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Chapter 1

Introduction

The investigation of the hydrodynamic patterns surrounding a flat airfoil in unsteady flow represents
a classic challenge in fluid mechanics that has been thoroughly examined as a prototypical case for
understanding the dynamics of fluid flow over thin airfoils or fins[1, 2, 3]. The study of fluid
dynamics has always been an essential aspect of scientific research, as it plays a significant role in
understanding the behavior of fluids around solid bodies. In recent years, some of the focus of fluid
dynamics has shifted back towards investigating rarefied gas dynamics[4, 5], which occurs at low
pressures, high altitudes or very small-scale problems. In this context, the present study aims to
investigate the unsteady rarefied gas dynamics over a flat airfoil using analytical techniques.

In the research endeavor entitled ”Analytic Investigation of Unsteady Rarefied Gas Dynamics
over a Flat Airfoil: Hydrodynamic Field Analysis,” the objective is to scrutinize the hydrodynamic
fields manifesting around a flat airfoil within the context of unsteady rarefied gas flow conditions.
Furthermore, a comprehensive assessment of the lift-to-drag ratio will be conducted to elucidate
the aerodynamic performance of the airfoil under the aforementioned conditions. Additionally,
this study encompasses an examination of the far field, a critical component for the design and
optimization of aerodynamic configurations.

The significance of this research project is multifaceted, as it adds to the current understanding
of rarefied gas dynamics, a vital area of study for spacecraft and high-altitude aircraft design.
Moreover, this study’s findings have the potential to enhance the efficiency and performance of
existing aerodynamic structures.

Furthermore, this research project aligns with ongoing developments in the field of micro-electro-
mechanical systems (MEMS), which have led to an increasing number of investigations[6, 7, 8, 9]
on microfluidic flows encountered in small-scale devices with micro-channel geometries. The over-
whelming complexity of channel networks contained in microfluidic chips has motivated researchers
to explore the effects of various factors on rarefied gas flows. These factors include different shapes
geometrical irregularities.

In the context of rarefied gas dynamics, these studies have been crucial in understanding the
behavior of gas flows in micro-scale environments, and have shed light on the unique challenges
and phenomena associated with rarefied gas flows in such geometries. This research project builds
upon this body of knowledge by providing further insights into the hydrodynamic fields around
a flat airfoil under unsteady rarefied gas flow conditions, expanding the understanding of rarefied
gas dynamics in micro-scale environments and its potential applications in microfluidic devices and
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other related fields.
A substantial body of research has previously explored the two-dimensional problem of rarefied

gas dynamics[10, 11]. Additionally, various investigations have approached this problem from a nu-
merical standpoint, employing methods such as direct simulation Monte Carlo (DSMC)[12, 13, 14].
Building upon these works, this research project offers insights into the behavior of hydrodynamic
fields under unsteady rarefied gas flow conditions, thereby expanding the current knowledge base
in this area of study. In addition, this research project extends the scope of investigation to encom-
pass a wide range of velocities, including subsonic, transonic, supersonic, and ultrasonic regimes.
Moreover, the analysis goes beyond velocity considerations and includes an exploration of various
angles of attack and temperature fluctuations of the airfoil, providing a comprehensive and thor-
ough investigation of the hydrodynamic fields around a flat airfoil under unsteady rarefied gas flow
conditions.

The results obtained from this research project should provide a better understanding of the
behavior of rarefied gas flows over flat airfoils and can be used to optimize the design of aircraft
and space vehicles operating under these conditions. Furthermore, the findings of this study will
contribute to the development of computational models and simulation techniques for the analysis
of rarefied gas flows, which can aid in the design and optimization of a wide range of engineering
applications.

In summary, this research project is focused on investigating the hydrodynamic fields developed
around a flat airfoil under the regime of unsteady rarefied gas flow. The study includes an analysis
of the lift over drag ratio and the far field, which are crucial for the design and optimization of
aerodynamic structures. The results of this study are expected to contribute to the field of fluid
dynamics and have practical applications in the design of high-altitude aircraft and spacecraft.
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Chapter 2

The Problem

2.1 General Description

We are considering the behavior of a mono-atomic gas layer with uniform density, denoted as ρ∗0
(where dimensional quantity marked by asterisk), and uniform temperature, denoted as T ∗

0 , confined
by a flat airfoil with length c∗, placed along the x axis of the x∗-y∗ plane, where its leading edge
located at the origin, as shown on Fig. 2.1. While a flow is constantly subjected towards the airfoil
by

U∗ = U∗
x x̂+ U∗

y ŷ, (2.1)

the airfoil undergoes small-amplitude time-harmonic oscillations, with its normal velocity compo-
nent prescribed by the distribution function V ∗

af(x
∗, t∗) and the time frequency denoted as ω∗

V ∗
af (t

∗, x∗) = εU∗
thvaf (x

∗) cos (ω∗t∗) . (2.2)

The airfoil-normal velocity amplitude, vaf , is scaled by U∗
th =

√
2R∗T ∗

0 , where R∗ is the specific
gas constant. The oscillations of the airfoil’s temperature are also taken into consideration and are
represented by a function of time and position along the x∗ axis

T ∗
af = T ∗

af (t
∗, x∗) . (2.3)

Since ε ≪ 1, the airfoil is assumed to be staying on its initial position, merged with the abscissa.
The airfoil is assumed to be fully diffuse, with both its temperature and velocity oscillating as a
function of time. The solution of the problem in this research project aims to investigate the
behavior of the gas layer under these conditions, taking into account the effects of small-amplitude
time-harmonic oscillations.

