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Abstract

Predicting the resulting flow field due to external forcing is highly important in
designing feedback controllers in active flow control applications and studying the flow
physics of boundary layers subject to external forcing. We have developed an input-
output solver based on linearized Navier-stokes equations to capture structural features
and energy pathways of transitional wall-bounded shear flows. We extended our input-
output solver to model the flow response to actuation following Gluzman and Gayme,
2021a approach, where the actuator geometry was represented as a cluster of single-
point source arrays arranged in an actuator’s geometrical pattern. Lastly, we propose a
novel simplified model for determining the optimal spacing between a spanwise array
of symmetric plasma actuators for maximal amplification of the streamwise velocity
component via generation spanwise-periodic counter-rotating vortices. Our modeling
tool can be utilized in designing and optimizing actuation patterns in active flow control
applications at a fraction of the time compared to high-fidelity simulations.

1 Introduction
Being able to predict the resulting flow field due to actuation is of high importance in
designing feedback controllers in active flow control applications and studying the flow
physics of boundary layers that are subject to external forcing. In the reduced modeling
approach, simplifications for the governing equations are usually used to approximate the
high-dimensional system that retains those aspects of the flow that are relevant from a
control perspective Kim and Bewley, 2007; Taira et al., 2017. Hydrodynamic stability and
input-output-analysis-based tools have shown great promise in providing the required un-
derstanding. In particular, the externally forced linearized Navier-Stokes (LNS) system has
shown success in examining the important dynamic processes, structural features, and en-
ergy pathways of transitional e.g., Jovanović and Bamieh, 2005a and turbulent e.g., Hwang
and Cossu, 2010 wall-bounded shear flows. In flow control applications, input-output-based
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analysis has been used to derive control laws e.g., Semeraro et al., 2013 and preliminary as-
sessment of actuation strategies e.g., Tol et al., 2019. These methods have also been adapted
to analyze the effect of flow manipulation limited to temporal periodic actuation, such as
transverse wall oscillations Moarref and Jovanović, 2010, surface blowing and suction Moar-
ref and Jovanović, 2012; and spatially periodic passive actuation configurations, such as dif-
ferent riblet shapes for drag reduction in turbulent channel flow Chavarin and Luhar, 2019.
On the other hand, it is more common in experimental flow control to find many other
types of actuators, such as plasma actuators Thomas et al., 2019. Plasma actuators have no
moving parts, are very light and thin, and can operate at a wide range of frequency bands,
making them suitable for use over flight speeds up to 3.5 Mach, at which their utilization
has demonstrated staggering 70% reduction of drag. These actuators come in a variety of
configurations and can be operated under pulsed excitation with adjustable duty cycle and
frequency. These actuators introduce localized input that is typically modeled as a body
force distribution in physical space Morra et al., 2020.

In Gluzman and Gayme, 2021a, an input-output approach is used to compute the flow
response to specific localized plasma actuator geometries. The approach takes advantage of
the linearity of the transfer function representation to construct the actuated flow field as a
weighted superposition of the flow responses to point sources of varying intensity compris-
ing the actuation model. The approach has been successfully applied in transitional flows
and validated for the special case of step input signals, which provide a model for contin-
uous actuation signals. This input class provides an important test case as the associated
flow response corresponds to the time-averaged flow field due to constant actuation, which
is extensively reported in the literature. Still, utilizing this framework for actuators design
and optimization has not been considered yet.

In this work, we derive an input-output LNS solver to study the flow physics of the flow
response to external forcing and propose a novel approach for designing and optimizing
actuators, focusing on a spanwise periodic array of plasma actuators. In the first part of this
report, we validated our LNS input-output solver via reproducing the results from M. R.
Jovanovic, 2004, Jovanović and Bamieh, 2005b and Gluzman and Gayme, 2021b, focusing
on amplification of perturbations, their energy pathways in plane channel flow and Blasius
boundary layer. In the second part, we propose a simplified approach to study the flow re-
sponse to the spanwise plasma actuator array that was utilized in the experimental setup
taken from Hanson et al., 2010 for the Blasius boundary layer. A single wave number pair
is used to determine the optimal wave number combination for achieving maximal ampli-
fication of streamwise velocity perturbations. This approach can determine the optimized
spanwise spacing of the plasma actuator array in a fraction of the time that it takes with a
regular input-output approach of Gluzman and Gayme, 2021a.

The rest of this project is organized in the following order: Analytic model derivation is
presented in section 2. Results are presented and validated in section 3. Finally, conclusions
and areas of future development are discussed in section 4.

2 Analytic Model
We consider incompressible, Wall-bounded parallel shear flow, for which the linearized
Navier-Stokes equations for perturbations in fluid velocity and pressure (u, p) about the
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base flow (u, p) are as follows:

∂u
∂t

= −ū(∇u)− u(∇ū)−∇p+ 1
Re
∆u+ d,

∇ · u = 0.
(1)

Here, u = [u, v, w]T is the velocity perturbation vector, corresponding to the streamwise
x, wall normal y, and spanwise z directions, respectively; d = [dx, dy, dz]

T is the term
representing body forcing. ∇ is the Nabla operator and ∆ = ∇2 is the Laplacian operator.
We apply the Laplacian operator to the equation for v, using the definition of the vorticity
vector. In addition, spatial invariance of the parallel flow field in the horizontal directions,
allows performing Fourier transforms in the x and z directions provides a system of 2 ODEs
in the variable y (Kim et al., 1987). This process allows to write the LNS equations in a
state-space form, which easier to perform input-output analysis on, as done in Jovanović
and Bamieh, 2005b:

∂ψ
∂t
(kx, y, kz, t) = [A (kx, kz)ψ(kx, y, kz, t)](y) + [B(kx, kz)d(kx, kz, t)](y),

ϕ(kx, y, kz, t) = C (kx, kz)ψ(kx, kz, t)](y),
(2)

where ψ ≡ [v, ωy]
T and ϕ ≡ u = [u, v, w]T . These equations containing only the wall-

normal velocity perturbation v, the perturbation in wall-normal vorticity ωy =
∂u
∂z

− ∂w
∂x

and
the forcing term d. The choice of making the velocity perturbation vector the output of the
system was done entirely for convenience and any combination of perturbation variables
could have been chosen theoretically. The operators denoted as A , B and C are defined
below for a base velocity profile of the form u = [U(y), 0, 0]T :

A ≡
[
A11 0
A21 A22

]
≡

[
−ikx∆

−1U∆+ ikx∆
−1U ′′ + 1

Re
∆−1∆2 0

−ikzU
′ −ikxU + 1

Re
∆

]
, (3)

