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Abstract

This study explores phenomena occurring in low-Reynolds-number flows over airfoils
during pitching motion. Our primary objective is to comprehensively examine the effects of
various flow parameters on the progression of a laminar separation bubble (LSB) in terms of
its location and velocity along the wing. Additionally, we examine the Kutta condition using
three different methods. By comparing the theoretical methods to the experimental ones,
we can analyze the accuracy of each method in attached and detached flows. We experimen-
tally investigate the unsteady phenomenon at low Reynolds numbers under periodic pitching
motion with a symmetric NACA 0018 airfoil geometry. To examine the role of reduced fre-
quency on the unsteady aerodynamic phenomenon—for example, propagation of the LSB-
in terms of its location and velocity along the airfoil. Furthermore, we study the unsteady
Kutta condition when the effect of the LSB is eliminated, i.e. with an increased turbulence
level, and when a laminar separation bubble is present. The validity of thin airfoil theory
and the Kutta condition [1] is examined by comparing the theoretical methods, based on
circulation and thin airfoil theory, to the experimentally measured values [1–3]. The results
indicate that the reduced frequency has no influence on the location of the laminar separation
bubble, and by analyzing its velocity, we can determine the minimal and maximal locations
of the bubble on the wing. Furthermore, we determined the lift coefficient and circulation
using the following methods: (I) Wagner’s model, (ii) the Kutta-Joukowski theorem (via the
circulation), and (iii) pressure measurements at the trailing edge. The examination of the
Kutta condition revealed that in the case of the attached flow, the comparison between the
three methods was satisfactory, indicating the validity of the Kutta condition for both Wag-
ner’s model and the Kutta-Joukowski theorem. When comparing lift coefficients, in the case
of detached flow, there was a significant difference between the pressure measurements and
the Kutta-Joukowski theorem, suggesting that the Kutta condition will no longer be valid
for any of this methodology. Similarly, when the LSB was present, there was a difference
between Wagner’s model results and the pressure measurements, indicating that the Kutta
condition would be invalid. However, when comparing the trailing edge measurements with
the results from the Kutta-Joukowski theorem, good compatibility was observed, suggesting
the validity of the Kutta condition when comparing these two methods. This study provides
new insights into the influence of reduced frequency on a laminar separation bubble and the
unsteady Kutta condition.
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1 Background and Introduction

The aerodynamic response due to an airfoil in motion has generated widespread attention for
nearly a century [6–8]. This interest in the topic is motivated by the need for an accurate descrip-
tion of unsteady aerodynamic loads, as it is essential in the context of separated flows [9], noise
prediction [10–12], and flutter [13]. Many modern problems involve the evaluation of structural
nonlinearities that necessitate using time-domain aerodynamic models based on unsteady thin
airfoil theory [14].

Unsteady thin airfoil theory and pitching motion constitute a fundamental aerodynamics
framework describing the dynamic behavior of aircraft and other objects in fluid flows. Unlike
steady-state conditions, where airfoil performance remains constant, unsteady conditions create
variations in airflow parameters due to the airfoil’s motion. When combined with pitching mo-
tion, where an airfoil undergoes cyclic changes in its angle of attack, the complex relationships
between aerodynamic forces, inertia, and fluid dynamics become challenging to predict. This
dynamic interaction determines the lift, drag, and moment characteristics essential for under-
standing the maneuverability and stability of aircraft during takeoff, landing, and various flight
maneuvers.

Additionally, when an airfoil undergoes cyclic changes in its angle of attack, the fluctuating
aerodynamic forces lead to variations in the developed flow field, pressure distribution, and
vortices shed from its surface. These dynamic flow phenomena can generate significant noise [15],
particularly in flow separation and reattachment regions. The unsteady nature of the pitching
motion contributes to noise production, as it introduces periodic fluctuations in the flow that
can resonate with the natural frequencies of the airfoil or other components, resulting in tonal
noise components.

In this context, exploring the limits of unsteady thin airfoil theory opens new avenues to
optimize aircraft performance and reduce noise emissions while enhancing operational capabili-
ties. For this purpose, many studies have aspired to model aerodynamic loads with satisfactory
accuracy using theoretical [3, 6], experimental [16, 17], or numerical [18] methods.

Unsteady Thin Airfoil Theory

Unsteady thin airfoil theory is based on the steady one that describes potential flow over an
airfoil with no thickness. The unsteady theory introduces more complexity relative to the
steady one and requires particular treatment to model the aerodynamic loads. The groundwork
for analyzing these cases commenced at the beginning of the 20th century, aiming to find the
aerodynamic loads on an airfoil in motion. It is based on the classical thin airfoil theory, where
the lift and moment are described by the distribution of vortices along the chord line [19]. The
analysis is based on the principle that an airfoil in uniform flow can be replaced by a vortex
sheet along the chord line, and the strength of this sheet is determined by the condition that the
camber line is streamlined. To uphold this assumption, the aggregate of all velocity components
normal to the mean camber line must be zero.

In modern aerodynamics, analytical theories for unsteady flow with small disturbances are
derived under the assumptions of a flat plate (thin airfoil) in inviscid, incompressible, irrota-
tional, and two-dimensional flow with a planar wake. These assumptions can be the leading
cause for the incompatibility between the theoretical model and the experimental results, es-
pecially for unsteady aerodynamics. The cornerstone models for unsteady aerodynamics were
developed by Wagner [3] in the time domain and by Theodorsen [6] in the frequency domain.
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Wagner described lift generation on an airfoil as a function of the angle of attack in arbitrary
motion. The lift is generated due to circulatory and added mass contributions. The Wagner
function describes the circulatory lift component created by the shed vortices’ influence on the
wake. Following Wagner’s work, Theodorsen investigated the aerodynamic loads on a periodi-
cally oscillating airfoil. Continuing Theodorsen, Garrick [20] investigated the force by an airfoil
undergoing pitching or heaving motions [19, 21], and Sears[22] showed this system could be de-
scribed as a stationary flat plate interacting with an incompressible gust. With von Kármán [22],
they estimated a thin airfoil’s aerodynamic loads, momentum, and lift. Later on, Kemp [23]
showed that the transfer function between the aerodynamic force and the gust upwash velocity
is related to Sears’ function for a periodic gust.