The present study explores the impact of gas rarefaction on the propagation of hydrodynamic
field changes generated by airfoil excitation in a two-dimensional setting. The changes are described
by the airfoil’s normal velocity, denoted as V ∗

af(x
∗, t∗), and temperature, denoted as T ∗

af(x
∗, t∗),

which are functions of horizontal location and time. The degree of gas rarefaction is determined
by the ratio of the time frequency of imposed oscillations, denoted as ω∗, to the mean collision
frequency of gas molecules, approximated as v∗0 ≈ U∗

th/λ
∗, where λ∗ represents the mean free

path of gas molecules. Our focus is on investigating the regime of high rarefaction, known as the
ballistic limit, which is expected to occur at large values of ω∗λ∗/U∗

th. By using ω∗−1 and U∗
th as
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Figure 2.1: Schematic of the Airfoil in a Uniform Flow: The drawing depicts an infinite gas layer confined by
fully diffuse airfoil with length c∗, where the airfoil actuated by a prescribed small amplitude time and x∗-dependent
normal velocity profile, and temperature profile denoted as V ∗

af(t
∗, x∗), T ∗

af(t
∗, x∗). The gas layer is subjected to a

uniform flow denoted by U∗. The far field characteristics of the fluid, including density ρ∗0, temperature T ∗
0 , and

pressure p∗0, are indicated.

the characteristic time and velocity scales of the problem, respectively, the resulting length-scale is
of the order of the acoustic wavelength, U∗

th/ω
∗. The governing parameter of the problem is the

Knudsen number, defined as
Kn = ω∗λ∗/U∗

th, (2.4)

which represents the ratio of the characteristic length-scale to the mean free path, and the ampli-
tude of V ∗

af (x
∗, t∗), which represents the prescribed airfoil vibration amplitude. To complete the

non-dimensional description, we adopt ρ∗0 and T ∗
0 as the reference gas density and temperature, re-

spectively, and normalize length dimensions by the length of the airfoil. In the subsequent analysis,
we investigate the specific limits of highly rarefied conditions, expected at Kn ≫ 1, using analytical
methods.

2.2 Analytical Analysis

Within the context of gas kinetic theory and a two-dimensional configuration, the gas state is
described by the probability density function f = f (t, x, y, ξ), which represents the likelihood of
finding a gas molecule with velocity ξ = (ξx, ξy, ξz) near a position (x, y) at time t. Under the
assumption of linearized conditions, we express f(t, x, y, ξ) as

f (t, x, y, ξ) = F [1 + ϕ (t, x, y, ξ)] , (2.5)

where F = π−3/2e−|ξ−U|2 represents the non-dimensional Maxwellian equilibrium distribution, and
ϕ (t, x, y, ξ) denotes the probability perturbation function.
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The dimensionless Boltzmann equation without external forces is typically used to describe the
behavior of a dilute gas of particles, such as molecules or atoms, undergoing binary collisions in the
absence of external influences. The vector form of this equation can be written as follows[15]:

St
∂f

∂t
+ ξ

∂f

∂ξ
=

1

Kn

ˆ
(f ′f1′ − ff1)gbdbdεdξ (2.6)

The right-hand side of Eq. 2.6 represents the effect of binary collisions between gas particles, which
is described by the collisions integral. In other words, it accounts for the interactions between pairs
of gas particles as they collide and exchange energy and momentum. The collisions integral is a
mathematical term that characterizes a sum over probability of particles colliding and the resulting
change in their velocities. The Strouhal number denoted by St is a dimensionless parameter used
in fluid dynamics to characterize the behavior of periodic or oscillatory flow phenomena, such as
vortex shedding behind an object in a flowing fluid. It is defined as the ratio of the characteristic
frequency of the flow to the product of the characteristic length and the characteristic velocity of
the flow. In some cases, a common approximation used in fluid dynamics is assuming that the
Strouhal number is equal to one (St ≈ 1). This approximation is often used when the frequency
of the flow is roughly comparable to the product of the characteristic length and velocity, meaning
that the flow exhibits a characteristic time scale that is on the order of the time required for the
fluid to travel the characteristic length at the characteristic velocity. In such cases, the Strouhal
number of one is considered a good assumption because it suggests that the fluid is responding to
the imposed motion in a resonant or efficient manner, leading to significant flow phenomena such
as vortex shedding, wake formation, or other dynamic behaviors.

In the regime of large Knudsen number, we consider the collisionless two-dimensional unsteady
Boltzmann equation for ϕ (t, x, y, ξ):

∂ϕ

∂t
+ ξx

∂ϕ

∂x
+ ξy

∂ϕ

∂y
= 0. (2.7)

The free-molecular problem can be solved in closed-form for an arbitrary (small-amplitude) sources,
Vaf = Vaf (t, x), Taf = Taf (t, x). Therefore, we consider a more general problem that does not
deductively assume time-harmonic (airfoil velocity or temperature) oscillations. Eq. 2.7 is subject
to a far-field decay condition, along with a fully diffuse boundary condition at the airfoil position.
The latter takes the form

ϕ (t, 0 ≤ x ≤ 1, 0, ξy ≷ 0) = ρ±af (t, x) , (2.8)

where ρ±af (t, x) is yet to be determined. The solution for Eq. 2.7 subject to Eq. 2.8 is

ϕ (t, x, y, ξ) =

{
ρ±af , {y ≷ 0} ∩ {ξy ≷ 0} ∩ {x−1

y ξy ≤ ξx ≤ x
y ξy}

0 , else
. (2.9)

In order to determine the airfoil functions ρ±af (t, x) as mentioned in Eq. 2.9, an impermeability
condition is imposed on the normal velocity component v (t, x, y), utilizing Eq. 2.5 as well. This
condition is given by

v
(
t, x, 0±

)
=

π−3/2

ρ (t, x, 0±)

 ˆ
ξy≶0

ξyFdξ +
1

T
3/2
af (t, x)

ˆ

ξy≷0

ξyϕFdξ

 = Vaf (t, x) . (2.10)
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First calculating ρ (t, x, 0±) to find

ρ
(
t, x, 0±

)
=

1∓ erf Uy

2
+ ρ±af (t, x)

1± erf η

2
, (2.11)

where

erf z =
2√
π

ˆ z

0

e−t2dt , (2.12)

and η denoting the ratio

η =
Vaf (t, x)√
Taf (t, x)

(2.13)

By substituting Eqs. 2.9, 2.11 and 2.13, into Eq. 2.10, the expression for ρ±af (t, x) is found to be

ρ±af (t, x) = e+η2

[
e−U2

y + Uy
√
π (erf Uy ∓ 1)√

Taf (t, x)
− η

√
π (erf Uy ∓ 1)

]
, (2.14)

which indicates the local dependence of the gas mass flux at the airfoil both on its instantaneous
velocity and temperature. Once ϕ (t, x, y, ξ) is in our hand, using Eq. 2.5 yields f(t,x, ξ).

