
Parachute Simulator Project

Edos Osazuwa
Supervisor: Dr. Anna clarke

Technion - Aerospace Engineering Department

July 6, 2024

1

Contents
1 Introduction 3

2 System Description and Educational Usefulness 3
2.1 System Description . 3
2.2 Educational Usefulness . 3

3 Components 3
3.1 Arduino Uno . 3
3.2 HX-711 . 3

3.2.1 Pin Configuration and Connections 4
3.2.2 Connecting the HX-711 to the Arduino Uno 4

3.3 Load Sensor . 4
3.3.1 Load Sensor Configuration and Connections 4
3.3.2 Connecting the Load Sensor to the HX-711 5
3.3.3 Working Principle . 5

4 Setup Bugs and Troubleshooting 6
4.1 HX-711 Library Setup . 6

4.1.1 Downloading the HX-711 Library 7
4.1.2 Setting Up the HX-711 Library 7

4.2 HX_711 Config - Moving average 7
4.2.1 What is moving average 7
4.2.2 How to change the moving average 8

4.3 Arduino Connection . 8
4.4 Setup Arduino IDE . 11

4.4.1 Setup arduino . 12
4.4.2 Setup COM serial port . 12
4.4.3 Serial Window and Baud Rate 12

5 Arduino Code 13
5.1 Calibration code . 13
5.2 Read And Data Collection Code 13

6 MATLAB Code 14
6.1 COM Input . 14
6.2 Start Button . 14
6.3 Tare Button . 14
6.4 Save Button . 14
6.5 Stop Button . 14
6.6 Real-time Data Display . 14

7 Conclusion 15

2

Abstract

This report details the development and implementation of a parachute
simulator, designed for educational purposes. The system includes physi-
cal components and software for measurement, providing a comprehensive
tool for students to learn about parachute dynamics and control mecha-
nisms.

1 Introduction
The parachute simulator project aims to create a hands-on learning tool for
students to understand the principles of parachute operation and control. The
simulator mimics the physical experience of controlling a parachute via a seated
setup with handles connected to rubber bands. This report covers the system’s
design, components, and educational benefits.

2 System Description and Educational Usefulness

2.1 System Description
The simulator consists of a seat, two handles connected to the ceiling via rub-
ber bands, and a measurement system that captures the force applied on the
handles. The forces are measured using load sensors connected to an Arduino
Uno and processed with an HX-711 amplifier and Load cells.

2.2 Educational Usefulness
This simulator provides students with a practical understanding of parachute
mechanics and control systems. By manipulating the handles, students can
experience how changes in force affect parachute dynamics. This hands-on ap-
proach enhances theoretical learning and provides valuable insights into real-
world applications.

3 Components

3.1 Arduino Uno
The Arduino Uno is a microcontroller board used for reading sensor data and
controlling outputs. It is the central component of the measurement system,
providing the interface between the sensors and the computer.

3.2 HX-711
The HX-711 is a precision 24-bit analog-to-digital converter (ADC) designed
specifically for weigh scales and industrial control applications. It is widely
used to amplify and convert the small analog signal from a load sensor (also

3

known as a load cell) into a readable digital signal for microcontrollers such as
the Arduino Uno.

3.2.1 Pin Configuration and Connections

The HX-711 module typically has the following pins:

• VCC: Power supply pin, typically connected to a 2.6V to 5.5V power
source.

• GND: Ground pin, connected to the ground of the system.

• DT (DOUT): Data output pin, connected to the digital input pin of the
Arduino .

• SCK (SCK): Serial clock input pin, connected to the digital output pin
of the Arduino .

• Rate: Optional pin to set the data rate (10Hz).

3.2.2 Connecting the HX-711 to the Arduino Uno

To connect the HX-711 to the Arduino Uno, follow these steps:

• Connect the VCC pin of the HX-711 to the 5V pin of the Arduino.

• Connect the GND pin of the HX-711 to the GND pin of the Arduino.

• Connect the DT (DOUT) pin of the HX-711 to a digital input pin on
the Arduino .

• Connect the SCK (SCK) pin of the HX-711 to a digital output pin on
the Arduino .

3.3 Load Sensor
A load sensor, or load cell, is a transducer that converts force into an electrical
signal. The electrical signal can be a change in resistance, voltage, or current
depending on the type of load cell. For the parachute simulator project, strain
gauge load cells are commonly used.

3.3.1 Load Sensor Configuration and Connections

A typical load cell has four wires:

• Red (E+): Excitation+ or VCC, connected to the E+ pin on the HX-711.

• Black (E-): Excitation- or GND, connected to the E- pin on the HX-711.

• White (A-): Output- or signal-, connected to the A- pin on the HX-711.

• Green (A+): Output+ or signal+, connected to the A+ pin on the
HX-711.

4

3.3.2 Connecting the Load Sensor to the HX-711

To connect a load sensor to the HX-711 module, follow these steps:

• Connect the Red (E+) wire of the load sensor to the E+ pin on the
HX-711.

