 are shown, due to an 

oscillatory effect at the downstream boundary which allows simulation of small axisymmetric 

flow fields only. The influence of this effect can be seen in all the two-dimensional results and 

will be discussed in detail later. 

In addition, for all the results  

• A calorically perfect gas with 𝛾 =  1.4. 

• For fast computation, a zero-order extrapolation is used at the downstream  

For the surface pressure distribution, the modified Newtonian pressure distribution is given 

for comparison. The modified Newtonian formula is  

(27)      𝐶𝑝 = 𝐶𝑝𝑚𝑎𝑥 sin2 𝜃, 

where 𝜃 is the local body angle and 𝐶𝑝𝑚𝑎𝑥 is the maximal pressure coefficient, evaluated for 

the stagnation pressure, 𝑝0,2, after a normal shock at the axis 

(28)     𝐶𝑝𝑚𝑎𝑥 =
𝑝0,2−𝑝∞
1

2 
𝜌∞𝑈∞

2
. 

In addition, the results for the entropy, 𝑆, with respect to its freestream value, 𝑆∞, normalized 

by the air specific gas constant, 𝑅, are shown 

(29)    
𝑆−𝑆∞

𝑅
=

1

𝛾−1
(ln

𝑝

𝑝∞

− 𝛾 ln
𝜌

𝜌∞

) =
1

𝛾−1
(𝜓 − 𝜓

∞
). 

 

 

 

 

 

 

 

 

𝑀∞ = 4 𝜉 points y points 

Cubic cylinder 8 30 

Hyperbolic cylinder 12 30 

Parabolic cylinder 8 30 

Paraboloid 8 30 

𝑀∞ = 8 − - 

Cubic cylinder 15 30 

Hyperbolic cylinder 12 30 

Parabolic cylinder 10 30 
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5.1. Shock wave location 

Figure 4: Shock wave location for various blunt-bodies 

The steady state shock wave location is presented and compared to Anderson [4], good 

agreement is seen. Also, it can be observed that as 𝑀∞ increases, as expected, the shock 

wave moves closer to the body. 
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5.2. Sonic line Location 

Figure 5: Sonic line location for various blunt-bodies 

In figure 5, the sonic lines shape and location are presented, and standard physical behaviour 

for blunt-body flows is seen. For all the blunt-bodies, as 𝑀∞ increases the body sonic point 

moves closer to the centreline, while the shock sonic point moves towards the point with the 

highest curvature. This point is closer to the centreline for the hyperbolic and parabolic 

cylinders, and away from the centreline for the cubic cylinder. 
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5.3. Entropy field 

Figure 6: Entropy field for various blunt-bodies 

Figure 6 shows the non-dimensional entropy field, (𝑆 − 𝑆∞)/𝑅, as detailed in equation (29). 

Because the flow is isentropic, the constant entropy lines are identical to the streamlines. 

Further away from the body, many constant entropy lines are seen, which means there is a 

high gradient of entropy far from the body. Close to the body, a thick high-entropy layer 

appears, this type of entropy layer is typical for two-dimensional blunt-body problems. 
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5.4. Pressure field 

Figure 7: Pressure field for various blunt-bodies 

In figure 7, the static pressure ratio, 𝑝 𝑝∞⁄ , distribution is presented. Behind the normal part of 

the shock, the static pressure ratio 𝑝 𝑝∞⁄  is 18.5 and 74.5 for 𝑀∞ = 4 and 𝑀∞ = 8, respectively. 

At the weak part of the shock downstream, the average static pressure ratio is 14 and 50 for 

𝑀∞ = 4 and 𝑀∞ = 8, respectively. In addition, the oscillatory effect can be seen in the upper 

part of the flow field downstream.  
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5.5. Velocity field 

Figure 8: Velocity vectors for various blunt-bodies 

Figure 8 shows the velocity vectors. The velocity vectors closely follow the constant entropy 

lines, confirming entropy is conserved along streamlines. In addition, close to the body, slip 

flow is happening, and an acceleration of the flow is also observed.  
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5.6. Surface pressure distribution 

Figure 9: Surface pressure distribution for various blunt-bodies 

Figure 9 shows the surface pressure distributions, normalized with respect to freestream 

pressure 𝑝𝑏𝑜𝑑𝑦 𝑝∞⁄ . These results are compared with the modified Newtonian formula, and 

two anticipated results can be seen. Namely, that the modified Newtonian distribution 

underestimates the actual pressure distribution for two-dimensional blunt-bodies, and the 

resulting distribution is closer to the modified Newtonian at 𝑀∞ = 8 than at 𝑀∞  =  4. This is 

expected since the Newtonian theory was derived in the limit 𝑀∞ → ∞. 