For practical uses, we successfully obtained the distribution function f(t,x, ξ) which describes
the microscopic behavior of gas particles in a system. The distribution function f , plays a pivotal
role in the kinetic theory of gases, providing a comprehensive description of the statistical behavior
of gas molecules. However, for many applications, it is often sufficient to consider only macroscopic
quantities, such as density, velocity, stress tensor, and energy flux, which can be obtained through
experimental measurements as well. In cases where the mean free path of gas molecules is sufficiently
small, a hydrodynamic description of the gas is feasible. Nevertheless, it should be noted that a
hydrodynamic approach entails averaging the distribution function f(t,x, ξ) over the molecular
scale to obtain macroscopic properties of interest.

Notably, the number of gas molecules, denoted as n(t,x), in a given unit volume can be de-
termined by integrating the distribution function f(t,x, ξ) over all possible molecular velocities
ξ[15]

n (t, x, y) =

ˆ
f (t, x, y, ξ) dξ. (2.15)

Similarly, the mean velocity of the molecules, u(t,x), and the stress tensor, Pij , can be calculated
by

u (t, x, y) =
1

n

ˆ
ξf (t, x, y, ξ) dξ (2.16)

Pij (t, x, y) = m

ˆ
cjcif (t, x, y, ξ) dξ. (2.17)

Where c, the peculiar velocity, defined as c = ξ − u. Moreover, a quantity P , defined as 2/3 times
the sum of the diagonal components of the stress tensor, coincides with the conventional pressure
in the hydrodynamic description of gases. Remarkably, this relationship can be expressed as

P (t, x, y) = n(t, x, y) · k · T (t, x, y), (2.18)

where n(t, x, y) (from Eq. 2.15) represents the number density of gas molecules, k is the Boltzmann
constant, and T (t, x, y) denotes the temperature.
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Chapter 3

Results

In this chapter, we report the findings from our investigation of the collisionless-flow regime in the
context of different airfoil excitations. We present a detailed analysis of the results obtained from
our simulations, which sheds light on the fundamental physics of the problem under consideration.
Specifically, we explore the impact of various airfoil excitations on the gas state and the associated
flow dynamics, providing insights into the underlying mechanisms that govern the behavior of the
system.

3.1 Expressions of Hydrodynamic Fields in the Collisionless-
Flow Regime

Understanding the behavior of hydrodynamic fields in the vicinity of an airfoil is crucial for predict-
ing the aerodynamic performance of a body subjected to this flow regime. In this section, we present
the analytic expressions of the hydrodynamic fields in the collisionless-flow regime. These expres-
sions are derived directly by Eqs. 2.15–2.17, and rely on the airfoil function ρ±af (t, x) introduced in
Eq. 2.14. By analyzing these expressions, we can gain insight into the complex interactions between
the flow and the airfoil, and ultimately develop more accurate models for predicting aerodynamic
behavior.

In the free-molecular regime, molecules that are reflected from an airfoil carry information about
the boundary without colliding with other molecules. As a result, at a particular location and time,
these molecules combine the various airfoil states during a period, but at different times in the past.
These times are known as ”retarded times”, which refer to the time delay between the emission of
a molecule from the airfoil and its arrival at a particular location.

We will consider a simplified scenario where the airfoil temperature and velocity, denoted as Taf

and Vaf respectively, depend solely on time and not on the spatial coordinate x. The retarded time,
t̃, at which a molecule collides with the airfoil, depends on the measurement time t, the vertical
position y at which the measurement is taken, and the vertical molecular velocity ξy, and is given
by

t̃ = t− y

ξy
.
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3.1.1 Density

The density field above and below the airfoil can be expressed using nearly identical integrals, with
only the limits of integration differing. Specifically, for the upper half of the x, y plane (above the
airfoil), the density as a function of time and position coordinates is given by:

ρ(t, x, y ⩾ 0) = 1 +
1

2
√
π

 ∞̂

0

e−(ξy−Uy)
2

erf

(
x− 1

y
ξy − Ux

)
dξy

−
∞̂

0

e−(ξy−Uy)
2

erf

(
x

y
ξy − Ux

)
dξy


+

1

2
√
π

∞̂

0

ρaf
(
t̃
)√

Taf

(
t̃
)e− (ξy−Vaf(t̃))

2

Taf(t̃)

erf

 x
y ξy√
Taf

(
t̃
)
− erf

 x−1
y ξy√
Taf

(
t̃
)
 dξy,

and for the lower half of the plane:

ρ(t, x, y ⩽ 0) = 1 +
1

2
√
π

 0ˆ

−∞

e−(ξy−Uy)
2

erf

(
x− 1

y
ξy − Ux

)
dξy

−
0ˆ

−∞

e−(ξy−Uy)
2

erf

(
x

y
ξy − Ux

)
dξy


+

1

2
√
π

0ˆ

−∞

ρaf
(
t̃
)√

Taf

(
t̃
)e− (ξy−Vaf(t̃))

2

Taf(t̃)

erf

 x
y ξy√
Taf

(
t̃
)
− erf

 x−1
y ξy√
Taf

(
t̃
)
 dξy.