The initial experimental efforts were focused on validating these existing theoretical mod-
els [3, 6, 22]. Walker [24] conducted an experiment using the RAF 130 airfoil at a Reynolds
number of 1.4 × 10−5 that verified some of Wagner’s predictions, despite the fact the model is
based on inviscid flow. It was shown that Wagner’s prediction is valid only for thin airfoils at
very small angles of attack due to the assumption that the trailing edge vortex (TEV) sheet
is planar. Halfmann [25] found an agreement in the general trend experimentally, but his data
differs by about 30% from theoretical values. Keeping the assumption that the TEV sheet is
planar, but now looking at a thick airfoil with a finite trailing edge angle, Chow and Huang [26]
obtained a short-time approximation of the lift curve that gives a vanishing lift at the initial
time for a finite trailing edge angle in contrast to the Wagner solution, which gives a finite initial
lift. Graham [27] claimed that the planar sheet assumption is not suitable for short times, and
to deal with that, he suggested approximating the TEV to a concentrated vortex to predict
the short-time behavior of the lift before the assumption of monotonically increasing lift can be
valid (and Wagner’s theory can be used). For longer times, Ford and Babinsky [28] compared
the bound circulation, predicted by the Wagner model, to measurements of unsteady lift for
an accelerating plate and found that the Wagner lift curve can be a first-order approximation
of the circulatory part of the lift [29]. Though the Wagner effect considers the discrete vortex
simulations by computational fluid dynamics (CFD) and experimental measurements, it lacks
a model that unifies the original Wagner theory and the force model that works for relatively
large angles of attack.

For Sears’ theory, Jackson [30] investigated the three-dimensional unsteady lift on a NACA 0015
airfoil in homogeneous turbulence. The lift measurements at zero angles of attack agreed with the
three-dimensional theory. Still, a further comparison to Sears’s two-dimensional theory showed
it was very inaccurate. Commerford and Carta [31] investigated unsteady pressure on an airfoil
immersed in a sinusoidal, two-dimensional gust and also found reasonable agreement with the
Sears function only at low angles of attack. Generally, the agreement between the first-order
linear theory and experiments is best for small mean angles, moderately reduced frequencies,
and low Mach numbers. In the case of a lifting airfoil with a non-zero mean angle of attack,
experimentally obtained transfer functions show a different behavior than the one obtained by
the first-order approximations [32].

The common notion is that these models provide a sufficient description of the aerodynamic
loads as long as the boundary layer remains attached. However, there seems to be a certain
amount of scatter in experimental validations in the time and frequency domains [25, 32, 33].
Furthermore, a comparison among the experimental investigation is challenging due to differ-
ences in the experimental setups, such as airfoil thickness and camber, type of motion, mean
incidence angle, the amplitude of oscillation, the location of the pitching axis, aspect ratio,
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Reynolds number, and Mach number. Nevertheless, some overall conclusions can be drawn. In
none of the experiments does the experimentally derived transfer function match the theoretical
transfer function quantitatively in amplitude and phase. Therefore, further development of both
theoretical and experimental models is required due to the difference between these theoretical
models and experimental results.

The scarcity of experimental data is primarily due to the difficulty of accurately measuring
instantaneous aerodynamic loads, particularly when small variations in the angle of attack are
considered. From an experimental perspective, the chosen method in this study for measuring
aerodynamic loads is by integrating the surface pressure distribution (?). In addition to accu-
rately obtaining sectional lift, it introduces the advantage of analyzing local flow properties such
as transition, flow separation, and reattachment. Although this alternative allows investigating
the unsteady flow field on the airfoil surface, it requires adequate volume within the airfoil,
which limits the pressure transducer’s amount, type, and position inside the wind tunnel model
or the application of surface pressure sensors. Furthermore, amplitude and phase calibration is
required to consider the finite length of the pressure tap tubing system.

Even though the flow problem over an oscillating airfoil has been discussed over the years [4,
34, 35], the conditions under which the classical theory can be applied to describe dynamic
response and transient aerodynamic loads remain under scientific debate [36, 37]. Furthermore,
despite its age and applicability, the Wagner function has not been extensively validated in
experiments due to the difficulty of measuring time-resolved instantaneous unsteady pressures.
Hence, A primary motivation of the present study is to verify to what extent the linear theory
can be adapted to describe aerodynamic loads during transient and non-periodic motion at low
and high angles of attack. Specifically, one particular phenomenon of interest is the presence of
a laminar separation bubble (LSB).

Laminar Separation Bubble

At low Reynolds numbers and static conditions, the transition from a laminar boundary layer to
a turbulent one is associated with the development of the LSB, which is formed when the laminar
boundary layer encounters an adverse pressure gradient and ultimately loses its ability to remain
attached before the Tollmien–Schlichting instabilities initiate the transition process [38, 39]. At
a certain distance downstream of the laminar separation point, the separated laminar shear layer
transitions to a turbulent free-shear layer, returning to the surface, thereby defining a turbulent
reattachment point and establishing a turbulent boundary layer. The region between the laminar
and turbulent reattachment point defines the LSB. Further downstream, and depending on the
pressure recovery parameters, the turbulent boundary layer may or may not undergo turbulent
separation, ultimately leading to stall. Under periodic motion, the LSB travels in the direction
of the wing chord, making its effects on the lift even more difficult to analyze and predict. The
ability to predict the LSB’s spatial and temporal behavior is crucial to determine the airfoil
aerodynamic performance at low Reynolds numbers [40–42].

