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Abstract

This research project deals with direct numerical simulation (DNS) of transition from
laminar to turbulent flow in pipe Poiseuille flow. The transition is modeled by a combi-
nation of a primary disturbance, undergoing transient growth in time, and a secondary
disturbance, growing exponentially. This report focuses on the transient growth of the
primary disturbance. The numerical results are compared to an analytical model based on
a four-mode approximation for various initial amplitudes. A follow-up project concerns
the evolution of the secondary disturbance and the transition to turbulence.

I. Introduction

The purpose of this project is to try to predict transition from laminar flow to turbulence in pipe
Poiseuille flow. According to the linear stability theory (LST) the flow is linearly stable, although it has
been shown in experiments that at Reynolds numbers (based on the axial velocity and half of the pipe
diameter) greater than Re ≈ 2000 transition can occur. For a viscous base flow, it has been shown that
a disturbance can undergo appreciable initial growth before eventually decaying due to viscous effects.
This mechanism is called transient growth (TG). Therefore, a small disturbance added to the base flow
can be significantly amplified by the TG mechanism, such that the modified flow may become unstable
to secondary disturbances. Studies of optimal initial disturbances have shown that the maximal growth
is obtained by a streamwise independent disturbance consisting of a counter-rotating vortex pair (CVP),
whose velocity field is schematically in Figure [3]. Previous studies of subcritical transition in Couette
flow [1] and plane Poiseuille flow [2] have shown that transient growth can be followed analytically using
only the first four decaying modes. This report (part A) handles with simulation of algebraic growth
of perturbations which means adding a main (primary) disturbance as a linear combination of four
modes, while the follow-up report (part B) describes the addition of an infinitesimal three-dimensional
secondary disturbance that may lead to transition to turbulence.
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II. Mathematical Method

A. Direct Numerical Simulation

The computation of the transition scenario is done using a well-tested open source code written by
Willis called ‘Openpipeflow’ DNS software [3]. The pipe has an axial (streamwise) coordinate x and its
radius is r = 1. The length of the pipe is Lx = 2π/α where α is the axial (streamwise) wavenumber,
so that the cylindrical coordinates are (r, θ, x) ∈ [0, 1] × [0, 2π] × [0, 2π/α]. The coordinate system as
well as the geometry of the problem are illustrated in Figure [1]. The spatial discretisation of the code
is double-Fourier (θ, x) and finite difference (r), distributed in a form of Chebyshev polynomial, such
that points are clustered towards the boundaries. In addition, there is no point on the axis, r = 0,
to avoid singularities in 1/r terms. The temporal discretisation is a second-order Predictor-Corrector
scheme, with automatic time-step control. The code may be run either on a single core or in parallel
(with MPI).

Figure 1: The geometry of the problem

B. Stability Analysis

The unperturbed velocity profile (called also the base flow) in pipe Poiseuille flow has a normalized
form of U 0(r) = (0, 0, U0(r)), where U0(r) = 1− r2. As usual in a linear stability analysis, we assume
an infinitesimal disturbance u ′, i.e.

|u ′/U 0| ≪ 1, (1)

such that the perturbed flow becomes

u(t, r, θ, x) = (ur, uθ, ux) = U 0 + u ′. (2)

Since the base flow does not depend on t, x, θ, a normal mode solution is sought

q ′(t, r, θ, x) = q̂(r)ei(αx+nθ−ωt) = q̂(r)ei(αx+nθ−ωrt)eωit, (3)

where q = (ur;uθ;ux; p), q̂ are complex functions, (t, r, θ, x) are the dimensionless time, radial, angular
and axial coordinates respectively, α is the axial wavenumber (α ∈ R), n is the angular wavenumber
(n ∈ Z), and ω is the complex eigenvalue ω ∈ C (ω = ωr + iωi), where ωr is the frequency and ωi is
the growth/decay rate. This case, where ω ∈ C, is termed the temporal problem. From equation (3) we
can see that q ′ ∝ exp(ωit), hence for ωi > 0 the disturbance grows, whereas for ωi < 0 it decays, and
in the special case of ωi = 0 it neither grows nor decays (neutral). Using the normal mode ansatz, the
linearized Navier–Stokes equations can be reduced to two equations for the radial velocity disturbance
and the radial vorticity – The Orr–Sommerfeld (OS) and the Squire (Sq) equations. As the latter
equation has only decaying solutions for the temporal case, the only possible source of exponential
instability are the OS modes.
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C. Analytical Model for Transient Growth