This pattern also holds for the other hydrodynamic fields, including velocity and stress, and will
be denoted in a similar manner using the following notation:

ρ

(
t, x, y

⩾
⩽

0

)
= 1 +

1

2
√
π

 +∞,0ˆ

0,−∞

e−(ξy−Uy)
2

erf

(
x− 1

y
ξy − Ux

)
dξy

−
+∞,0ˆ

0,−∞

e−(ξy−Uy)
2

erf

(
x

y
ξy − Ux

)
dξy


+

(3.1)

1

2
√
π

+∞,0ˆ

0,−∞

ρaf
(
t̃
)√

Taf

(
t̃
)e− (ξy−Vaf(t̃))

2

Taf(t̃)

erf
 x

y ξy√
Taf

(
t̃
)
− erf

 x−1
y ξy√
Taf

(
t̃
)
 dξy (3.2)
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In fact, the symmetry mentioned in the previous paragraph is purely mathematical, and in reality,
the hydrodynamic fields above and below the airfoil are not exactly symmetric on a moment in
time. As we will see in the graphical results further on, the fields are highly dependent on the
choice of Taf and Vaf , as well as the fluid flow angle of attack which appears with Ux and Uy.

The effects of the airfoil temperature and velocity, as well as the fluid flow angle of attack, can
be observed in the different expressions of the hydrodynamic fields above and below the airfoil.
These expressions show that the density, velocity, and stress fields are influenced by various factors,
such as the flow velocity, the temperature and velocity of the airfoil, and the angle of attack. The
effect of these factors on the fields will be demonstrated in the graphical results that follow, which
will provide a more comprehensive understanding of the behavior of the hydrodynamic fields in the
free-molecular flow regime.

3.1.2 Velocity

Horizontal velocity

u

(
t, x, y

⩾
⩽

0

)
= 1

ρ(t,x,y)
1
2π

{{
2Uxπ +

+∞,0´
0,−∞

e
−
(
( x

y ξy−Ux)
2
+(ξy−Uy)

2
)
− e

−
(
( x−1

y ξy−Ux)
2
+(ξy−Uy)

2
)
dξy

Ux
√
π

+∞,0´
0,−∞

e−(ξy−Uy)
2
[
erf
(

x−1
y ξy − Ux

)
− erf

(
x
y ξy − Ux

)]
dξy

}

+
+∞,0´
0,−∞

ρaf(t̃)√
Taf(t̃)

e
− (ξy−Vaf(t̃))

2

Taf(t̃)

e
− ( x−1

y
ξy)

2

Taf(t̃) − e
− ( x

y
ξy)

2

Taf(t̃)

 dξy


Vertical velocity

v

(
t, x, y

⩾
⩽

0

)
= 1

ρ(t,x,y)
1

2
√
π

{
2Uy

√
π +

+∞,0´
0,−∞

ξye
−(ξy−Uy)

2
[
erf
(

x−1
y ξy − Ux

)
− erf

(
x
y ξy − Ux

)]
+∞,0´
0,−∞

ρaf(t̃)√
Taf(t̃)

ξye
− (ξy−Vaf(t̃))

2

Taf(t̃)

[
erf

(
x
y ξy√
Taf(t̃)

)
− erf

(
x−1
y ξy√
Taf(t̃)

)]
dξy

}
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3.1.3 Stress

In this subsection, we delve into the analytical findings related to the components of the stress tensor –
namely pxx, pyy and pzz – within the collisionless-flow environment around a flat airfoil. We outline how
these stress tensor components behave over time and across the planar coordinates, considering varying
angles of attack as indicated by the fluid flow velocity components Ux and Uy. Additionaly, we highlight the
influence of the airfoil’s functions, which are depndent on the retarded time, represented as ρaf(t̃) and Taf(t̃).
Our analytical insights reveal that these stress tensor components demonstrate intricate patterns, with shifts
in both magnitude and direction based on the angle of attack and the specific functions associated with the
airfoil.

pxx

(
t, x, y

⩾
⩽

0

)
=
(
1
π

)3/2 {
π
√
π

4

(
1 + 2U2

x

)
(1 + erf Uy)+

π
4

{(
1 + 2U2

x

) +∞,0´
0,−∞

e−(ξy−Uy)
2
(
2 + erf

(
x−1
y ξy − Ux

)
− erf

(
x
y ξy − Ux

))
+

+ 2√
π

(
+∞,0´
0,−∞

e−(ξy−Uy)
2
[
e−(

x
y ξy−Ux)

2 (
x
y ξy + Ux

)
− e−(

x−1
y ξy−Ux)

2 (
x−1
y ξy + Ux

))
dξy

]}

+ 1
2π

+∞,0´
0,−∞

ρaf
(
t̃
)√

Taf

(
t̃
)
e
− (ξy−Vaf(t̃))

2

Taf(t̃)

 √
π
2 erf k − ke−k2


x
y

ξy√
Taf(t̃)

x−1
y

ξy√
Taf(t̃)

dξy


−ρ(t, x, y) · u2(t, x, y)

pyy

(
t, x, y

⩾
⩽

0

)
=
(
1
π

)3/2 {
π
√
π

4

(
1 + 2U2

y

)
(1− erf Uy)− π

2Uye
−U2

y

+π
2

+∞,0´
0,−∞

ξ2ye
−(ξy−Uy)

2
[
2 + erf

(
x−1
y ξy − Ux

)
− erf

(
x
y ξy − Ux

)]
dξy

+ 1
2
√
π

+∞,0´
0,−∞

ρaf
(
t̃
)√

Taf

(
t̃
)−1

e
− (ξy−Vaf(t̃))