B ≡
[
Bx By Bz

]
≡

[
∆−1 0
0 I

] [
−ikx

∂
∂y

−(k2
x + k2

z) −ikz
∂
∂y

ikz 0 −ikx

]
, (4)

C ≡

Cu

Cv

Cw

 ≡ 1

k2
x + k2

z

 ikx
∂
∂y

−ikz
k2
x + k2

z 0
ikz

∂
∂y

ikx

 . (5)

Here, U ′ = dU(y)
dy

and U ′′ = d2U(y)
dy2

. The Laplacian operator is defined as ∆ = ∂2

∂y2
−(k2

x+k2
z)

because of the Fourier transforms done in directions x and z. All the derivations to obtain the
state-space form in Eq. (2) are found in appendix A. We separate the spatial and temporal
dependence of the forcing term by using a spatial weighting matrix W in the following
manner:

d(kx, y, kz, t) = W(kx, y, kz)d̃(t), (6)

where d̃(t) = [d̃x(t), d̃y(t), d̃z(t)]
T represents only the temporal dependence of the forcing

term d. The spatial weighting matrix W is defined as:

W(kx, y, kz) =

f(kx, y, kz) 0 0
0 g(kx, y, kz) 0
0 0 h(kx, y, kz)

 . (7)
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Here, f(kx, y, kz), g(kx, y, kz) and h(kx, y, kz) are functions that scale the amplitude of each
forcing component (f scales d̃x, g scales d̃y and h scales d̃z) as a function of the spatial wave
numbers kx and kz and as a function of y, the position in the wall normal direction. We
note that in the most general case there is no dependence between f , g and h. However, we
will only use diagonal weighting matrices which correspond to equal scaling of all forcing
components.

2.1 Frequency Response
In this section, we consider a forcing term d, which is independent of y direction and har-
monic in the temporal sense and in the x and z directions. The spatial weighting matrix for
such a forcing is:

W(kx, kz) = δ(kx − kx, kz − kz)I3×3. (8)

I3×3 is a 3× 3 identity matrix and kx, kz are the specific wave numbers that the forcing has
in directions x and z respectively. δ is the Dirac’s delta function in 2D and Thus, the term
δ(kx−kx, kz−kz) is the result of the fact that the forcing is harmonic and has wave numbers
kx and kz . The Temporal dependence of the forcing term is manifested in the condition:

|d̃(t)| = sin (ωt), (9)

where ω is the temporal frequency of the forcing term. Assuming stability of operator A
(which is guaranteed for both Poiseuille and Blasius base flows under laminar flow assump-
tion), the solution to Eq. (2) to a harmonic term described in equations 8 and 9 is:

ϕ(x, z, t) = H (kx, kz, ω)W(kx, kz)d̃(ω). (10)

In Eq. (10), the operator H (kx, kz, ω) is the transfer function from the harmonic forcing
term applied to the system to the velocity field that arises, and is given by (Zhou et al.,
1995):

H (kx, kz, ω) = C (kx, kz)(iωI − A (kx, kz))
−1B(kx, kz). (11)

It is important to note that the operator H in Eq. (11) is valued at a single point along
the wall normal direction y. The reason for that is the dependence of A on the base flow,
which is a function of y. As can be seen in equations 4 and 5, the operators B and C has
3 components each corresponding to different inputs and outputs respectively. This means
that H can be decomposed in several different ways. Firstly, by considering all components
of B and C we get the following:

H (kx, kz, ω) =

Cu

Cv

Cw

 (iωI − A (kx, kz))
−1

[
Bx By Bz

]
≡

≡

Hux(kx, kz, ω) Huy(kx, kz, ω) Huz(kx, kz, ω)
Hvx(kx, kz, ω) Hvy(kx, kz, ω) Hvz(kx, kz, ω)
Hwx(kx, kz, ω) Hwy(kx, kz, ω) Hwz(kx, kz, ω)

 .

(12)

This decomposition allows to examine the relationship between specific inputs (forcing in
different directions) and outputs (different velocity components). For example, Huy is the
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operator between forcing in the y direction and the u velocity component, which is the
component in the x direction. Other decompositions can be obtained by combining rows or
columns of the 3× 3 matrix in Eq. (12):

H (kx, kz, ω) = C (iωI − A (kx, kz))
−1

[
Bx By Bz

]
≡

≡
[
Hx(kx, kz, ω) Hy(kx, kz, ω) Hz(kx, kz, ω)

]
,

(13)

H (kx, kz, ω) =

Cu

Cv

Cw

 (iωI − A (kx, kz))
−1B ≡

≡

Hu(kx, kz, ω)
Hv(kx, kz, ω)
Hw(kx, kz, ω)

 .

(14)

The decompositions above describe the dynamics between a specific type of forcing and
the entire velocity field or the dynamics between forcing in all 3 direction and a specific
velocity component. For example, Hx is the operator between the dx forcing component
and the entire velocity field and Hu is the operator between forcing in all three directions to
the u component of the velocity field. From here on, we refer to the operators in equations
12, 13 and 14 as sub-operators of the H operator. To quantify the idea of amplification of
specific frequencies we use the ∥·∥2 norm which is defined in the following manner:

∥H (kx, kz, ω)∥22 ≡
1

2π

∫ ∞

−∞
trace[H (kx, kz, ω)H

∗(kx, kz, ω)]dω. (15)

Here, ∗ denotes the adjoined operator, which is defined the same as in Jovanović and Bamieh,
2005b, under the following inner product:

⟨ψ1,ψ2⟩e ≡ ⟨ψ1,Qψ2⟩ =
∫ 1

−1

ψ1 · Qψ2dy, (16)

where the operator Q is defined as follows:

Q ≡ 1

k2
x + k2

z

[
−∆ 0
0 I

]
. (17)

Under the inner product in 16, the adjoint of an operator is defined for an operator G using
the following relation:

⟨ψ1,Gψ2⟩e = ⟨G ∗ψ1,ψ2⟩e. (18)

Using Eq. (18) and substituting G with the operators A ,B,C we can get relations between
them and their adjoint operators:

⟨ψ1,A ψ2⟩e = ⟨A ∗ψ1,ψ2⟩e,
⟨ψ,Bd⟩e = ⟨B∗ψ,d⟩e,
⟨ϕ,Cψ⟩e = ⟨C ∗ϕ,ψ⟩e.