Extensive research has been conducted to understand the influence of various factors on
LSB in steady conditions. For instance, O’Meara and Mueller [43] characterized steady LSB
at different angles of attack by studying static pressure distributions obtained from pressure
taps. They observed deviations from inviscid solutions due to the presence of the LSB. Another
comprehensive study by Burgmann and Schröder [44] explored the impact of parameters such
as freestream turbulence (FST) intensity, Reynolds number, and angle of attack on the size and
characteristics of LSB through experimental means. They concluded that the angle of attack
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has a more pronounced influence on the separation point, transition onset, and reattachment
point than the Reynolds number. Consequently, the bubble’s length and thickness strongly
depend on the Reynolds number, and a weaker one depends on the angle of attack. Moreover,
they demonstrated the effect of FST on the geometry of the separation bubble. Similarly,
Hosseinverdi and Fasel [45] conducted numerical simulations to assess the influence of FST on
the Kelvin-Helmholtz instability and, consequently, the transition process.

Unlike the above-mentioned studies, characterizing the unsteady behavior of LSB poses
greater challenges and has thus seen limited experimental investigations. Experiments in this
domain [17, 46, 47] have primarily revolved around low-frequency pitching-type motions, reveal-
ing hysteresis in the bubble’s location between pitch-up and pitch-down phases of the motion
cycle. Ericsson [48] explained this behavior using the unsteady version of Bernoulli’s equation.
Recent research has delved into higher-frequency unsteady motions, as explored by Nati [49]
and Guerra [50]. Understanding the dynamics of LSB in unsteady conditions remains critical
for optimizing airfoil aerodynamics, particularly in low Reynolds number regimes. Researchers
continue to explore these phenomena to improve our ability to predict and manage them in
practical applications. The LSB can be detected by a negative pressure peak on the suction
side, followed by a pressure plateau. From here, one can track the propagation of the bubble
and analyze the effect of flow characteristics on its behavior to develop an accurate model that
can predict its behavior and help prevent or minimize its effect on the wing.

Kutta Condition

The Kutta condition has been a pervasive auxiliary requirement in the historical development
of potential-flow aerodynamics. This condition finalizes the potential-flow framework by deter-
mining the circulation around an airfoil and, consequently, the lift force it generates. The Kutta
condition has diverse representations, including smooth flow off the trailing edge, the absence
of flow around the trailing edge, or the specific placement of the stagnation point right at the
trailing edge.

In the context of steady airfoil flow, the Kutta condition asserts that an airfoil’s circulation
is directly linked to lift generation [51]. It enforces that the rear stagnation point should co-
incide with the airfoil’s trailing edge. This implies several key characteristics: there should be
no pressure discontinuity between the upper and lower surfaces at the trailing edge, the veloc-
ity at the trailing edge must remain finite, tangential velocities on both the upper and lower
surfaces should be equal at the trailing edge, and there should be no vorticity shed behind the
airfoil [52]. In the case of unsteady flow, the Kutta condition is not uniquely defined, leading
to the emergence of various approaches and models. Giesing’s model [53], for instance, suggests
that the flow streamlines can be tangential to either the upper or lower surface of the airfoil at
the trailing edge. The direction of vorticity after being shed from the airfoil plays a crucial role
in determining whether the stagnation streamline follows the contour of the lower surface or
becomes tangent to the upper surface at the trailing edge. This fundamental difference between
steady and unsteady airfoil flows and the variability in interpreting the Kutta condition high-
lights the complexity of flow phenomena, especially in scenarios involving high angles of attack
and unsteady conditions.

This model encounters difficulties when the unsteady frequency approaches zero because it
fails to converge with the classical Kutta condition. Bisplinghoff [13] proposed introducing a
pressure jump at the trailing edge to address this issue. By assuming equal pressures on the
upper and lower surfaces near the trailing edge, this modification ensures convergence with the
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classical Kutta condition. Building on this work, Taha and Razaei [21] expanded Theodorsen’s
theory. They demonstrated that imposing the classical Kutta condition on an unsteady pitching
airfoil could lead to inaccurate phase lags in the lift response. Their research revealed that
the viscous extension of Theodorsen’s theory exhibited significant deviations from the classical
results, especially at high reduced frequencies and low Reynolds numbers. Instead, it displayed
improved agreement with results obtained through unsteady Reynolds-averaged Navier–Stokes
simulations on a pitching airfoil. Another approach was proposed by Xia and Mohseni [51]. In
their model, they accounted for the shedding and convection of vorticity in the wake using a free-
wake model. They employed an unsteady Kutta condition based on a momentum balance near
the trailing edge. This dynamically determined the location for vorticity shedding. Compared to
computational simulations, their model closely matched the results concerning wake dynamics
and unsteady loading on a pitching airfoil. Moreover, numerous experiments have indicated
that the classical Kutta condition does not hold in unsteady flows [52]. During the 1970s and
1980s, there was an ongoing debate regarding the precise characteristics of the Kutta condition
in unsteady flows [54, 55].

A consensus emerged, suggesting that the classical Kutta condition was satisfied in exper-
iments characterized by low-frequency, low-amplitude, and high Reynolds numbers [9]. These
specific conditions align with the parameters used in the experiments conducted in this project.
By analyzing pressure distributions along the wing, extracting vorticity at the trailing edge and
along the wing, and subsequently comparing these results to one another as well as to Wagner’s
model, we can gain valuable insights into the applicability of the unsteady Kutta condition in
both theoretical and experimental contexts.