• Connect the Black (E-) wire of the load sensor to the E- pin on the
HX-711.

• Connect the White (A-) wire of the load sensor to the A- pin on the
HX-711.

• Connect the Green (A+) wire of the load sensor to the A+ pin on the
HX-711.

3.3.3 Working Principle

When a force is applied to the load cell, it deforms slightly. This deformation
changes the resistance of the strain gauges in the load cell, creating a small
differential voltage. The HX-711 amplifies this small voltage and converts it to
a digital signal that can be read by the Arduino. The Arduino then processes
this digital signal to determine the applied force.

5

Figure 1: Connection diagram for HX-711 and load cell with Arduino Uno

By integrating the HX-711 with the load sensor and Arduino, the parachute
simulator can accurately measure and display the forces applied to the handles,
providing a realistic simulation experience.

4 Setup Bugs and Troubleshooting
This section will be filled with initial setup needed and all the bugs and trou-
bleshooting steps encountered during the project. Examples of common issues
include sensor calibration problems, signal noise, and software integration chal-
lenges.

4.1 HX-711 Library Setup
To facilitate the communication between the Arduino and the HX-711 ADC
module, a dedicated library is used. The HX-711 library simplifies the process
of reading data from the load sensor. Follow these steps to download and set up
the HX-711 library in the Arduino Integrated Development Environment (IDE).

6

4.1.1 Downloading the HX-711 Library

The HX-711 library can be easily downloaded and installed through the Arduino
Library Manager.

1. Open the Arduino IDE.

2. Navigate to Sketch → Include Library → Manage Libraries....

3. In the Library Manager, type HX711 in the search bar.

4. Locate the HX711 by olkal library in the search results.

5. Click the Install button next to the library name.

Alternatively, the library can be downloaded from the GitHub repository
and installed manually:

1. Visit the HX-711 GitHub repository: https://github.com/olkal/HX711_
ADC.

2. Download the ZIP file of the repository by clicking the Code button and
selecting Download ZIP.

3. Open the Arduino IDE.

4. Navigate to Sketch → Include Library → Add .ZIP Library....

5. Select the downloaded ZIP file to install the library.

4.1.2 Setting Up the HX-711 Library

Once the library is installed, it needs to be included in the Arduino sketch to be
used. The following example demonstrates how to set up and use the HX-711
library in your Arduino code:

4.2 HX_711 Config - Moving average
4.2.1 What is moving average

The moving average is a statistical technique used to smooth out short-term
fluctuations and highlight longer-term trends or cycles in data. It’s commonly
applied in time series analysis
Impact of Moving Average on HX711 Measurements:

Noise Reduction:
The HX711 can produce noisy readings due to electronic noise, environmental
factors, and mechanical vibrations. Applying a moving average helps smooth
these fluctuations, providing a more stable and accurate reading.

7

https://github.com/olkal/HX711_ADC
https://github.com/olkal/HX711_ADC

Trend Detection: It helps in identifying trends or consistent changes in
weight, which can be crucial for applications requiring precise and stable mea-
surements.

Reduced Sensitivity to Outliers:
A moving average can mitigate the effect of transient spikes or drops in readings,
which might otherwise lead to incorrect interpretations of the data.

Latency:
While smoothing the data, moving averages introduce a lag or delay in the re-
sponse to changes. This can be a trade-off between noise reduction and real-time
responsiveness.

4.2.2 How to change the moving average

More setup options are available in the ’HX_711 config file’ which can be found
in the Arduino libraries folder inside the ’HX711_ADC’. the library can be
found by searching the folder HX711_ADC (usually sits at Documents -> Ar-
duino -> libraries). Inside the ADC folder , go into the ’src’ folder, then , open
the config file using text editor. inside the config file you will find a row that
begins with ’define SAMPLES’ , under this property, you can specify the mov-
ing average yo want from the values 2, 4 ,8, 16, 32, 64, 128. Note that there are
additional configurations I did not explore.

4.3 Arduino Connection
If Arduino connection was not established properly do the following:
1. Open Device manager under Ports(COM & LPT).
2. Find the Arduino device. If Arduino shows under COM-XX , the connection
has been established properly.

8

Figure 2: HX711_ADC folder

Figure 3: HX711_ADC config file

9

Figure 4: Device manager bug (1)

10

Figure 5: Device manager bug (2)

4.4 Setup Arduino IDE
Setup of Arduino IDE - the following steps should be preformed if any changes
are needed for the core arduino code, note that if you are not familiar with the
arduino language and just using the simulator for yourself, you can skip this
part and go straight to the MATLAB GUI section.

11

4.4.1 Setup arduino

Figure 6: Arduino IDE - Device selection

4.4.2 Setup COM serial port

Figure 7: Arduino IDE - COM selection

4.4.3 Serial Window and Baud Rate

To manage the serial window preform the following (numbers in figure below)
(1) - serial port icon on the right left will open the window at the bottom(2),
to read correctly set baud rate(3) to 57600

12

Figure 8: Arduino IDE

5 Arduino Code
The Arduino code for the parachute simulator is divided into two main parts:
calibration and data collection. The calibration part is executed once to cali-
brate the system, while the read part runs continuously to collect data during
operation.