(19)

Using these relations we can solve for A ∗,B∗,C ∗ and get:
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A ∗ ≡
[
A ∗

11 A ∗
12

0 A ∗
22

]
≡

[
ikxU − ikx∆

−1U ′′ + 1
Re
∆−1∆2 −ikz∆

−1U ′

0 ikxU + 1
Re
∆

]
, (20)

B∗ ≡

B∗
x

B∗
y

B∗
z

 ≡ 1

k2
x + k2

z

 ikx
∂
∂y

−ikz
k2
x + k2

z 0
ikz

∂
∂y

ikx

 , (21)

C ∗ ≡
[
C ∗
u C ∗

v C ∗
w

]
≡

[
∆−1 0
0 I

] [
−ikx

∂
∂y

−(k2
x + k2

z) −ikz
∂
∂y

ikz 0 −ikx

]
. (22)

Herein, B∗
x = Cu,B∗

y = Cv,B∗
z = Cw and C ∗

u = Bx,C ∗
v = By,C ∗

w = Bz . Thus, we
can state that B∗ = C and C ∗ = B. We can use the adjoint operators A ∗,B∗,C ∗ to
find the H2 norm defined in Eq. (15) without finding H ∗ and without solving the integral
directly. To do that, we Use the concepts of Controllability and observability Gramians in
the frequency domain, as defined in Aghaee et al., 2003. It can be shown that:

∥H (kx, kz, ω)∥22 = trace[C (kx, kz)X (kx, kz)C ∗(kx, kz)] =

= trace[B(kx, kz)Y (kx, kz)B∗(kx, kz)],
(23)

where X is the Controllability Gramian and Y is the observability Gramian. We note that
Eq. (23) is different then the one presented in Jovanović and Bamieh, 2005b. The version
written here is the correct one, as showed in Zhou et al., 1995 and as written in later articles
(for example, Jovanović, 2021). It is also shown in Zhou et al., 1995 that linear systems of
the form in Eq. (2), the controllability and observability Gramians can be calculated using
the following Lyapunov equations:

A (kx, kz)X (kx, kz) + X (kx, kz)A ∗(kx, kz) = −B(kx, kz)B∗(kx, kz),
A ∗(kx, kz)Y (kx, kz) + Y (kx, kz)A (kx, kz) = −C ∗(kx, kz)C (kx, kz).

(24)

This means that using equations (23) and (24), it is possible to find the value of ∥H ∥2
without computing the integral in Eq. (15) but only by solving the Lyapunov equations,
which can be done numerically in a variety of ways. As mentioned before, the H operator
is the transfer function between forcing and velocity. Thus, the quantity ∥H ∥22 represents
the square of the gain of the system. This can be interpreted in 2 ways: Firstly, the quantity
∥H ∥22 is a measure for how much perturbations in velocity get amplified for a given forcing
magnitude. Secondly, ∥H ∥22 can also be interpreted as the gain between the forcing term
and the quantity 1

2
|u|2. This term represents the kinetic energy density of the perturbations

in the flow. Of course, the mentioned interpretation is valid for all forcing directions and for
all the velocity components, corresponding to a specific H sub-operator. It is important to
add that the norms of all the H sub-operators can BE calculated similarly to the H2 norm
by using the corresponding B and C sub-operators. For example, for calculating ∥Hux∥2
we substitute B and C with Bx and Cu.

2.2 Temporal Response and Actuator Modeling
In this section we consider non-periodic response in time and is localized around a specific
height in the wall normal direction. The spatial weighting matrix in this case is:
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W(y) = γ(y)I3×3. (25)

Here, γ(y) is used to model forcing in a specific height above the wall (meaning, in a specific
y coordinate) and is a Gaussian function with a mean of y0 variance of 2ε. This approach is
the same as in M. Jovanovic and Bamieh, 2001, and yields the following expression:

γ(y) =
1

2
√
πε

e−(y−y0)2/4ε, ε > 0. (26)

In this section, we are interested in the response for impulse and step temporal inputs. The
general temporal solutions to Eq. (2) assuming stability of operator A and no perturbations
when t = 0 is (Hespanha, 2018):

ϕ(kx, y, kz, t) = C (kx, kz)

t∫
0

eA (kx,kz)τB(kx, kz)W(y)d̃(τ)dτ. (27)

Firstly, for an impulse forcing term of the form d̃ = δ(t) The solutions is:

ϕ(kx, y, kz, t) = C (kx, kz)e
A (kx,kz)tB(kx, kz)W(y). (28)

For a unit step forcing of the form d̃ = H(t) the steady-state solution is:

ϕss(kx, y, kz) = −C (kx, kz)A
−1(kx, kz)B(kx, kz)W(y), (29)

where δ(t) is the Dirac delta function andH(t) is a unit step function. To control the location
of the applied forcing in the (x, z) plane, we exploit the shift theorem for Fourier transform
(Smith, 2008). According to the shift theorem, if we have a forcing term in location s1 =
(x1, z1) and we shift it to location s2 = (x1 + ∆x, z1 + ∆z), then the solution with the
shifted term will be shifted as well and will satisfy the following condition:

ϕ(kx, y, kz, t|s2) = ϕ(kx, y, kz, t|s1) · e−i(kx∆x+kz∆z). (30)

One of our objectives is to model the response for a plasma actuator inside a boundary
layer. We can use this fact to model every forcing geometry by an array of densely spaced
point sources, similarly to the work done in Gluzman and Gayme, 2021b. The solution after
combining all the point sources is:

ϕ(kx, y, kz, t) =
1

Ns

Ns∑
m=1

[e−i(kx∆x+kz∆z)cm
∑

j=x,y,z

ed,j(m)ϕj(kx, y, kz, t|sm)]. (31)

Here, Ns is the number of point sources used, cm is a weighting function representing the
magnitude of each point source and ed is a unit vector representing the forcing direction for
each source.
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3 Results
This section is organized as follows: first, we calculate norms for the H operator and all of
the sub-operators described in Eqs. (12), (13), and (14). We perform this calculation for both
Poiseuille and Blasius base flows. Then, we calculate the steady-state temporal response
of Blasius base flow to the plasma actuator array setup used in Belson et al., 2012, using
Eq. (29). Lastly, we decompose the mentioned setup to 2 problems with a corresponding
pair of wave numbers for each one and demonstrate the accuracy of this method for pre-
dicting the optimal wave number pair for maximal amplification of the streamwise velocity
component.

To compute the operators in Eq. (2) and the flow field they produce, we apply discretiza-
tion to the wall-normal direction by using Chebyshev collocation points. We implement
this discretization process by using the pseudo spectral differentiation matrices in Weide-
man and Reddy, 2000 for differentiation in the wall-normal direction. All of the calculations
are performed in MATLAB® R2022a and the forcing is applied closest to the wall. This
means that the value of y0 in Eq. (26) is the one that translate to the closest point to the
wall in the y axis. This value changes according to N , the number of Chebyshev collocation
points chosen. A value of ε = 10−4 was used to calculate γ(y) in Eq. (26) and to obtain
all of the results as it was sufficiently small to achieve identical results to M. Jovanovic and
Bamieh, 2001 and Jovanović and Bamieh, 2005b.