Motivation

The motivation behind this study arises from the need for a deeper understanding of the phe-
nomena occurring in low-Reynolds-number flows over airfoils. Our primary objective is to com-
prehensively examine the effects of different flow parameters on the progression of the LSB in
terms of its location and velocity along the wing. Additionally, we examine the Kutta condition
using three different methods to calculate it. By comparing the theoretical methods to the ex-
perimental ones, we can analyze the accuracy of each method in attached and detached flows.
This document proceeds as follows: firstly, the experimental approach is described. Afterwards,
the key findings obtained in this research are presented and discussed.

The methodology of investigating the LSB is divided into two components. Initially, the
flow characteristics’ influence on the LSB’s behaviour is examined in terms of the location and
velocity of the bubble. By identifying significant negative pressure peaks in the instantaneous
pressure measurements, the location and velocity of the bubble are evaluated and compared for
a range of flow characteristics. The objective is to discern the influence of each characteristic,
enabling us to predict aerodynamic loads on the wing. This understanding serves as a foundation
for enhancing the overall performance of the wing.

The second part examines the effect of flow separation on validating the unsteady Kutta
condition [1]. A unique data set of instantaneous pressure measurements along the wing and
on the trailing edge was used to calculate the circulation derivative. Then, using the derivative
calculated from the measured pressure on the trailing edge and comparing it to the derivative
calculated using Wagner’s model [3] and the Kutta-Joukowski theorem [1, 2]. This comparison
can reveal a fundamental understanding of what models are more accurate in estimating the
aerodynamic loads. In the future, one can locate the main inaccuracies of these theoretical
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models. These inaccuracies, in which the unsteady Kutta condition fails, can be used to suggest
an empirical model that considers the unsteady Kutta condition. The new model can be used
in various experiments aspiring to improve manoeuvrability during flight.

2 Review of Mathematical Formulation

The Laplace equation describes Incompressible irrotational flow, a linear equation admitting
superposition. Therefore, it is the basis for almost all analytical theories of aerodynamics in the
linear regime (such as Wagner’s model [3]). However, the use of potential flow isn’t comprehen-
sive and needs additional conditions, for instance, the Kutta condition, to provide a complete
description. In particular, it does not quantify the vorticity shed at the sharp trailing edge.
This quantity is essential as it immediately determines the circulation over the airfoil through
the conservation of circulation, which in turn influences the lift via the Kutta-Joukowsky lift
theorem [1, 2]. Therefore, the potential flow theory alone cannot predict the generated lift force.
However, suppose the generated lift force supplies the potential flow theory. In that case, it will
reasonably represent the flow field even in unsteady high angles of attack situations, as examined
in this paper.

In this part, we analyse the fulfilment of the unsteady Kutta condition under periodic motion.
The first part of this study focuses on the estimation of the lift coefficients using the following
approaches: (i) prediction with the thin airfoil theory in the time domain (the Wagner function),
(ii) the Kutta-Joukowski’s theorem, and (ii) the lift coefficient was measured using instantaneous
pressure measurements.

2.1 Integral Parameters

2.1.1 Wagner Model

Wagner [3] has formulated the indicial response function ϕ(τ) of an airfoil due to an abrupt
change in the angle of attack. The generation of circulatory lift for an arbitrary motion of a
thin airfoil is evaluated by applying Duhamel’s superposition integral of indicial step responses,
making Wagner’s theory useful for describing dynamic response during arbitrary maneuvers (?).
Under the small-angle of attack assumption, the total lift is a combination of the circulatory
and non-circulatory components (also called added mass, apparent mass, or virtual mass) in
literature.

For pure pitching motion, the non-circulatory response in the time domain reduces to

CNC
l (τ) = π

(
dα

dτ
− a

d2α

dτ2

)
(1)

where α̇ and α̈ are the angular velocity and acceleration, respectively. The no-circulatory re-
sponse is instantaneous. The circulatory component around the mean angle of attack is achieved
mathematically with a Duhamel superposition integral

CC
l (τ) =

∂Cl

∂α

(
α3/4(0) +

∫ τ

0

dα3/4

dσ
ϕ(τ − σ)dσ

)
(2)

and combining equations 2,1 we obtain the total lift:

CW
l (τ) = π

(
dα

dτ
− a

d2α

dτ2

)
+

∂Cl

∂α

(
α3/4(0) +

∫ τ

0

dα3/4

dσ
ϕ(τ − σ)dσ

)
(3)
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where α3/4 is the induced angle of attack at three-quarters chord, ϕ(τ) is the first-order Wagner
function, and τ = U∞t/b is the non-dimensional convective time, expressed in semi-chords b =
c/2. The induced three-quarter-chord angle of attack is related to the instantaneous geometric
angle of attack by

α3/4(τ) = α(τ) +

(
1

2
− a

)
dα

dτ
(4)

where a is the location of the pitching axis, measured from the mid-chord and normalized by
the semi-chord. For pitching motion about the quarter-chord axis, it corresponds to a = −1/2.
The indicial response function ϕ(τ) is the ratio between the time-dependent lift, obtained by a
step change in the angle of attack, and the steady lift, obtained from positioning the airfoil at
the same angle of attack.