 

  



 
17 

 

5.7. Centreline wave velocity and Stagnation pressure history 

 

Figure 10: Stagnation pressure history for various blunt-bodies 

 

Figure 11: Centreline shock wave velocity history for various blunt-bodies 

Figures 10 and 11 show the convergence paths for all blunt-bodies studied above. Figure 10 

shows the time variation of stagnation-point pressure, and figure 11 presents the transient 

behaviour of the centreline shock wave velocity. In all cases, the assumed initial values are 

similar. Some points are noted from the above figures: the biggest variations occur at early 

times. In addition, the cubic cylinder has the largest variations, caused probably due to its 

initial shock wave shape (parabola) being far from its final shock shape, compared to the other 

two shapes. 
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5.8. Axisymmetric case  

Figure 12: Results for axisymmetric paraboloid, 𝑀 = 4 

When examining the axisymmetric results, the oscillatory effect has a significant influence on 

the axisymmetric flow field, which destabilizes the computer program. This effect accelerates 

some parts of the shock faster than others, resulting in a negative shock wave angle 𝛽 which 

in turn collapses the program. In addition, a major surface pressure instability in the 

downstream boundary can be observed and the solution in this area can be assumed to be 

invalid. Although results for a flow field with the same size as the one used in the two-

dimensional case could not be obtained, some parts of the flow field could still be simulated, 

provided 𝑦𝑚𝑎𝑥 is sufficiently small. In figure 12 good agreement of the shock wave location 

can be seen between the solution and the reference. Regarding the entropy field, for the 

axisymmetric results, in contrary to the two-dimensional results, no thick entropy layer is 

present, and the constant entropy lines converge towards the body, which is a known 

phenomenon for axisymmetric fields. In addition, very good agreement between the solution 

and the modified Newtonian theory is observed, even away from the centreline, which is typical 

for axisymmetric flow fields. 
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6. Numerical experiments on the sensitivity of the 

blunt-body solution to selected parameters 
In addition to the above results, numerical experiments were performed to investigate the 

effect of initial conditions, shock shape, and boundary conditions on the time-dependent blunt-

body solutions. The experiments indicate that such factors have a definite influence on the 

blunt-body computer program.  

Effect of the initial shock shape  

The computer program was able to converge using a shape similar to the shape of the body. 

However, the initial shock shape has an influence on the range of the initial shock-detachment 

distance guess that leads to a converged solution. In most cases, it was found that a parabolic 

shock shape with an incline similar to the body multiplied by a prefactor smaller than unity 

could sustain the farthest initial shock-detachment distance. For example, for the cubic 

cylinder given by 

(30)      𝑏 = 𝑎𝑦3 − 1, 

the following shock was assumed 

(31)      𝑠 = 𝑓𝑎𝑐𝑡𝑜𝑟 ⋅ 𝑎𝑦2 − 1. 

The factor also has an influence on the convergence of the computer program and is chosen 

by trial and error. For the various blunt-body shapes used in the study, a factor of 0.2 was 

used. 

Effect of shock-detachment distance 

The initial shock-detachment distance, together with the shock shape, have a great influence 

on the convergence of the computer program. For example, for the case of a two-dimensional 

parabolic body and initial parabolic shock shape multiplied by a factor of 0.2 at 𝑀∞ = 4 the 

program converged successfully for 0.3 < 𝛿 < 1.2. 

Effect of extrapolation order on the upper boundary 

The values on the downstream boundary are extrapolated from the internal grid points. It is 

ensured that the downstream boundary is far enough so that the flow is supersonic when 

approaching the boundary. That is because extrapolation in any order is a properly posed 

supersonic boundary condition. Consequently, the upper boundary values do not exactly 

satisfy the Euler equations, and therefore the results for certain portions of the flow field are 

inaccurate. Our findings suggest that the extrapolation influences substantial parts of the flow 

and not just the boundary. 

The extrapolation was suspected as the reason for the appearance of oscillations near the 

downstream. To study this effect, the following numerical experiments with the downstream 

boundary condition were conducted 

• First-order linear extrapolation. 