2

Taf(t̃) ξ2y

 erf k


x
y

ξy√
Taf(t̃)

x−1
y

ξy√
Taf(t̃)

dξy


−ρ(t, x, y) · v2(t, x, y)

pzz

(
t, x, y

⩾
⩽

0

)
=
(
1
π

)3/2 1
4 {π

√
π(1− erf Uy)

+π
+∞,0´
0,−∞

e−(ξy−Uy)
2
(
2 + erf

(
x−1
y ξy − Ux

)
− erf

(
x
y ξy − Ux

))
dξy

+ 1√
π

+∞,0´
0,−∞

ρaf
(
t̃
)√

Taf

(
t̃
)
e
− (ξy−Vaf(t̃))

2

Taf(t̃)

erf (k)


x
y

ξy√
Taf(t̃)

x−1
y

ξy√
Taf(t̃)

dξy
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Where the calculation of the total static pressure is done by[15]:

P =
2

3
(pxx + pyy + pzz) . (3.3)

In addition to the stress tensor components discussed previously, we also presents results for the
stress components in the limit where y goes to zero, corresponding to high proximity to the airfoil.
These results are of particular interest for the analysis of the lift and drag produced by the presence
of the airfoil in the fluid flow. Specifically, the following includes the stress tensor components pyy
and pxy in this limit, which exhibit complex behavior. By analyzing these stress components, it
is able to gain insight into the mechanisms that govern the lift and drag produced by the airfoil,
and ultimately develop more accurate models for predicting aerodynamic behavior (for η recall Eq.
2.13).

pyy
(
t, x, 0±

)
=

1

4

{(
1 + 2U2

y

)
(1− erf Uy)−

2√
π
Uye

−U2
y

±ρ±af(t)Taf(t)

[
erf η +

2√
π
ηe−η2

+ 2η2(erf η − 1)± 1

]} (3.4)

pxy
(
t, x, 0±

)
=

1

2
√
π
Ux

[
Uy

√
π(1∓ erf Uy)∓ e−U2

y

]
(3.5)
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3.2 Visual Results for the Hydrodynamic Fields

Figure 3.1:
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Variations of density, velocity and static pressure by steady-state
fluid flow of U∞ = 0.1, angle of attack α = 0◦

In this subsection, we transition from
analytical derivations to a more vi-
sual representation, showcasing plots
derived from the expressions dis-
cussed in the preceding section. Our
emphasis will be on plots represent-
ing steady-state conditions, a spe-
cific simple unsteady scenario where

the speed is ’Transonic’ (
U∗

∞
U∗

th
=√

U2
x + U2

y = 1). In this scenario, the

airfoil’s temperature exhibits minor
oscillations around the distant fluid
temperature, and the airfoil’s veloc-
ity shows slight oscillations around
the x-axis. After these two examples,
we will also present a dipole-induces
dynamics example, without any fluid
flow. While the analytical expres-
sions we’ve derived offer the flexibil-
ity to probe nearly every conceivable
state, in this section, we’ve chosen to
spotlight only select, straightforward
cases to provide clarity and founda-
tional understanding.

3.2.1 Steady-State

In the steady-state case, we delve into
a scenario where the fluid flow ve-
locity is distinctly ”subsonic”, with a
magnitude given by U∞ = 0.1. Here,
the airfoil remains stationary along
the x-axis, and its temperature is set
to match the temperature of the dis-
tant fluid, ensuring a consistent ther-
mal environment. Notably, the direc-
tion of the fluid flow aligns parallel to
the orientation of the airfoil, specifically pointing towards the positive x-axis direction.

The visual representations in this subsection (Fig. 3.1) primarily focus on the variations in the
density field, velocity field and static pressure field. These plots capture the difference between
the computed density and the normalized density of the fluid flow, as well as the static pressure.
As one would anticipate, as we move farther from the airfoil, this difference gradually diminishes,
approaching zero. This behavior underscores the consistency and reliability of our analytical models.
Additionally, the subsection presents plots showcasing the fluid velocity in close proximity to the
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airfoil. Another significant inclusion is the depiction of the static pressure difference, contrasting
the calculated static pressure against the static pressure of the resting fluid. Together, these visual
insights offer a comprehensive understanding of the hydrodynamic fields in the specified steady-state
scenario.

3.2.2 Unsteady-state

Figure 3.2:
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Variations of density, velocity and static pressure by fluid flow of
U∞ = 1, angle of attack α = 10◦, Taf = 1 + 0.05 sin(t), Vaf =
0.05 sin(t)

In the unsteady-state case, we ven-
ture into dynamic scenarios charac-
terized by ”Transonic” speeds, where
U∞ = 1. The airfoil, set at an an-
gle of attack of 10 degrees, exhibits
minor oscillations around the distant
fluid temperature. Additionally, the
airfoil’s velocity demonstrates slight
oscillations around the x-axis, intro-
ducing an element of variability. This
subsection offers visual representa-
tions (Fig. 3.2) that capture the in-
tricate dynamics of these oscillations,
both in terms of temperature and ve-
locity. As we navigate through these
plots, we will gain a deeper under-
standing of the hydrodynamic fields
under transonic and unsteady condi-
tions, emphasizing the nuanced inter-
play between the airfoil’s oscillatory
behavior and the surrounding fluid
dynamics.

3.2.3 Dipole-Induced Dy-
namics

In the dipole-induced dynamics case,
our exploration shifts towards the
hydrodynamic field responses influ-
enced by a dipole source setup. Dis-
tinct from both the steady-state and
unsteady-state frameworks, this sce-
nario abstains from introducing di-
rect fluid flow. Instead, we perturb
the steady conditions by applying al-
ternating heating and cooling regimes
to the airfoil. Administered at a no-

tably elevated frequency, these thermal cycles trigger wave formations within the encompassing
fluid medium.
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Figure 3.3:
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Variations of density, velocity and static pressure with no fluid
flow, but Taf = 1 + 0.1 sin(15t) and Vaf ≡ 0

The drawings in this section (Fig.
3.3) mainly show the differences in
the density, speed, and pressure of
the fluid. These graphical illustra-
tions elucidate the variances between
the predicted density and the stan-
dardized density of the fluid medium,
coupled with the static pressure devi-
ations.