Although the Wagner function ϕ(τ) is known exactly, it is not formulated in simple ana-
lytical terms since rendering Duhamel’s integration rather complex. The Wagner function is
particularly difficult to compute, with definitions requiring the inverse Laplace or Fourier trans-
form of the Theodorsen function, which is represented using Hankel functions [56]. The lack of a
convenient and readily usable expression for the Wagner function has resulted in the formulation
of various simplifying approximations that can be used to obviate the problem [56–59]. One of
the earliest and perhaps most commonly used Wagner’s response function was approximated by
Jones [57]

ϕ(τ) ≈ 1.0− 0.165e−0.0455τ − 0.335e−0.3τ (5)

where the lift at the initial instant of motion equals one-half of the final steady-state value. The
approximation suggests an exponential decay of the transient circulatory lift response.

2.1.2 Kutta-Joukowski Theorem

The Kutta-Joukowski theorem [1, 2] states that lift per unit span on a two-dimensional body
is directly proportional to the circulation around the body [60]. The main assumption in this
theorem is potential flow and small angles of attack. The definition for lift per unit span

L′ = ρU∞Γ (6)

so the lift coefficient takes the form

CKJ
l =

Γ

0.5U∞c
(7)

where c is the chord length, and Γ is the circulation around the airfoil, defined as:

Γ(t) =

∫ te

le
γ(x, t)dx ⇒ Γ̇KJ =

∂

∂t

∫ te

le
γ(x, t)dx (8)

where x is the normalized chord coordinates and γ is a single vortex and is defined by the
difference between the velocities above and below the wing at a certain point. The mathematical
description is according to the following definition

γ = uupper − ulower (9)

where the local velocity u is found directly from the definition of the static pressure coefficient

Cp = 1−
(

u

U∞

)2

. (10)

Herein CKJ
l can be calculated and compared to CW

l .
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2.1.3 Experimentally Measured Lift

From the experiment, we obtain the instantaneous pressure coefficient; hence, we can calculate
the lift coefficient using the following definition:

CM
l =

∮
−Cpdx̄ (11)

where dx̄ = dx cosα + dy sinα is the parallel location to the chord. The integration path is
clockwise. The definition of the pressure coefficient is according to

Cp =
p− p∞
0.5ρU2

∞
(12)

where p(t) is the instantaneous local static pressure, p∞ is the ambient static pressure, U∞ is
the free-stream velocity, and ρ is the density of the air. By converting the differential integral in
equation 11 into a summation integral with a finite number of pressure coefficients and locations,
the lift coefficient was calculated using trapezoidal rule approximation:

CM
l =

(
N∑

n=1

−
Cp(n+1) + Cp(n)

2
(xn+1 − xn)

)
cosα−

(
N∑

n=1

Cp(n+1) + Cp(n)

2
(yn+1 − yn)

)
sinα

(13)
where N is the number of chordwise pressure taps.
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2.2 Unsteady Kutta Condition

The Kutta condition at the sharp trailing edge can be stated in several ways [61, 62]. For
example, the pressure must be continuous at the trailing edge (TE):

lim
y→0+

P (TE, y) = lim
y→0−

P (TE, y) (14)

where P (TE) represents the pressure near the trailing edge station, and y is the coordinate
perpendicular to the chord, 0 is at the height of the leading edge. For potential flow, this
condition (14) results in P1 = P2, where points 1 and 2 are on the edge of the boundary layer
at the trailing edge. The assumption that the pressure is constant along the boundary layer
thickness is not necessarily valid in the trailing-edge region. As such, if P1 is the pressure rise
across the boundary layer, then the condition Eq.(14) results in

P1 −∆P1 = P2 −∆P2 (15)

which is the modification of the classical Kutta condition (P1 = P2) as suggested by Preston [63]
and Spence [64]. The unsteady Bernoulli’s equation can be used to relate P1 and P2 as [13, 65]

P1

ρ
+

1

2
u21 +

∂ϕ1

∂t
=

P2

ρ
+

1

2
u22 +

∂ϕ2

∂t
(16)

where u is the potential flow velocity (as defined previously in Eq. 10) at the edge of the boundary
layer and ϕ is the corresponding velocity potential. Combining Eq.(15) and Eq.(16) and realizing
that ϕ1 − ϕ2 = Γ results in

Γ̇TE =
1

2
(u22 − u21) +

∆P2 −∆P1

ρ
. (17)

By combining Eq.(10) with Eq.(17) we obtain the unsteady Kutta condition at the trailing edge

Γ̇TE = 0.5U∞(Cu
p − C l

p) +
∆P2 −∆P1

ρ
(18)

where Cu
p and C l

p correspond to the upper and lower static pressure coefficients, respectively. For

simplicity later on, let Γ̇U = 0.5U∞(Cu
p −C l

p) , Γ̇P = ∆P2−∆P1
ρ and overall Γ̇total = Γ̇U+Γ̇P . Now,

we can calculate the right-hand side of the Eq.(18) using the measured pressure at x/c = 0.9
near the trailing edge. The left-hand side of Eq.(18) can be calculated using the instantaneous
pressure with Eqs.(8), (9),(10), or by a theoretical method with the Wagner’s model and the
definition of lift per unit span according to the Kutta-Joukowski theorem as seen in Eqs.(3) and
(7). By deriving it concerning time we can obtain

Γ̇W =
∂

∂t

U∞CW
l

4
(19)

where superscript W indicates estimation according to the Wagner model. Using Eq.(19) and
Eq.(8) and placing them in Eq.(18), one can determine the validation of the Kutta condition on
the trailing edge.
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3 Experimental Setup

Instantaneous aerodynamic loads were measured in a closed-loop wind tunnel at the Wind
Tunnel Complex of Technion’s Faculty of Aerospace Engineering. The low-speed wind tunnel has
a contraction ratio of 5.76, and it incorporates a test section with a cross-section area of 0.5m by
0.5m. An axial fan drives the airflow and can generate free-stream velocity up to U∞ = 50 m/s.
Measurements were performed at Reynolds numbers in the 1.5× 105 < Rec = U∞c/ν < 3× 105,
where ν is the kinematic viscosity of air. Schematic of the experimental setup is shown in
Figure 1. A two-dimensional NACA 0018 airfoil was mounted vertically at the center of the
test section. The wind tunnel model with a chord length of c = 0.25 m was constructed of
lightweight carbon fiber. The gap between the wingtip and the wind tunnel walls was 2.5 mm
to minimize the three-dimensional effects. The model moved at different reduced frequencies
0.04 < k = ωb

U∞
< 0.12 where ω is the frequency the wing moves at.