5.1 Calibration code
The calibration process is essential to ensure accurate force measurements from
the load sensors. During calibration, known weights are applied to the sensors
to determine the calibration factor, which converts the raw sensor readings
into meaningful force values. Arduino code snippet that shows the calibration
procedure is attached under ’Calibration.ino’
If recalibration is needed, the following steps should be followed:
1. Open the Arduino IDE. 2. Load the ’Calibration.ino’ snippit. 3. Connect the
Arduino to your computer. 4. Upload the sketch to the arduino. 5. Open the
serial port on the right hand side of the IDE window 6.follow the serial terminal
instruction.

5.2 Read And Data Collection Code
Once the system is calibrated, the read function continuously collects data from
the load sensors. This data represents the forces applied to the handles and is
crucial for simulating the parachute controls. The following code snippet shows
how data is collected and sent to a computer for further processing:

13

6 MATLAB Code
The MATLAB code for the parachute simulator is developed using the App De-
signer tool, which provides a user-friendly graphical interface for real-time data
monitoring and control. The application includes several interactive buttons
and a UI to facilitate the measurement process. The primary components of
the MATLAB app are:

6.1 COM Input
An input box in which the COM serial number for the current connection should
be defined.
It is importent to note that you sholud only include the integer of the COM
and not the whole COMXX .

6.2 Start Button
The Start button initiates the data reading procedure. When pressed, the app
begins collecting force data from the Arduino and displays it in real-time on
the UI. This allows users to observe the forces applied to the handles as they
interact with the simulator.

6.3 Tare Button
The Tare button is used to define a new baseline for the sensors during the read-
ing process. Pressing this button resets the current readings to zero, accounting
for any drift or offset in the sensor measurements. This feature ensures that the
force readings remain accurate and relevant throughout the simulation.

6.4 Save Button
The Save button allows users to save the collected measurements to a file. This
functionality is essential for data analysis and record-keeping, enabling users to
review and analyze the force data post-simulation. The data is typically saved
in a format suitable for further processing or visualization.

6.5 Stop Button
The Stop button halts the data reading process. This button is crucial for con-
trolling the simulation, allowing users to end the data collection when desired.
Once stopped, the app can either reset for a new simulation session or shut
down, depending on the user’s needs.

6.6 Real-time Data Display
The UI within the MATLAB app provides real-time visualization of the force
readings. As data is collected from the sensors, it is immediately displayed

14

on the screen, offering an intuitive and immediate understanding of the forces
being applied. This real-time feedback is invaluable for both educational and
experimental purposes.
A screenshot of the GUI is provided below:

Figure 9: MATLAB app GUI

7 Conclusion
The parachute simulator project successfully integrates hardware and software
to create a realistic and educational tool. The system provides practical experi-
ence and deepens understanding of parachute dynamics and control mechanisms.

References
[1] Arduino Uno Documentation. Retrieved from https://www.arduino.cc/

en/Main/arduinoBoardUno

[2] HX-711 Datasheet. Retrieved from https://github.com/sparkfun/
HX711-Load-Cell-Amplifier/tree/V_1.1

15

https://www.arduino.cc/en/Main/arduinoBoardUno
https://www.arduino.cc/en/Main/arduinoBoardUno
https://github.com/sparkfun/HX711-Load-Cell-Amplifier/tree/V_1.1
https://github.com/sparkfun/HX711-Load-Cell-Amplifier/tree/V_1.1

[3] Load Sensor Overview. Retrieved from https://www.gotronic.fr/
pj-460.pdf

[4] HX-711 library. Retrieved from https://github.com/olkal/HX711_ADC

16

https://www.gotronic.fr/pj-460.pdf
https://www.gotronic.fr/pj-460.pdf
https://github.com/olkal/HX711_ADC

	Introduction
	System Description and Educational Usefulness
	System Description
	Educational Usefulness

	Components
	Arduino Uno
	HX-711
	Pin Configuration and Connections
	Connecting the HX-711 to the Arduino Uno

	Load Sensor
	Load Sensor Configuration and Connections
	Connecting the Load Sensor to the HX-711
	Working Principle

	Setup Bugs and Troubleshooting
	HX-711 Library Setup
	Downloading the HX-711 Library
	Setting Up the HX-711 Library

	HX_711 Config - Moving average
	What is moving average
	How to change the moving average

	Arduino Connection
	Setup Arduino IDE
	Setup arduino
	Setup COM serial port
	Serial Window and Baud Rate

	Arduino Code
	Calibration code
	Read And Data Collection Code

	MATLAB Code
	COM Input
	Start Button
	Tare Button
	Save Button
	Stop Button
	Real-time Data Display

	Conclusion