By looking into this, we want
to better understand how the dipole
sources affect the movement of the
fluid. This highlights the relation-
ship between the airfoil’s heat-related
movements and the fluid’s behavior.

3.3 Lift and Drag

We shall extend our exploration from
the stress tensor results discussed ear-
lier, particularly those in close prox-
imity to the airfoil. Our primary
objective here is to derive the lift
and drag forces exerted on the airfoil.
This analysis is pivotal to the overar-
ching goals of this paper, as it offers
a quantitative measure of the aerody-
namic performance in the context of
unsteady rarefied gas flow. By delv-
ing into the intricacies of lift and drag
mechanisms, we aim to pave the way
for the development of precise predic-
tion models. A key factor influencing
these forces, which we will address in
detail, is the angle of attack. This
comprehensive examination will not
only enhance our understanding of the aerodynamic behavior but also solidify the foundational
knowledge required for optimizing designs in similar fluidic environments.

For choice of uniform Taf, Vaf along x:

Noraml Force = N =

1ˆ

0

pyy
(
t, x, 0−

)
dx−

1ˆ

0

pyy
(
t, x, 0+

)
dx

= pyy
(
t, 0−

)
− pyy

(
t, 0+

)
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and specifically for Taf = 1 and Vaf = 0 (that is, pure steady state):

N =
1

2

[(
2U2

y + 1
)
erf Uy +

2√
π
Uye

−U2
y + Uy

√
π

]
. (3.6)

Similarly
Tangential Force = T = pxy

(
t, 0−

)
− pxy

(
t, 0+

)
= Ux

(
Uy· erf Uy +

1√
π
e−U2

y

)
.

(3.7)

Using N,T and the definition of lift (the force acting on a body, perpendicular to the direction of
the uniform flow), the lift L would be

L = N cosα− T sinα

= N
Ux√

U2
x + U2

y

− T
Uy√

U2
x + U2

y

=
Ux

2
√

U2
x + U2

y

(
erf Uy + Uy

√
π
) (3.8)

Finding the maxima of L by calculating the derivative with respect to the angle of attack

dL

dα
= − 1

2
√
U2
x + U2

y

(
Uyerf Uy + U2

y

√
π − 2√

π
U2
xe

−U2
y − U2

x

√
π

)
, (3.9)

and assuming
√

U2
x + U2

y ≪ 1

L ≈ 1

2
√

U2
x + U2

y

2 + π√
π

UxUy, (3.10)

which finally yields
dL

dα
≈ 1

2
√
U2
x + U2

y

· 2 + π

π

√
π
(
U2
x−U2

y

)
=

2 + π

2π

√
π
√
U2
x + U2

y cos 2α

.

Therefore, under theses conditions, the maximum of L is on α = π
4 .

Using Eqs. 3.6, 3.7 again, with the definition of drag (the force acting on a body, parallel to the
direction of the uniform flow), the drag D shall be

D =
1√

U2
x + U2

y

[(
U2
y + U2

x+
1

2

)
Uy· erf Uy +

(
U2
y + U2

x

) 1√
π
e−v2

+ U2
y

√
π

]
. (3.11)

Performing similar analysis under the same assumptions we find that for α = 0 the drag is linear
with the speed of the fluid flow

D
(√

U2
x + U2

y ≪ 1, α = 0
)
=

√
U2
x + U2

y

π
. (3.12)
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Figure 3.4: Aerodynamic properties as a function of the angle of attack at U∞ = 0.1. The upper subplot shows
both lift and drag curves, while the lower subplot illustrates the lift over drag ratio, highlighting the optimal angle
of attack. The optimal angle of attack, where the lift-to-drag ratio is maximized, is of paramount importance as
it indicates the angle at which the airfoil achieves its best aerodynamic efficiency. This optimal efficiency is crucial
for the design and performance of aircraft and other aerodynamic structures, especially in the context of unsteady
rarefied gas flow, which is the primary focus of this paper.
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3.4 Far Field Analysis

3.4.1 Density Wedge

Examining the density field in a steady flow as depicted in Fig. 3.1, we observe a pronounced
”wedge” formation subsequent to the trailing edge. Our objective is to probe this manifestation
through the derivation of an analytical expression that encapsulates the phenomenon. We shall
revisit the general density modulation attributed to the presence of the airfoil (Eq. 3.2):

ρhitted
(
t, x, y

⩾
⩽

0

)
=

1

2
√
π

+∞,0ˆ

0,−∞

ρaf
(
t̃
)√

Taf

(
t̃
)e− (ξy−Vaf(t̃))

2

Taf(t̃)

erf
 x

y ξy√
Taf

(
t̃
)
− erf

 x−1
y ξy√
Taf

(
t̃
)
 dξy
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When we’re dealing with symmetric flow (with zero angle of attack) in a steady state, the complexity
of the problem is considerably reduced to

ρhitted
(
x, y

⩾
⩽

0

)
=

1

2
√
π

+∞,0ˆ

0,−∞

e−ξ2y

[
erf

(
x

y
ξy

)
− erf

(
x− 1

y
ξy

)]
dξy,

We then introduce a new variable, denoted by m = x
y . By using advanced techniques like the

Taylor expansion, we’re able to approximate the error function erf (z + δz) around z, especially
when considering the condition where the vertical distance is significantly large y ≫ 1. By 1st order
approximation

ρhitted
(
x, y

⩾
⩽

0

)
=

1

2
√
π

+∞,0ˆ

0,−∞

e−ξ2y

[
erf (mξy)− erf

(
mξy −

1

y
ξy

)]
dξy

≈ +−
1

2πy (1 +m2)

.