3.1 Energy Amplification
In this section we consider Poiseuille and Blasius base flow profiles and calculate the H2

norms for each base profile. As mentioned in Section 2, ∥H ∥22 is the amplification of the
kinetic energy density, which will be referred to as energy amplification for simplicity. We
apply the method used in Jovanović and Bamieh, 2005b to calculate the norms from body
forces to velocity fields in all directions in 3D, as a function of wave numbers in the spanwise
and streamwise directions. The results are used for both purposes: to validate our numerical
solver with existing results from the literature, and for obtaining intuition about the flow
physics of the disturbance fields with respect to the considered canonical base flows.

3.1.1 Poiseuille flow

In this section, we present results of application our input-output LNS solver for plane
Poiseuille base flow profile of the form U = 1 − y2. To compute the H2 norms, Eq. (24)
was solved, where the wall normal domain was represented using N = 29 Chebyshev col-
location points; and for the horizontal wave-number domain, we used a 50 × 90 grid of
logarithmically spaced values with the following boundaries: (kxmin

= 10−4, kxmax = 3.02)
and (kzmin

= 10−2, kzmax = 15.84). This is the same grid used in Jovanović and Bamieh,
2005b. The obtained ||Hrs(kx, kz)|| norms, where r = {u, v, w} and s = {x, y, z}, are il-
lustrated in figure 1. These norms represent amplification of single velocity component by
a single forcing component. Our plots are validated with figure 2 that we reproduced from
Jovanović and Bamieh, 2005b. All results are presented on a logarithmic scale.
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Figure 1: Plots of ∥Hrs∥2(kx, kz) in Poiseuille flow with Re = 2000.
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Figure 2: Plots of ∥Hrs∥2(kx, kz) in Poiseuille flow with Re = 2000, Reprinted from Fig. 2,
Jovanović and Bamieh, 2005b.

Several physical insights revealed from figure 1. First, the strongest amplification oc-
curs in the components ∥Huy∥2 and ∥Huz∥2, i.e. from forcing in the spanwise and wall
normal directions to the streamwise velocity component u. these modes of amplification
are strongest when kx = 0 and kz ≈ O(1). The amplification of the spanwise and wall
normal velocity components (v, w) is of order of magnitude weaker than the amplification
of u. There are 3 primary modes of amplification that are evident: 2D TS waves mode -
characterized by kx ≈ O(1) and kz = 0. This mode corresponds to a horizontal line of high
amplification near the top of the plots in figure 1. Oblique waves mode - characterized by
kx ≈ O(1) and kz ≈ O(1). This mode corresponds to a small region of high amplification
near the top right corner of the plots in figure 1. Streaks mode - characterized by kx = 0
and kz ≈ O(1). This mode corresponds to a vertical line of high amplification near the right
border of the plots in figure 1 and is clearly evident in subplot for ||H2ux||.

Each of these modes is the dominant one for some of the H sub-operators. In detail,
the streaks mode is dominant in the norms of Huy, Huz and for Hvy. The oblique waves
mode is the dominant one for all the sub-operators related to the w velocity component
(Hwx, Hwy, Hwz), demonstrating how distinct the oblique waves mode is in amplification
of spanwise perturbations. The TS waves mode is apparent in some of the norms but dom-
inates only for Hvx. The main physical intuition from the above results is that for u and v
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the strongest amplification is achieved by using forcing in a perpendicular direction to the
velocity component. For maximal amplification of the spanwise velocity w, results due to
forcing in an angle of around 45° (oblique wave).

Figure 3: Plots of ∥Hx∥2(kx, kz), ∥Hy∥2(kx, kz), ∥Hz∥2(kx, kz) in Poiseuille flow with Re =
2000.

Figure 4: Plots of ∥Hx∥2(kx, kz), ∥Hy∥2(kx, kz), ∥Hz∥2(kx, kz) in Poiseuille flow with Re =
2000, Reprinted from Fig. 3, Jovanović and Bamieh, 2005b.

Energy amplification of each forcing direction is illustrated in figure 3. Figure 4 shows
the same results taken from Jovanović and Bamieh, 2005b for the same H2 norms, showing
that we accurately reproduce these plots with our solver. The main conclusion evident from
these plots is that the most amplified mode for forcing in the x-direction is an oblique TS
wave mode, while forcing in the y and z directions are most amplified when the forcing
is done such that kx = 0 and kz ≈ O(1). The z-direction forcing can reach the highest
amplification, followed closely by the y direction forcing. The response due to forcing in
the x-direction reaches an amplification 10 times smaller than amplification in the y and z
directions.
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Figure 5: Plots of ∥Hu∥2(kx, kz), ∥Hv∥2(kx, kz), ∥Hw∥2(kx, kz) in Poiseuille flow withRe =
2000.

Figure 6: Plots of ∥Hu∥2(kx, kz), ∥Hv∥2(kx, kz), ∥Hw∥2(kx, kz) in Poiseuille flow withRe =
2000, Reprinted from Fig. 4, in Jovanović and Bamieh, 2005b.

H2 norms from forcing to the components of the fluid’s velocity field are illustrated
in figure 5. figure 6 shows same plot but taken from Jovanović and Bamieh, 2005b. One
can see that we accurately reproduce these plots with our solver. The strongest mode of
amplification in v is achieved when kx ≈ O(1), kz = 0 and has a magnitude in the order of
O(10), which is the weakest among the velocity components amplifications. The strongest
mode of amplification of u is when kx = 0 and kz ≈ O(1) and the strongest mode of
amplification in w is the TS mode, meaning kx ≈ O(1) and kz ≈ O(1). Overall, the pairs of
∥Hw∥2 , ∥Hx∥2 and ∥Hu∥2 , ∥Hz∥2 are similar in their behavior.

Lastly, we show as illustrated in figure 7, the ∥H ∥2, which represents the energy of
all velocity components due to forcing from all 3 components. One can see a great agree-
ment comparing it with figure 8 that we reproduced from Jovanović and Bamieh, 2005b.
As expected, the dominant wave numbers correspond to streamwise components due to
perpendicular forcing.
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Figure 7: Plot of ∥H ∥2(kx, kz) in Poiseuille flow with Re = 2000.

Figure 8: Plot of ∥H ∥2(kx, kz) in Poiseuille flow with Re = 2000, Reprinted from Fig. 5,
Jovanović and Bamieh, 2005b.