• Zeroth-order extrapolation. 

• Using the internal algorithm with one-sided finite-differences.
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A result of these experiments for a parabolic cylinder at 𝑀 = 4 is shown in Figure 13 
below. 

 
Figure 13: shock wave solution for parabolic cylinder at 𝑀∞ = 4 using various downstream 

boundary condition treatments  

No significant effect on the oscillation is observed, and it seems that the extrapolation is not 

fully or not at all responsible for this effect.  

 

Effects of the computational grid length in the 𝑦 direction 

The computational grid length in the 𝑦 direction, 𝑦𝑚𝑎𝑥, has a strong influence on the oscillatory 

effect downstream. In particular, choosing a lower 𝑦𝑚𝑎𝑥 seems to reduce this effect, and 

provide smoother results. Furthermore, the type of body and the freestream velocity influences 

the oscillations. For the hyperbolic body, a flow field larger than the one for the cubic cylinder 

is successfully simulated. In addition, for the axisymmetric case, very low 𝑦𝑚𝑎𝑥 had to be 

chosen to get a converged solution. 
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7. Conclusions and future research 
 

This research investigates the supersonic blunt-body problem. A computational program is 

written to numerically solve the blunt-body problem, and a study of both the computer program 

and the solution is performed. The solution is compared to previous research, and good 

agreement is observed. In addition, the flow field is studied and known physical behaviour is 

recovered. In the case of the program, an unwanted oscillatory effect at the downstream 

boundary of the flow is present. Numerical experiments to study this effect and the influence 

of the initial flow field on the computer program are conducted. 

The computer program is found to be sensitive to the initial conditions. A combination of 

several parameters, mainly the initial shock shape and shock detachment distance, 

determines the “go” or “no go” nature of the program. 

Regarding the downstream oscillatory effect, it is found that the size of the grid along the 𝑦 

direction has the main influence on this effect. Choosing a large value for 𝑦𝑚𝑎𝑥 causes the 

solution to have stronger oscillations, and when the value of 𝑦𝑚𝑎𝑥 increases beyond a certain 

limit, the computer program collapses. The critical value of 𝑦𝑚𝑎𝑥 is influenced by the body 

type, the freestream velocity, and whether it is a two-dimensional or an axisymmetric case. 

Owing to this effect, only small axisymmetric flow fields were able to be simulated. 

Typical behaviour for the blunt-body flow field is observed. At higher free stream velocities, 

the bow shock moves closer to the body and the sonic line moves closer to the centreline. For 

the two-dimensional field, a thick entropy layer is formed, while for the axisymmetric field the 

entropy lines converge towards the body. In addition, the modified Newtonian formula 

underestimates the body pressure distribution for the two-dimensional field and predicts good 

values for the axisymmetric case, as expected.  

In the future, the cause and solution of the oscillatory effect should be addressed. With this 

effect gone, larger axisymmetric flow fields could be simulated and analysed. In addition, 

studies of the propagation of weak shock disturbances in the flow field could be conducted. 

Another possible improvement is providing a method to get an initial shock detachment 

distance and shock shape without the need for trial and error. 

 

  



 
22 

 

References 
 

[1] Moretti, G., and Abbett, M., “A Time-Dependent Computational Method for Blunt-Body 

Flows”, AIAA Journal, Vol. 4, No. 12, 1966, pp. 2136–2141. 

[2] MacCormack, R. W., “The Effect of Viscosity in Hypervelocity Impact Cratering”, AIAA 

Paper 69-354, Jan. 1969. 

[3] Anderson, J. D., Jr., “Hypersonic and High Temperature Gas Dynamics”, 2nd ed. 2006. 

[4] Anderson, J. D., Jr., and Albacete, L. M., “On Hypersonic Blunt-Body Flow Fields Obtained 

with a Time-Dependent Technique”, Naval Ordnance Lab., NOLTR 68–129, White Oak, 

MD, Aug. 1968. 

[5] Anderson, J. D., Jr., “Modern Compressible Flow: with Historical Perspective”, 3rd ed. 

McGraw–Hill, New York, 2003. 

[6] Courant, R., Friedrichs, K. O., and Lewy, H., “Uber die Differenzengleichungen der 

Mathematischen Physik”, Math. Ann., Vol. 100, 1928, p. 32. 

 