Finally, by replicating the same method for the particles unaffected by the airfoil, we obtain a
full model:

ρ

(
x, y

⩾
⩽

0

)
≈+− 1−+

1

2πy
e−µUx

m

{(
1 +m2

)
e−µUxm + µ

√
π

1 +m2

[
1 + erf

(
µ
√

1 +m2
)]}

+−
1

2πy (1 +m2)
(3.13)

m =
x

y
, µ =

Uxm

1 +m2

In Section 3.2.1, the steady-state situation was discussed, where the velocity of fluid flow was
distinctly in the subsonic range. Additionally, the airfoil was fixed along the x-axis, as visualized
in Fig. 3.1. Nonetheless, we assumed notably large y values in our current discussion. This implies
that the findings from the steady-state scenario might not be of particular interest, as the density
”wedge” manifests relatively near the x axis.

As we increase the fluid’s velocity, the wedge sharpens and shifts rightwards, indicating an
increase in x-values. This behavior is illustrated in Fig. 3.5. The nature of the flow in Fig. 3.1
might not yield intriguing findings due to its low-speed fluid flow characteristics.
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Figure 3.5: Density wedge behavior at steady-state with increased fluid velocity of U∞ = 3, angle of attack α = 0◦

To further our understanding, we engaged in tests for scenarios where the normalized fluid flow
velocity is set at U∞ = 3. This led us to the insights of Fig. 3.6, which compare the perturbed
density against its mathematical approximation from our earlier discussions and showcases the
relative error in percentages. Upon closer inspection of this figure, the error remains under the 1%
mark. Moreover, the way the curves move is very similar, especially where they peak.
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Figure 3.6: Comparison between exact solution and its approximation, including the relative error in percents.

3.4.2 Abeam Chord Center

In this study, attention is directed towards the mid-chord location of the airfoil, denoted at x =
1/2. Rather than delving into the fluid dynamics surrounding the airfoil, the research primarily
explores the thermodynamic reactions evident far above and beneath the airfoil’s central region
when exclusively subjected to a sinusoidal temperature modulation defined as:

Taf(t) = 1 + ϵ sin(ωt) ϵ ≪ 1. (3.14)

This investigative approach yields profound insights. In scenarios devoid of airfoil movement
and fluid interaction, thermal fluctuations can precipitate notable alterations in the fluid’s density
and stress profiles. By introducing a periodic thermal variation, the study endeavors to outline the
responses of thermodynamic fields to temperature shifts. Such methodical adjustments potentially
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mirror conditions observed in real-world applications. The primary aim of this research is to shed
light on the consequences of temperature variations at the airfoil’s mid-chord region.

Under the conditions defined in Eq. 3.14 and the following:

Ux = Uy = 0
Vaf(t) = 0

,

and recalling Eqs. 3.1 and 3.2, we have

ρ

(
t, x = 1/2, y

⩾
⩽

0

)
= 1 − 1√

π

+∞,0´
0,−∞

e−ξ2y erf
(

1
2y ξy

)
dξy

+ 1√
π

+∞,0´
0,−∞

1

1+ϵ sin(ωt̃)
e
−

ξ2y

Taf(t̃) erf

(
1
2y ξy√

1+ϵ sin(ωt̃)

)
dξy

.

Adopting a first-order Taylor expansion for erf z, e−z2

and (1 + z)a, this simplifies further to:

ρ

(
t, x = 1/2, y

⩾
⩽

0

)
= 1 +−

ϵ

πy

∞̂

0

(
ξ2y − 3

2

)
sin
(
ωt̃
)
· ξye−ξ2ydξy. (3.15)

To derive a general solution for the following form,

Im =

∞̂

0

(
ξ2y − 3

2

)
sin
(
ωt̃
)
· ξmy e−ξ2ydξy

= ℑ

eiωt

 ∞̂

0

ξm+2
y e−ξ2y−z/ξydξy −

3

2

∞̂

0

ξmy e−ξ2y−z/ξydξy


,

we invoke the Abramowitz method [16], which gives the asymptotic estimate of the integral as:

Jn(z) =

∞̂

0

sn exp
(
−s2 − z/s

)
ds = 3−n/2ζn/2 exp(−ζ)

√
π

3

[
1 +

a
(1)
n

ζ
+

a
(2)
n

ζ2
+ · · ·

]
z = iωy , |z| ≫ 1 , ζ = 3(z/2)2/3

a(1)n =
(
3n2 + 3n− 1

)
/12

a(2)n =
(
9n4 + 6n3 − 51n2 − 24n+ 25

)
/288

Thus, the approximate solution can be expressed as:

Im =

∞̂

0

(
ξ2y − 3

2

)
sin
(
ωt̃
)
· ξmy e−ξ2ydξy

= ℑ
{
eiωt

[
Jm+2(z)−

3

2
Jm(z)

]} . (3.16)

With the above formulation, it becomes feasible to determine Eq. 3.15 using the relation from Eq.
3.16:
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ρ

(
t, x = 1/2, y

⩾
⩽

0

)
≈ 1− 1

2πy
+−

+−

{
1

2πy
+ ϵ

ω

8Ω
√
3π

e−
3
2Ω

[
(4Ω− 3) cos

(
ωt− 3

√
3

2
Ω

)
− 3

√
3 sin

(
ωt− 3

√
3

2
Ω

)]}
(3.17)