The plot of the most encompassing H2 norm demonstrates mainly that the mode with
the largest amplification, representing the amplification of kinetic energy of the fluid, is the
mode of spacing in the z-direction only, maintaining the relation kx = 0 and kz ≈ O(1). As
one can see, the results obtained throughout this entire section are identical to the results
in Jovanović and Bamieh, 2005b, validating the model used and allowing us to use it for
making different predictions.
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3.1.2 Blasius flow

In this section we show results of application our input-output LNS solver to laminar Blasius
base flow profile, which was obtained numerically by solving the Blasius equation: 2f ′′′ +
ff ′′ = 0, where f is the normalized base flow velocity varying with a function of the
similarity thickness variable η = y/δ∗, where δ∗ is a displacement thickness. To compute
all the H2 norms, equation 24 was solved numerically using N = 40 Chebyshev points
in wall normal direction, whereas for the horizontal wave-number domain, same grid of
(kx, kz) values was used as for the Poiseuille flow case.

In figures 9-13, all types of norms are calculated for the Reynolds number of Re = 530.
This value for the Reynolds number was used for the modeling of the plasma actuator array
in Belson et al., 2012 and Gluzman and Gayme, 2021b. The obtained ||Hrs(kx, kz)|| norms,
where r = {u, v, w} and s = {x, y, z}, are illustrated in figure 9.These norms represent
amplification of single velocity component by a single forcing components. All results are
presented on a logarithmic scale.

Figure 9: Plots of ∥Hrs∥2(kx, kz) in Blasius flow with Re = 530.

All norms have a similar general structure to the ones produced in Poiseuille flow, but
there are some key differences between them. The most obvious difference is the presence
of a localized region of high amplification in all plots, at wave lengths of kx ≈ 10−1 and
kz ≈ 10−1. This wave-number pair correspond to an oblique wave mode, propagating at 45
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degrees to the free stream. Generally, all H2 norms reach higher peaks in Blasius base flow
than in Poiseuille base flow, demonstrating that Blasius flow serve as a stronger amplifier
to disturbances then Poiseuille flow.

This statement is merely based on the observed amplification ranges of the disturbance,
as shown in the color bar for each plot, and requires some clarifications as we consider dif-
ferent geometries with different boundary conditions and Reynolds numbers. In particular,
the Reynolds number over a flat plate is defined as:

Re =
Uδ∗

ν
, (32)

where δ∗ is the displacement thickness and ν is the kinematic viscosity. For Poiseuille base
flow in a channel of height H between the top and bottom walls, the displacement thick-
ness is δ∗ = H

6
while for Blasius base flow δ∗ = 1.72

√
νx
U

, where U is the velocity of the
flow above the plate and x is the streamwise direction coordinate. Moreover, the Reynolds
number is defined at the location of the actuation, and any increase of Reynolds number
corresponds in increase of velocity.

Figure 10: Plots of ∥Hx∥2(kx, kz), ∥Hy∥2(kx, kz), ∥Hz∥2(kx, kz) in Blasius flow with Re =
530.

Energy amplification of each forcing direction is illustrated in figure 10. ∥Hy∥2 and
∥Hz∥2 are similar to the same norms in Poiseuille flow and both has their biggest magnitude
when kx = 0 and kz ≈ O(1). They differ from the Poiseuille case by the specific wave
number in the z direction for maximal amplification, which in this case is lower. ∥Hx∥2
appears visually to be very different but has the same structure as in the Poiseuille case
(figure 3). The visual difference stems from the localized point of high amplification in
the (kx, kz) domain, which corresponds to an oblique wave mode that is shown also in
figure 9. For the Hx sub-operator this mode is an order of magnitude stronger than any other
wave lengths combinations on the same plot, where the amplification value at the localized
point is ∥Hx∥2 ≈ 103 while the largest value for any other wave number combination is
∥Hx∥2 ≈ 102. This localized point of amplification can be found also in the plots of ∥Hy∥
and ∥Hz∥ but with weaker magnitudes such that it doesn’t distort the whole image and the
strongest mode of amplification is the streaks mode.
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Figure 11: Plots of ∥Hu∥2(kx, kz), ∥Hv∥2(kx, kz), ∥Hw∥2(kx, kz) in Blasius flow with Re =
530.

The H2 norms from forcing to the components of the fluid’s velocity field are illustrated
in figure 11. The region of sudden peak in amplification is apparent in all the velocity sub
operators. ∥Hu∥2 has 2 dominant modes of amplification with similar magnitudes. These
modes being the oblique wave mode with wave numbers kx ≈ 10−1 and kz ≈ 10−1 and the
streaks mode with wave numbers kx = 0 and some value kz ≈ O(1). In contrast, ∥Hv∥2
and ∥Hw∥2 has an obvious maximum in the oblique wave mode, similarly to ∥Hx∥2. The
full ∥H ∥2 from forcing to reaction is illustrated in figure 12.

Figure 12: Plot of ∥H ∥2(kx, kz) in Blasius flow with Re = 530.
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This ∥H ∥2 norm is very similar to the one obtained for Poiseuille base flow. It has
strong streaks mode with wave numbers of kx = 0 and some value of kz ≈ O(1) and
decays continuously for other pairs of wave numbers. The main area of difference is the
new oblique wave mode which has a slightly higher magnitude then the streaks mode.

Figure 13: Plots of ∥H ∥2(kx, kz) in Blasius flow with Re = 510, Re = 520 and Re = 530.

The oblique wave mode is highly dependent on the Reynolds number, as can be seen in
figure 13. The spanwise wave number of the oblique wave mode increases when increasing
the Reynolds number. At Re = 520 the spanwise wave number of this mode is kz ≈
O(10−2), making it more similar to a TS wave mode. At Re = 510 this mode is not evident,
and the strongest mode of amplification is the streaks mode that cannot be captured by
stability theory, that only predicts single 2D TS mode as least stable mode for the critical
Reynolds number of Recr = 520 for Blasius boundary layer (Jordinson, 1970). However,
our analysis captures both the least stable 2D mode that predicted from linear flow stability
analysis (Schmid et al., 2002) and more dominant streaky structure that associated to bypass
transition scenarios and observed in experimental studies. We note that the mentioned
amplification mode stays an oblique mode and keep being localized around similar wave
numbers when increasing the Reynolds number, as demonstrated in figure 14:

17



Technion - Israel Institute of Technology Ofek Frank-Shapir

Figure 14: Plot of ∥H ∥2(kx, kz) in Blasius flow with Re = 700.