Transient growth is a possible mechanism for obtaining transition below the critical Reynolds number.
In this mechanism, initial disturbance growth can be obtained by using a combination of linearly
stable (decaying) modes, before ultimately decaying due to viscous effects. The goal is to find such an
initial combination of modes that will lead to maximal growth of the initial disturbance. Transition to
turbulence may be possible if during the transient growth, the modified base flow, consisting of the base
flow and the disturbance, becomes unstable to secondary instabilities. Since the solutions of the OS and
Sq equations are non-orthogonal, appreciable transient growth is possible. It turns out that the optimal
disturbance is obtained for the streamwise-independent case, i.e. α = 0. The reason transient growth
is also called algebraic growth is because for inviscid flow by assuming an x-independent disturbance
(∂/∂x = 0) one may get from the inviscid three-dimensional stability equations that the disturbance
grows linearly with time, rather than exponentially. Studies have also shown that the maximal transient
growth is obtained for n = 1. Karp, Roizner, and Cohen [4] showed for Couette flow and for plane
Poiseuille flow that by considering only a small number of the least stable modes one can analytically
predict the TG process resulting from many modes adequately. Comparison of the analytical model
and DNS was performed for Couette flow [5] and plane Poiseuille flow [6, 2]. From the streamwise-
independent stability analysis we know that all the modes are located on the vertical axis, when plotting
ωi as a function of ωr (see, e.g. Figure [2] in Karp and Cohen [1] for Couette flow). Similarly to the
previous work in Couette flow and plane Poiseuille flow, we will consider only the first 4 modes in the
stability analysis and compare this approximation to the DNS results in order to evaluate the TG. The
chosen Reynolds number for the analysis is Re = 3000, which is relatively low.

The TG based on 4 modes is given by

uTG(t, r, θ) = U 0(r) + εu1(t, r, θ) + ε2u2(t, r, θ) + · · · , (4)

where ε is small (ε ≪ 1), U 0 is pipe Poiseuille flow, εu1 is the velocity of the TG due to the 4 modes
and it is of the order O(ε), and ε2u2 represents nonlinear interactions and this term is of the order
O(ε2). This nonlinear term can be solved analytically using Duhamel’s principle.

This report discusses the optimal conditions for TG, validation of the solver and comparison of
the DNS results with the four-mode approximations. Part B of this work addresses the addition an
infinitesimal secondary disturbance, δud(t, r, θ, x) (order of a small parameter δ), to the modified base
flow uTG, in order to obtain instability and transition to turbulence.

The linear term of the 4 modes, for the case of α = 0, n = 1, is given by

u1(t, r, θ) = A0 ℜ

{
4∑

m=1

Amum(r)e
i(θ−ωmt)

}
. (5)

The ratios between the four modes (i.e. the coefficients Am) are found by setting one the coefficients to
be 1 and optimizing the remaining three coefficients to maximize the energy growth of the disturbance
G(t) by minimizing E(0) (the optimal Am is obtained analytically, ∂E(0)/∂Am = 0). From the flow
equations it is possible to obtain for n = 1 that ℑ{û1,r} = ℜ{û1,θ} = ℑ{û1,x} = 0. Thus, the velocity
field at t = 0 is given by

u1,r(t = 0, r, θ) = A0 cos(θ)
4∑

m=1

Amûrm(r),

u1,θ(t = 0, r, θ) = −A0 sin(θ)
4∑

m=1

Amûθm(r),

u1,x(t = 0, r, θ) = A0 cos(θ)
4∑

m=1

Amûxm(r).

(6)

The radial distributions of the eigenfunctions, after summation over the four modes, are shown in
Figure [2] for A0 = 1.
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Figure 2: Initial velocities of the main disturbance (4 modes)

The initial velocity field in the cross-section is shown in Figure [3]. The initial disturbance corre-
sponds to a CVP – a counter-rotating vortex pair.
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Figure 3: The initial velocity field in the cross-section

As mentioned above, all the modes of the primary disturbance eventually decay due to viscous
effects. Nonetheless, we can enhance the process of TG by increasing the Reynolds number since
ωm ∝ Re−1, or by increasing the parameter A0.

In the next section we will introduce some of the main DNS results of part A of the project, and
compare these results to an analytical approximation based on the four modes.
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III. Results

The linear transient growth is traditionally estimated from the gain G(t) of the disturbance kinetic
energy, E(t), at time t, normalized by its initial value, E(t = 0), where the energy is defined by the
volumetric integral over the whole domain, i.e.,

G(t) =
E(t)

E(t = 0)
, E(t) =

1

V

∮
V

|u |2 dV =
α

4π2

∫ Lx

0

∫ 2π

0

∫ 1

0

(|ur|2 + |uθ|2 + |ux|2)r drdθdx, (7)

where V is the volume of the pipe.
The energy growth of the optimal disturbance for pipe Poiseuille flow at a Reynolds number of
Re = 3000 and an azimuthal wavenumber of n = 1 from the DNS is shown by the blue solid line
in Figure [4], and is compared to the analytically predicted curve calculated using 4 least modes based
on the LST (black). Note that we display the energy in the perturbation to the mean flow, namely,
removing U 0 from uTG. The good agreement between the two curves is an outcome of the low initial
amplitude A0 used in this case, which justifies neglecting the nonlinear terms. Moreover, we display
the energy gain versus t/Re because the time scale of the TG is of the order O(Re).
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Figure 4: The energy gain of the main disturbance with Re = 3000. Comparison between linear
analytical prediction based on four modes (black) and DNS (blue) with an initial amplitude of A0 = 1

As the amplitude of the disturbance increases, the nonlinear terms become more dominant and a
deviation is observed between the linear analytical prediction based on four modes (black) and the
DNS (colors), as shown in Figure [5]. It is worth noting that a wrong impression may be that the
energy becomes smaller as we increase the initial amplitude, A0, however, since the kinetic energy is
normalized by its initial value, the total kinetic energy increases due to the nonlinear effects.