While making extensive use of the notation Ω = (ωy/2)
2/3

. We can now advance to the calculations
for pxx, pyy and pzz:

pxx

(
t, x = 1/2, y

⩾
⩽

0

)
≈ 1

2
− 1

16πy3 + 4πy
+−

+−

{
1

16πy3
+ ϵ

ω

y2· 216/3
1√
3π

e−
3
2Ω

[
2Ω− 3

2
cos

(
ωt− 3

√
3

2
Ω

)
−

√
3Ω sin

(
ωt− 3

√
3

2
Ω

)]}
(3.18)

pyy

(
t, x = 1/2, y

⩾
⩽

0

)
≈ 1

2
− 1

2πy
+−

+−

{
1

2πy
+ ϵ

ω

8Ω
√
3π

e−
3
2Ω

[
(4Ω− 3) cos

(
ωt− 3

√
3

2
Ω

)
− 3

√
3 sin

(
ωt− 3

√
3

2
Ω

)]}
(3.19)

pzz

(
t, x = 1/2, y

⩾
⩽

0

)
≈ 1

2
− 1

4πy
+−

+−

{
1

4πy
+ ϵ

ω

16Ω
√
3π

e−
3
2Ω

[
(4Ω− 1) cos

(
ωt− 3

√
3

2
Ω

)
−

√
3 sin

(
ωt− 3

√
3

2
Ω

)]}
(3.20)

We are now set to present a comprehensive visualization of our findings. By juxtaposing the
results derived from our model against the exact solutions for both density and pressure, we aim
to emphasize the efficacy and precision of our approximation. As we navigate through the compar-
ative graphs and figures, the closeness of our evaluation to the exact benchmarks should provide
compelling evidence of the adequacy of our approximation. The objective is to convincingly demon-
strate that, despite being an approximation, our methodology provides insights that align closely
with the established exact solutions.

21



-2

-1

0

1
10

-3

0

0.005

0.01

0.015

0.02

0 2 4 6 8 10 12 14 16 18 20

-6

-4

-2

0

2
10

-3

0

0.02

0.04

0.06

0.08

0.1

Figure 3.7: Comparison of the exact and approximated solutions. The results for negative y values are not shown
due to symmetry with respect to y = 0. The perturbation follows Eq. 3.14 with ϵ = 0.1 and ω = 1. The upper
subplot depicts the density field with the hydrodynamic field on the left y-axis and the relative error on the right
y-axis. The subplot below corresponds to the pressure field, again highlighting the hydrodynamic field on the left
y-axis and the relative error on the right y-axis.

The visualization on Fig. 3.7 underscores a commendable alignment between the approximation
and the exact solution. Delving deeper into the relative error, it remains significantly beneath the
0.1% threshold, solidifying the precision of our approximation. A noteworthy observation is the
gradual diminishment of the relative error as the values of y escalate. Specifically, beyond 5 chord
lengths, the approximation’s relative error becomes nearly indiscernible, closely converging to zero.
This reinforces the robustness of our approximation, especially for larger y values.
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Chapter 4

Conclusion

The comprehensive examination of hydrodynamic patterns around a flat airfoil in unsteady flow
presented in this study enriches our understanding of fluid mechanics. One of the primary endeavors
was to elucidate the unsteady rarefied gas dynamics over a flat airfoil using intricate analytical
techniques, and this investigation has notably enhanced our insights into the hydrodynamic fields.
Given the pivotal nature of such investigations for spacecraft and high-altitude aircraft design, the
significance of this research is manifold.

By developing an exact solution for the hydrodynamic fields within the ballistic limit, we have
managed to address a broad spectrum of velocities, spanning from subsonic to ultrasonic regimes.
This study’s findings further underscored the intriguing behavior of hydrodynamic fields around an
airfoil, especially when subjected to temperature variations or vertical velocities, culminating in the
observation of dipole-induced dynamics (Fig. 3.3). Additionally, the profound analysis of lift and
drag dynamics as a function of angle of attack offers a promising platform for future aerodynamic
explorations and optimizations.

From a methodological perspective, the two-dimensional configuration provided a thorough de-
piction of the gas state, with the dimensionless Boltzmann equation, especially in the high Knudsen
number regime, proving pivotal for comprehending the behavior of rarefied gases around the airfoil
as represented by Eqs. 2.7, 2.15, 2.16 and 2.17. Notably, to determine the airfoil functions ρ±af(t, x)
as delineated in Eq. 2.9, we imposed an impermeability condition on the normal velocity component
v(t, x, y).

Among the paramount findings, our observations during symmetric and steady-state flows high-
lighted a unique phenomenon, often referred to as the ”density wedge.” Evident in Fig. 3.1 and
Fig. 3.5, this wedge characterizes a distinct variation in the density hydrodynamic field, resembling
a wedge or a ”V” shape behind the trailing edge of the airfoil. Our rigorous efforts enabled us
to approximate this behavior with remarkable accuracy, especially for large y values as showcased
in Fig. 3.6. Furthermore, our exploration into the density and static pressure fields on the line
x = 1/2 — abeam the chord center — allowed for the development of accurate approximations of
these fields for large y values, as depicted in Fig. 3.7. Such insights hold profound implications,
especially in the context of foreseeing far-field density and static pressure for specific challenges.
By potentially neutralizing dynamic effects acting upon the airfoil.

While this research provides a robust foundation, the absence of a comparative analysis with
other conditions or geometries signifies an area ripe for future exploration. There exists a pressing
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need to juxtapose these analytical insights with numerical approaches, such as DSMC, and the
potential revelations from continuum limits.

On the practical front, the implications of this research extend far into the domain of aerospace
engineering. The ability to theoretically predict lift and drag for flat airfoils in ballistic conditions
stands as a testament to the study’s relevance. Furthermore, the insights gained into neutraliz-
ing dynamic effects present promising prospects for reducing both power consumption and noise,
especially in applications such as MEMS sensors.

However, the journey was not devoid of challenges. Navigating through a myriad of parameter
permutations presented its set of complexities, suggesting potential avenues that remain unexplored.

In conclusion, this research contributes to our understanding of rarefied gas dynamics, offering
insights and paving the way for continued studies in fluid mechanics.
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