3.2 Line Actuator Response
In this section, we use our input-output solver to reproduce the flow response to spanwise
array of symmetric DBD plasma actuators setup that studied in Hanson et al., 2010 and
Belson et al., 2012. The mentioned setup is presented in figure 15. The body forcing from
electrode edges is modeled by 4 strips, where 2 creating forcing in the positive z direction
(indicated by magenta) and 2 creating forcing in the negative z direction (indicated by cyan),
similarly to the work done in Gluzman and Gayme, 2021b and demonstrated in figure 16.
Each strip is modeled by a cluster of point sources of localized forcing. The spacing between
point sources is 0.1 non-dimensional units, where the non-dimensional units are normalized
by the displacement thickness δ∗. We verify that the selected spacing length is sufficiently
small by doubling the number of sources and verifying that the changes to the results are
negligible. In this case, the chosen Reynolds number is Re = Uδ∗/ν = 530, which corre-
sponds to δ∗ = 1.59[mm], for a free stream velocity of U = 5[m/s]. The spacing between
each plasma actuator is ∆z = 20[mm] and length of each actuator is l = 40[mm] and thus
we use 252-point sources of localized forcing.
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Figure 15: Spanwise array of DBD plasma actuators. Figure reproduced from Gluzman and
Gayme, 2021b.

Figure 16: Forcing Setup used to simulate plasma actuators response. Figure reproduced
from Gluzman and Gayme, 2021b.

Before testing the flow response for the array of plasma actuators, the impulse response
of the model was checked and validated with results from M. R. Jovanovic, 2004, which
detail in Appendix B. The temporal forcing input chosen for the plasma actuator array is a
unit step function, applied to each point source in the setup shown in figure 16. The solution
for the flow field in the steady state was calculated using Eq. (29).
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Figure 17: Normalized perturbation stream-wise velocity at a particular stream-wise lo-
cation (a y − z plane) 200[mm] downstream of an array of plasma actuators. Here η =
y(U/νx)1/2 is the Blasius length scale, where ν is the kinematic viscosity, y is the wall-
normal distance, U is the free-stream stream-wise velocity, and x is the stream-wise dis-
tance from the leading edge. The variable z is the stream-wise distance from the center of
the domain and ∆z is the spacing between actuator pairs.

A y-z cross section of the normalized streamwise component of the perturbation velocity at
x = 200[mm] downstream the actuator array is shown in figure 17. This specific location
was chosen for validating the results with Belson et al., 2012 and Gluzman and Gayme,
2021b. Figure 17 demonstrate that our model obtains good qualitative agreement in terms
of the shape of the flow structures with both DNS simulations (Belson et al., 2012) and
with the previous work of Gluzman and Gayme, 2021b. The streaks of streamwise velocity
follow the positioning of the actuator electrodes in the array, with low-momentum regions
between the electrode pairs.

3.3 Optimal Actuator Arrangement for Maximal response
The idea in this section is to find the optimal spacing between electrodes of spanwise ar-
ray symmetric plasma actuator that presented in Section 3.2 for maximal response of the
streamwise velocity component amplification. We utilize in our analysis the approach used
in Section 3.1.2 to obtain energy amplification of different wave number pairs for predict-
ing the spanwise spacing ∆z between the actuator electrodes, that produces the maximal
amplification. As seen in figure 9, the maximal value of Huz is reached when kx = 0. Thus,
we focus only on spacing along the z direction. We quantify the amplitude of the response
for different spacing lengths between the actuators using the following equation:

A(∆z) ≡ 1

Re4

∫ ∫ ∫
u2(∆z) dx dy dz. (33)
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Here, ∆z is the spacing between the 2 actuators and u2 represents the kinetic energy density
of the perturbation velocity in the streamwise direction.

We examine relationship between the amplitude of energy perturbations for different
Reynolds numbers. As mentioned before the Reynolds number is defined as Re = Uδ∗/ν,
where δ∗ is the displacement thickness and ν is the kinematic viscosity. The displacement
thickness remains constant under the assumption of parallel boundary layer and we assume
ν to be constant as well. Thus, changing the Reynolds number is equivalent to changing the
base flow velocity U .

The specific definition of the amplitude in Eq. (33) is chosen with the goal of comparing
the behavior of the actuator array subjected to base flows with different Reynolds numbers.
In Jovanović and Bamieh, 2005b, it is shown that for kx = 0, the norm ∥Huz∥22 scales with
Re3. However, we need to account for the fact that the integration in Eq. (33) is done also in
the y direction. As mentioned in section 2, Huz changes its value for every point along the y
direction. Because the Reynolds number is proportional to the length scale of the problem,
we divide by it once more to account for the integration in the y direction, leaving us with
a coefficient of 1Re4 in Eq. (33). If the model in section 2 holds completely for the case of
actuator array, we would expect that A(∆z) would be independent of the Reynolds number.
To check this hypothesis, we define a wave number matching every spacing length in the
following way:

k∆z ≡
2π

∆z
. (34)

The amplitude of energy perturbation of the flow was calculated for k∆z ∈ [0.2, 1]. The
results for Re = 200 and Re = 530 is presented in figure 18:
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Figure 18: Streamwise kinetic energy perturbation for changing actuator spacing with Re =
200 and Re = 530.

This graph was obtained by solving Eq. (29) for different wave numbers that correspond
to different spacings between actuators with the relation in Eq. (34). We note that both
graphs have a peak at a wave number of kz = 0.3, making it the optimal wave number
for maximal kinetic energy perturbation regardless of the Reynolds number. In addition,
the difference between the graphs for different Reynolds numbers is small. This means that
while there is some dependence on the Reynolds number, the behavior of the flow over
the actuator array is similar to the behavior of flow with some harmonic forcing. Our next
objective is to try to find an analogous harmonic forcing that would behave similarly to the
flow field around the actuator array.

As seen in figure 16, the setup has 4 strips that create forcing. The 2 outer trips create
forcing in opposing directions, as the 2 inner ones. Thus, we can use this fact to approxi-
mate the forcing term as a combination of 2 sine waves. This approach is demonstrated in
figure 19:
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Figure 19: assigning wave numbers to the experimental setup

Using the geometry of the problem we get:

kzout =
π
∆z

+ a = 1
2
k∆z + a,

kzin = π
∆z

− a = 1
2
k∆z − a.