U
∞

Figure 1: Top view of the experimental set-up. A two-dimensional NACA 0018 airfoil oscillates
about the quarter-chord axis in grid-generated turbulence.

A dedicated experimental rig was constructed to generate prescribed periodic motion. The
model can be traversed and rotated dynamically by a pair of electromagnetic linear servo motors
(Linmot, PS01-37x240F-C), which generate pitching and plunging motion. For simplicity, herein,
only pitching motion is considered. The airfoil oscillates around its quarter-chord x/c = 0.25
with a mean angle of attack αm in pitching motion of amplitude αA. The instantaneous angle of
attack is measured with a high-accuracy rotary sensor. All the data were acquired simultaneously
with National Instruments (NI) data acquisition PXIe-1082 chassis at a sampling frequency of
FS = 2kHz. Instantaneous pressure, angle of attack, and hot-wire measurements were acquired
with 24-bit NI PXIe-4497 cards. The phase and amplitude of a signal were determined by
applying the Fast Fourier Transform to each period of the airfoil motion. The analysis of each
period independently allows the calculation of the uncertainties in the frequency, magnitude,
and phase.

NACA 0018 airfoil geometry was selected mainly due to the availability of an extensive
aerodynamic validation database [4, 66, 67]. The airfoil is equipped with 42 pressure taps at
the mid-span of the model. Each pressure tap is connected to an HCLA-12X5EB miniature
pressure transducer, where all the negative ports of the pressure diaphragm are subject to
ambient pressure. Time-resolved lift coefficients were calculated through trapezoidal integration
of the chordwise pressure coefficient distribution. To avoid a phase delay, short-length (50 mm)
Tygon tubing was used to connect the pressure transducers to the pressure taps. The length
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of the Tygon tubes was minimized to avoid pressure distortion inside the tubing due to viscous
dissipation and resonance [68].

Airfoil aerodynamics at low to moderate Reynolds numbers are characterized by forming a
laminar separation bubble, which highly influences the pressure distribution and the correspond-
ing aerodynamic loads. In addition, boundary layer transition introduces a non-linearity to the
lift dynamics by generating a significant pressure variation across the boundary layer near the
trailing edge, thus affecting the bound circulation around the airfoil [39]. Therefore, the elimi-
nation of the laminar separation bubble is of great importance. A passive bi-planar rectangular
grid was introduced to elevate the free-stream turbulence intensity above the nominal baseline
level (below 0.1%), eliminating the effect of the laminar separation bubble on the aerodynamic
loads. The grid was introduced in the contraction section of the wind tunnel, 1.15m upstream
from the airfoil’s leading edge. For the characterization of the grid-generated turbulence, mea-
surements of the streamwise velocity in the free stream were performed with one component of
hot-wire anemometry. The measured streamwise velocity spectrum is in close agreement with
the von-Kármán spectrum for homogeneous and isotropic turbulence with a 2.4% turbulence
intensity at Rec = 3× 105.

Prior to pitching motion analysis, experiments with a static airfoil were performed to deter-
mine the airfoil’s aerodynamic characteristics. A comparison is made to previously published
data by Muller [69]. Figure 2a shows the measured lift coefficient with increased turbulence
intensity at Rec = 3× 105. At low angles of attack, there is no significant variation in static lift
coefficient with increasing turbulence level [70]. A marginally higher lift coefficient is generated
with lower turbulence intensity at moderate angles of attack. Introducing the passive grid pre-
vents the development of the laminar separation bubble, and delays stall. The corresponding
surface pressure coefficient distribution at the studied angles of attack of α0 = 3◦ and α0 = 6◦

is shown in Figures 2b and Figure 2c. Comparing the chordwise pressure coefficients shows
excellent agreement.

(a) (b)

(c)

Figure 2: Comparison of the measured (a) lift coefficient and chordwise pressure coefficient
distributions at (b) α0 = 3◦ and (c) α0 = 6◦ at Rec = 3× 105. Grey markers correspond to

data acquired by Muller [69] and black markers to the current experiment with grid-generated
turbulence.
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4 Results

This study utilizes real-time pressure measurements along the wing to investigate the laminar
separation bubble’s behaviour and the unsteady Kutta condition in attached, separated, and
with an LSB. The analysis was performed by comparing theoretical values to experimental results
and analyzing them for all three cases. The pressure measurements were taken as detailed in
§ 3.

4.1 LSB

This section presents the results of the experimental characterization of the laminar separation
bubble under periodic motion. The bubble development within the flow is quantified based on
measured instantaneous surface pressure. Figure 3 compares measured static pressure distribu-
tion at three typical angles of attack of α = 6◦, 10◦, and 12◦. The measured static pressure is
compared to the one predicted with XFOIL [71]. The mean static pressure distribution confirms
the formation of the LSB on the suction side when the airfoil is at positive angles of attack.
A pressure plateau is produced after the negative pressure peak on the suction side due to the
near-stagnation flow within the laminar separation bubble [72].