Further validation to the model can be done by looking at the energy over a long period of time.
Recall that the disturbance eventually decays exponentially over time due to viscous effects. The
dominant mode after a long time is the mode that has the slowest decay rate, which is the least stable
mode (the first mode). According to the stability analysis for the chosen Reynolds number, Re = 3000,
the first mode has a decay rate (ωi < 0) of ω1,i = −0.00489. From equations (3) and (7) it can be seen
that for long times both the kinetic energy and the energy gain are proportional to exp(2ω1,it). This
trend is observed in the DNS by examining the energy gain on a y-log scale for several initial amplitudes
A0 (colors), shown in Figure [6]. The predicted decay is superimposed on the figure by a dashed black
line. Again, there is good agreement between the DNS results and the analytical prediction.
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Figure 5: The energy gain of the main disturbance with Re = 3000. Comparison of the DNS results
with several initial amplitudes A0 (colored curves)
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Figure 6: The energy gain of the main disturbance from the DNS of several amplitudes compared to
the predicted slope of the first mode for Re = 3000

Let us now turn our attention to the velocities of the disturbance (removing the base flow) and
examine the effects of the initial amplitude A0 at several times. The velocity field during the transient
growth process remains streamwise independent, i.e. its axial wavenumber is α = 0, however, in general
it may consist of many azimuthal wavenumbers. The initial disturbance has an azimuthal wavenumber
n = 1, nevertheless, in the nonlinear case a mean flow modification, n = 0, may appear, along with the
harmonic n = 2, as well as higher wavenumbers. Using Fourier modal decomposition we can examine
the velocity components at different azimuthal wavenumbers, n, to better understand the nonlinear
effects observed in the graphs of the energy.
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The velocity profiles ûn,x, ûn,r and ûn,θ, where n equals either 0 (green), 1 (blue) or 2 (red) are shown
in Figures [7-10]. We can in see Figures [7] and [9] that at time t = 0 the disturbance consists of n = 1
only. After a certain time, due to nonlinear effects, the n = 1 mode can interact with itself and excite
other modes. For an order of O(ε2) the the excited modes are those having n = 0 and n = 2. For the
case with an initial amplitude of A0 = 1 there are almost no velocities corresponding to n ̸= 1 as can
be seen in Figure [8]. Nevertheless, for higher amplitudes, such as A0 = 10, nonlinear terms become
significant as shown in Figure [10] (see also Figure [5]). It can be seen that the analytical prediction
tracks the velocities profiles quite well provided the nonlinear effects are small.

In addition, from the pair of Figures [7-8] and [9-10], it can be seen that the ûr and ûθ velocity
profiles decay in time since the CVP decays, while the growth occurs in the axial component ûx due to
lift-up. Moreover, the shapes of the velocity profiles of ûr and ûθ hardly change whereas the shape of
the velocity profiles in the axial direction ûx evolves and changes appreciably with time.

IV. Conclusions

In this project it is shown that the transient growth scenario in pipe Poiseuille flow can be represented
by only four linearly decaying modes, given analytically. Comparison of the DNS results to the analytical
expressions showed that for small initial amplitudes there is a perfect agreement between the two.
Nevertheless, as the amplitudes are increased, it becomes necessary to consider the nonlinear effects in
the calculations.

Part B of this project discusses the secondary stability properties of the modified base flow, including
the base flow and the primary disturbance undergoing transient growth. With the understanding of
the TG mechanism in basic flows such as Couette flow, plane Poiseuille flow and pipe Poiseuille flow,
we can better understand complex instability mechanisms associated with more complex flows, e.g.
boundary layers.
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#2 : The research is part of a broad and comprehensive work on transition to turbulence in a pipe led
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Figure 7: Velocity components in Fourier space (ûn,x, ûn,r, ûn,θ) for A0 = 1, Re = 3000 at t = 0
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Figure 8: Velocity components in Fourier space (ûn,x, ûn,r, ûn,θ) for A0 = 1, Re = 3000 at t = 100
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(c) ûn,θ

Figure 9: Velocity components in Fourier space (ûn,x, ûn,r, ûn,θ) for A0 = 10, Re = 3000 at t = 0
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Figure 10: Velocity components in Fourier space (ûn,x, ûn,r, ûn,θ) for A0 = 10, Re = 3000 at t = 100

10