(35)

To predict the wave number for maximal response we propose we to approximate the forcing
term d as the sum of the 2 sine waves in figure 19:

dcombined = [0, 0, sin(kzoutz) + sin(kzinz)]
T . (36)

Using Eq. (10) and the forcing term in Eq. (36), the solution to Eq. (2) is:

ϕ = Hz(0, kzin) sin(kzinz) + Hz(0, kzout) sin(kzoutz). (37)

This fact is true due to the linear nature of Eq. (2). To get the amplification for the streamwise
velocity component, we can use the decomposition of the H operator presented in Eq. (12):

u = Huz(0, kzin) sin(kzinz) + Huz(0, kzout) sin(kzoutz). (38)

Using Eq. (38), We can approximate the amplification with the following expression:

∥H combined
uz ∥22 = ∥Huz(0, kzin)∥22 + ∥Huz(0, kzout)∥22. (39)
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As mentioned before, the quantity ∥Huz(0, kz)∥22 is proportional to Re3. Hence, the quan-
tities 1

Re3
∥Huz(0, kz)∥22, ∥H combined

uz ∥22 are not dependent on the Reynolds number and rep-
resent the behavior of the system in a more general sense. Plots of 1

Re3
∥H combined

uz ∥22 and
1

Re3
∥Huz∥22 for different wave numbers in the spanwise direction are presented in figure 20:

Figure 20: Plots of 1
Re3

∥H combined
uz ∥22 and 1

Re3
∥Huz(kx = 0, kz)∥22 for Blasius base flow, both

computed at Re = 530.

Considering the results from figure 18, the H combined
uz norm predicts the optimal wave

number for maximal amplification correctly at kz ≈ 0.3, when the regular Huz norm has
its peak at kz ≈ 0.24, not the optimal wave number to set the actuator’s electors spanwise
spacing. Hence, it is evident that the process of identifying two wave numbers that are
relevant to the problem yields better results than considering only one wave number. The
results were obtained by calculating ∥Huz∥22 using Eq. (15) and by adding up the values for
the corresponding wave numbers as described in Eq. (39). As mentioned previously, this
graph is independent of the choice of the Reynolds number and thus, the wave number for
maximal energy is the same for all Reynolds numbers if neglecting the non-parallel effects of
boundary layer growths. We note that the combined time that took to calculate all the results
for figure 18 using Eqs (31) is 38 hours in regular laptop, while with our novel approach,
using Eq. (39), the calculation took about 2 minutes to obtain the result in figure 20, i.e., at
significant reduction of computational time of the order of O(103).
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4 Conclusions
In this project, an LNS input-output solver was developed to study high-dimensional ac-
tuated boundary layer systems subject to external forcing, which are of high relevance to
active flow control applications and actuator design. In particular, the externally forced
linearized Navier-Stokes (LNS) equations system has been used to examine the important
dynamic processes, structural features, and energy pathways of transitional wall-bounded
shear flows. First, we validated our LNS input-output solver with results from the litera-
ture by reproducing the amplification of the kinetic energy density norms of each velocity
component in channel flow for different forcing directions.

Second, we used our solver to study the flow physics of energy amplification subject
to external periodic forcing for the Blasius boundary layer. We find that all norms have a
similar general structure to the ones produced in Poiseuille flow, but there are some key
differences between them. The most obvious difference is the presence of an oblique wave
mode, propagating at 45 degrees to the free stream. Generally, all energy norms reach higher
peaks in Blasius base flow than in Poiseuille base flow, demonstrating that Blasius flow
serves as a stronger amplifier to disturbances than Poiseuille flow.

Third, we extended our input-output solver to model the flow response to actuation
following Gluzman and Gayme, 2021a approach and validated the method via reproducing
the flow response to a spanwise array of symmetric DBD plasma actuators setup studied in
Hanson et al., 2010 and Belson et al., 2012.

Lastly, we propose a simplified novel approach with our input-output solver to study
the flow response to the spanwise plasma actuator array. A single wave number pair is used
to determine the optimal wave number combination for achieving maximal amplification
of streamwise velocity perturbations. This approach can determine the optimized spanwise
spacing of the plasma actuator array in a fraction of the time that it takes with a regular
input-output approach of Gluzman and Gayme, 2021b. However, our approach is limited to
steady-state periodic forcing in time and space; hence, it is limited to only certain sets of
actuators with spanwise periodic geometry and for parallel shear flows. Our future work
will focus on generalizing the method for optimizing actuators with non-period spatial-
temporal forcing depending on the framework to be applied for nonparallel pressure-driven
boundary layers over curved geometries, such as airfoils, and conduct experimental studies
to validate the modeling effort.

A Appendix: Input-output model derivation
To write Eq. (1) in a state-space form, we start by writing it explicitly, rather than in a vector
representation: 

∂u

∂t
= −U

∂u

∂x
− U ′v − ∂p

∂x
+

1

Re
∇2u+ dx,

∂v

∂t
= −U

∂v

∂x
− ∂p

∂y
+

1

Re
∇2v + dy,

∂w

∂t
= −U

∂w

∂x
− ∂p

∂z
+

1

Re
∇2w + dz,

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0.

(A1)
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We can take the Laplacian of the equation for v and get:

∇2∂v

∂t
= −∇2U

∂v

∂x
− U∇2(

∂v

∂x
)−∇2(

∂p

∂y
) +

1

Re
∇4v +∇2dy. (A2)

We can rearrange the LHS, considering that the base profile U is dependent only on y:

∇2∂v

∂t
= −U ′′ ∂v

∂x
− U

∂

∂x
(∇2v)− ∂

∂y
(∇2p) +

1

Re
∇4v +∇2dy. (A3)

An expression to the pressure gradient can be obtained using Eq. (A1):

∇p = −∂u

∂t
− U

∂u

∂x
−

U ′v
0
0

+
1

Re
∇2u+ d. (A4)

Here, a bold symbol indicates a vector variable. By applying the divergence operator to
Eq. (A4), we get an expression to the Laplacian of the pressure which we can later substitute
into Eq. (A3).