The laminar separation bubble is no longer stationary in space when the airfoil is in motion.
Figure 4 shows the time history of instantaneous pressure coefficient at two Reynolds numbers,
i.e. Rec = 2×105 and Rec = 3×105. The time step of the LSB is evident at multiple locations on
the wing. It can be seen that at the lower Reynolds, the LSB is larger in size, and it, therefore,
can be more easily detected. Therefore, we focus on Rec = 2× 105 to determine the algorithm
to detect the bubble.

(a) α0 = 6◦ (b) α0 = 10◦ (c) α0 = 12◦

Figure 3: Comparison of the measured static chordwise pressure coefficient distributions at
Rec = 2× 105 and three typical angles of attack.
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(c) Rec = 2× 105, α = 0± 6◦
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(d) Rec = 3× 105, α = 0± 6◦

Figure 4: Time history of pressure coefficients on the suction surface at various conditions
(with a reduced frequency of k = 0.1 for all presented cases).

The following methodology was employed in the present study to estimate the LSB’s velocity
by following the LSB’s location through time. The presence of the LSB can be detected by a
pressure plateau, as seen in Figure 4, where the LSB is detectable by an unstable flattening
of the pressure coefficient instead of a peak. The negative pressure coefficient peak indicates
the separation location so it can be tracked by the maximum difference between an estimated
”attached” surface pressure (the pressure distribution without an LSB) and the measured surface
pressure. The attached surface pressure was estimated using the ”smoothdata” Matlab function,
using robust quadratic regression. This method is relatively computationally expensive but more
robust to outliers.

Figure 5 shows the LSB in numerous cases- for Reynolds number 2 × 105, and initial angle
of attack of 6 degrees and an amplitude of 6 degrees, in reduced frequencies of 0.04, 0.06, 0.08,
0.1, 0.12 in laminar flow. In this figure, we can see the location of the LSB along the chord
concerning the non-dimensional time. The LSB traveled between x/c = 0 to x/c ≈ 0.82 for all
presented reduced frequencies. This means the LSB did not travel to the trailing edge (according
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Figure 5: Comparison of the calculated LSB location in different reduced frequencies, at
Rec = 2× 105, α = 6◦ ± 6◦.

Figure 6: Comparison of the calculated LSB normalized velocity in different reduced
frequencies, at Rec = 2× 105, α = 6◦ ± 6◦.

to the smoothed results), but by looking at the un-filtered results, a jump in location near the
trailing and leading edges appears as noisy and unclear parts of the curve. This forms due to the
jump of the LSB as the angle of attack changes from increasing to decreasing. The amplitude
for all reduced frequencies tested is almost equal, where the difference between the amplitude
is caused by the approximation of the results to a sin function. When looking at the unfiltered
results, it is evident that the amplitude of all the curves is equal.

Figure 6 shows the LSB in numerous cases- for Reynolds number 2×105, and initial angle of
attack of 6 degrees and an amplitude of 6 degrees, in reduced frequencies of 0.04, 0.06, 0.08, 0.1,
0.12 in laminar flow. This figure shows the normalized velocity (normalized by the frequency
and ω) concerning the normalized time (τ). We can see that the amplitude for all reduced
frequencies is almost the same when the differences stem from the approximation and analysis
of the raw data. The amplitude is around 0.4, and we see the amplitude is the same by looking
at x/c in the normalized time. Therefore, the minimal and maximal location of the LSB on the
wing can be found by normalizing the velocity.
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4.2 Kutta condition

In this section, we will discuss the application of Kutta’s condition under unsteady motion.
Under certain conditions, such as low Reynolds number flows, high-frequency motion of the
airfoil, and laminar-to-turbulent transition, the deviation is observed from the classical Kutta
condition [62, 73]. It was concluded by Taha and Rezaei [62] that the viscous contributions
that are neglected in a potential-flow analysis (employing the Kutta condition at the trailing
edge) affect the magnitude of circulation development at lower Reynolds numbers and induce
phase shift at higher frequencies. That is, the Kutta condition is one of the reasons behind the
inaccurate phase prediction of Theodorsen’s lift frequency response function. Before discussing
the effect of parameters on the circulation dynamics, let us point out some noteworthy findings.

Figure 7: The calculated lift coefficients using Kutta-Joukowski theorem, Wagner’s model, and
pressure measurements at Rec = 3× 105, α = 0◦ ± 6◦, k = 0.04 with grid-generated turbulence.

Figure 7 compares the calculated lift coefficients using the Kutta-Joukowski theorem, Wag-
ner’s model, and pressure measurements for the attached flow. As expected, when the flow is
attached, there are small differences between the theoretically calculated Cl(C

KJ
l , CW

l ) and the
one estimated from the pressure measurements (CM

l ). The difference between CKJ
l and CM

l

is smaller than the difference between CW
l and CM

l due to fewer assumptions that affect the
accuracy of the theoretical model. This suggests that both theoretical models are accurate in a
larger spectrum of angles of attack, but still, for the largest angles, both models became slightly
less accurate. Due to the wide spectrum of angles in which the theory is valid, the unsteady
Kutta condition will probably be valid.

Figure 8a has the same comparison but for detached flow. Here, it is evident that the flow is
detached due to the drop in the lift coefficient. While the angle of attack is small, the boundary
layer remains attached, but once the angle is a little higher, the flow becomes disconnected.
There is a major difference between CKJ

l and CM
l that indicates the Kutta-Joukowski theorem

is inaccurate when the flow detaches, which indicates that the unsteady Kutta condition might
not be valid in this case. However, CW

l and CM
l are relatively close, so the comparison to
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(a) Grid-generated turbulence (b) Low turbulence

Figure 8: Comparison of the calculated lift coefficients at Rec = 2× 105, α = 6◦ ± 12◦, and
k = 0.04 using Kutta-Joukowski theorem, Wagner’s model, and pressure measurements in
attached and detached flows with (a) grid-generated turbulence and (b) low turbulence.