∇2p = − ∂

∂t
(∇ · u)−∇ · (U ∂u

∂x
)−∇ ·

(U ′v)
0
0

+
1

Re
∇2(∇ · u) +∇ · d. (A5)

From incomprehensibility, ∇ · u = 0. Further simplifying the LHS:

∇ · (U ∂u

∂x
) = U

∂

∂x
(∇ · u) + U ′ ∂v

∂x
= U ′ ∂v

∂x
, (A6)

∇ ·

(U ′v)
0
0

 = U ′ ∂v

∂x
. (A7)

Substituting A6 and A7 into A5, we get:

∇2p = −2U ′ ∂v

∂x
+

∂dx
∂x

+
∂dy
∂y

+
∂dz
∂z

. (A8)

Now that we have an expression for the pressure gradient, we can plug it into Eq. (A3) while
neglecting second order terms:

∇2∂v

∂t
= −U ′′ ∂v

∂x
−U

∂

∂x
(∇2v)+2U ′′ ∂v

∂x
+

1

Re
∇4v− ∂2dx

∂x∂y
− ∂2dy

∂y2
− ∂2dz
∂y∂z

+∇2dy. (A9)

We can further simplify the equation and get:

∇2∂v

∂t
= U ′′ ∂v

∂x
− U

∂

∂x
(∇2v) +

1

Re
∇4v − ∂2dx

∂x∂y
− ∂2dz

∂y∂z
+

∂2dx
∂x2

+
∂2dz
∂z2

. (A10)

We obtained an equation containing only the base profile U , the wall normal velocity per-
turbation v and the forcing in different directions. This equation will be used later as the
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first equation in the state-space representation, while the second equation depends on the
wall normal component of the vorticity vector:

ωy =
∂u

∂z
− ∂w

∂x
. (A11)

Hence, if we take the partial derivative in the z direction of the equation for u in A1 and
subtract from it the partial derivative in the x direction of the equation for w in A1 we will
get an equation involving only ωy and v:

∂ωy

∂t
= −U ′∂v

∂z
− U

∂ωy

∂x
+

1

Re
∇2ωy +

∂dx
∂z

− ∂dz
∂x

. (A12)

We now apply a double Fourier transform in the x and z directions to equations A10 and
A12. The transform changes the domain of the problem from physical space to the wave
number domain. In addition, under the transform the derivatives in the x and z directions
are replaced with multiplication by ikx and ikz respectively, where i is the imaginary unit
i =

√
−1.


∆̂
∂v̂

∂t
= ikxU

′′v̂ − ikxU∆̂v̂ +
1

Re
∆̂2v̂ − ikx

∂d̂x
∂y

− ikz
∂d̂z
∂y

− k2
xd̂x − k2

z d̂z,

∂ω̂y

∂t
= −ikzU

′v̂ − ikxUω̂y +
1

Re
∆̂ω̂y + ikzd̂x − ikxd̂z.

(A13)

The notation □̂ is used to describe a transformed variable and ∆̂ = ∂2

∂y2
− k2

x − k2
z is the

transformed Laplacian operator. From here on we omit the □̂ symbol for convenience of
notation. We Apply The inverse Laplacian to the equation for v in A13 and rewrite A13 in
a matrix form:

∂ψ

∂t
(kx, y, kz, t) = [A (kx, kz)ψ(kx, y, kz, t)](y) + [B(kx, kz)d(kx, kz, t)](y), (A14)

where ψ ≡ [v, ωy]
T . The operators denoted as A and B are defined below:

A ≡
[
A11 0
A21 A22

]
≡

[
−ikx∆

−1U∆+ ikx∆
−1U ′′ + 1

Re
∆−1∆2 0

−ikzU
′ −ikxU + 1

Re
∆

]
, (A15)

B ≡
[
Bx By Bz

]
≡

[
∆−1 0
0 I

] [
−ikx

∂
∂y

−(k2
x + k2

z) −ikz
∂
∂y

ikz 0 −ikx

]
. (A16)

This concludes the derivation of the state equation. We choose the output of the system
to be ϕ ≡ [u, v, w]T to obtain the velocity perturbations field. The linearity of the system
and the vorticity vector implies that the output equation is also linear and has the following
form:

ϕ(kx, y, kz, t) = C (kx, kz)ψ(kx, kz, t)](y), (A17)

where C is a 3× 2 matrix. Writing Eq. (A17) in an explicit form gives:
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u
v
w

 =

C11 C12

C21 C22

C31 C32

[
v
ωy

]
. (A18)

We now want to find the components of C . Looking at the second row of the matrix, it
is obvious that C21 = 1, C22 = 0. We can take the derivative in the x direction of the
continuity equation (forth equation in A1) and get:

∂2u

∂x2
+

∂2v

∂x∂y
+

∂2w

∂x∂z
= 0. (A19)

By rearranging and adding the term ∂2u
∂z2

to both sides we obtain the following equation:

∂2u

∂x2
+

∂2u

∂z2
= − ∂2v

∂x∂y
+

∂ωy

∂z
. (A20)

Now we apply a Fourier transform, turning the derivatives to constants in similar fashion
to Eq. (A13):

−(k2
x + k2

z)û = −ikx
∂v̂

∂y
+ ikzω̂y, (A21)

thus, we know that the coefficients in the first row of the matrix C are:

C11 =
ikx

∂
∂y

k2
x + k2

z

,C12 = − ikz
k2
x + k2

z

. (A22)

A similar derivation can be done for C31 and C32. Instead of differentiating the continuity
equation in the x direction, we will differentiate in the z direction and obtain the following
equation:

∂2u

∂x∂z
+

∂2v

∂y∂z
+

∂2w

∂z2
= 0. (A23)

Now we will add the term ∂2w
∂x2 to both sides:

∂2w

∂x2
+

∂2w

∂z2
= − ∂2v

∂y∂z
− ∂ωy

∂x
. (A24)

Now, again, we apply a Fourier transform to obtain:

−(k2
x + k2

z)ŵ = −ikz
∂v̂

∂y
− ikxω̂y, (A25)

thus, we know that the coefficients in the third row of the matrix C are:

C31 =
ikz

∂
∂y

k2
x + k2

z

,C32 =
ikx

k2
x + k2

z

. (A26)

We have calculated all the terms in C , and hence it is given by the equation:

C ≡

Cu

Cv

Cw

 ≡ 1

k2
x + k2

z

 ikx
∂
∂y

−ikz
k2
x + k2

z 0
ikz

∂
∂y

ikx

 . (A27)
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Equations A14, A15 and A16 describe the state equation of the state space while equations
A17 and A27 describe the output equation. Hence, we obtained a full description of the state
space form of the LNS equations.

B Appendix: Impulse Response
To validate the model for temporal response (as opposed to frequency response) the flow
field solution for impulse forcing in the y direction (Eq. (28)). the results are compared to
the similar work done in M. R. Jovanovic, 2004

Figure 21: Streamwise velocity perturbation pseudo-color plots in the horizontal plane y ≈
0.71 at: t = 40[s] (top left), t = 80[s] (top right), t = 120[s] (bottom left), and t = 160[s]
(bottom right). Forcing in the y direction
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Figure 22: Streamwise velocity perturbation pseudo-color plots in the horizontal plane y ≈
0.68 at: t = 40[s] (top left), t = 80[s] (top right), t = 120[s] (bottom left), and t = 160[s]
(bottom right). Forcing in the y direction, Reprinted from Fig. 10.11 M. R. Jovanovic, 2004
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