(a) Comparison of the calculated parts of Eq. (18)
using pressure measurements at the trailing edge. (b) Comparison of the calculated Kutta condition.

Figure 9: Comparison of the calculated Kutta condition at Rec = 3× 105, α = 0◦ ± 6◦, and
k = 0.04 using Kutta-Joukowski theorem, Wagner’s model, and pressure measurements at the

trailing edge in detached flows with grid-generated turbulence.

Wagner’s model indicates that the unsteady Kutta condition might be valid.
Figure 8b has the same comparison as the previous two but for the bubble present. Here,

it is evident that there is the LSB present due to the drastic drop in the lift coefficient, which
is followed by a peak and a lot of ‘noise’ in the CM

l . It can be seen that the CKJ
l manages to

showcase the drop in CM
l due to the use of pressure measurements from the entire wing, which

allows the theoretical formulation to consider the presence of the LSB. This is also why the drop
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cannot be seen in CW
l because when using this method, the calculations are purely theoretical

and do not rely on any information concerning the sudden pressure changes on the wing. This
can mean that the unsteady Kutta condition may be valid when comparing the Kutta-Joukowski
calculation method to the experimental results. However, if we compare the results to Wagner’s
model, the unsteady Kutta condition might not be valid.

In Figure 9a, the effect of the pressure fluctuations in the trailing edge in comparison to the
effect of the circulation in the trailing edge on the change in vorticity over time is exhibited. We
can see that the changes in circulation have a similar influence to the influence of the pressure
fluctuations caused by the oscillation of the airfoil. The summation of the two describes the
Kutta condition more accurately as measured at the trailing edge.

In Figure 9b we can see a comparison between the evaluated unsteady Kutta condition
using Wagner’s model(Γ̇W ), the definition of circulation (see Eq. 8) derived concerning time
(calculated using Kutta-Joukowski, Γ̇KJ , and the measured pressure in the trailing edge as
described in Eq. 18 with (Γ̇TE) in attached flow. It can be seen that when comparing the
circulation derivative, there is a small difference between all three methods, as expected after
looking at the lift coefficient comparison in this case. These differences stem from the assumption
of each theoretical calculation method. Still, they are small enough to determine that the
unsteady Kutta condition is valid in the case of the attached flow.
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5 Conclusions

The current study investigates experimentally the unsteady phenomenon at low Reynolds num-
bers under transient and periodic pitching motion with a symmetric NACA 0018 airfoil geometry.
The effect of reduced frequency on the characteristics of laminar separation bubbles was inves-
tigated, as well as the unsteady Kutta condition when the effect of the LSB is eliminated, i.e.,
with an increased turbulence level. Furthermore, the validity of thin airfoil theory and the Kutta
condition [1] was examined by comparing the theoretical methods, based on circulation and thin
airfoil theory, to the experimentally measured values [1–3].

Firstly, by looking at the LSB location on the wing at the tasted conditions (Reynolds
number of 2 × 105), it was found that the amplitude for all reduced frequencies tested (0.04 -
0.12) is equal, meaning the reduced frequency does not affect the location of the separation of
the LSB. Additionally, by looking at the normalized velocity, we can see it is compatible with the
normalized LSB location in all reduced frequencies. The amplitude is the same, so the minimal
and maximal location of the LSB on the wing can be achieved by normalizing the velocity. In
the future, our objective is to discern the influence of each characteristic, enabling us to predict
aerodynamic loads on the wing. This understanding serves as a foundation for enhancing the
overall performance of the wing.

Secondly, regarding the Kutta condition, when the flow was attached, we could infer that
Wagner’s model and the Kutta-Joukowski theorem are less accurate for the large angles of
attack. Still, comparing the results of the Kutta condition measured at the trailing edge, the
one measured along the wing, and the one calculated using Wagner’s model suggested that the
inaccuracies are small enough, so the Kutta condition is valid. When looking at the lift coefficient
comparison, it can be seen that when the flow was detached, the lift coefficient calculated using
pressure measurements was similar to the one calculated using Wagner’s model. Therefore, The
Kutta condition may be valid in this case. However, the lift coefficient calculated using pressure
measurements was incompatible with the one calculated using the Kutta-Joukowski theorem,
which indicates that the Kutta condition will not be valid in this comparison.

Interestingly, when an LSB is present, there was a satisfactory match between the lift coeffi-
cient measured using pressure measurements and the one calculated using the Kutta-Joukowski
theorem. This means the Kutta condition may be valid when comparing the two while the LSB
is present, unlike the previous case. However, when comparing the lift coefficient measured us-
ing pressure measurements and the one calculated using Wagner’s model, it is evident that the
model could not represent the LSB’s presence, which caused a significant difference between the
two lift coefficients. This indicates that the Kutta condition will not be valid in this comparison.
This comparison can reveal a fundamental understanding of what models are more accurate in
estimating the aerodynamic loads in various cases. In the next step, one can locate the main inac-
curacies of these theoretical models. These inaccuracies, in which the unsteady Kutta condition
fails, can be used to suggest an empirical model that considers the unsteady Kutta condition.
The new model can be used in various experiments aspiring to improve manoeuvrability during
flight.
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limitations of the theodorsen and sears functions”, Journal of Fluid Mechanics 811 (2017).

33A. G. Rainey, Measurement of aerodynamic forces for various mean angles of attack on an
airfoil oscillating in pitch and on two finite-span wings oscillating in bending with emphasis
on damping in the stall, NACA Tech. Rep. 1305 (1957).
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