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Abstract

In order for the pursuer to hit the target, it must be capable of controlling its movements.
Flying animals are similar to guided missiles in the way that they adjust their movements
constantly. However, animals that are not capable of flying toward their targets, such as
marine animals, may pause their movements during the pursuit of their prey. This project
was based upon the pursuit strategy of Zebrafish, and explored how intermittent pure pursuit
movement affects the pursuit process and its outcome. The guidance concept is based on
the geometric principle of pure pursuit, with acceleration stops planned perpendicular to the
pursuer’s velocity vector during the pursuit process. Different pursuer speeds and various target
positions were introduced to demonstrate the implementation. In addition, we developed a
method for preventing overshoot at the end of the scenario, as well as a ratio that ensures
target capture.

1



Contents

1 Nomenclature 3

2 Introduction 4
2.1 Nature Inspired Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Problem Formulation 6
3.1 Engagement Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Guidance Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.1 Kinematics of PPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2.2 Kinematics of IPPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Simulations of IPP and PP 10
4.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Guaranteeing target capture 11
5.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6 Boundary case analysis, tz → 0 13
6.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

7 Overshoot Prevention 14
7.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

8 Conclusions 16

2



1 Nomenclature

γM Interceptor path angle

γT Target path angle

δ Interceptor look angle, the angle between LOS to the interceptor velocity

λ LOS angle

λi
P , λ

i
Z λ at the i-th stage of PP and IPP, respectively

µ The ratio between tp and tz at which the pursuer will hit the target

θ Target look angle, the angle between LOS to the target velocity

θiP , θ
i
Z θ at the i-th stage of PP and IPP, respectively

aM Lateral acceleration of interceptor

aT Lateral acceleration of target

i The number of times the PP and IPP coupling was performed

K The ratio of the interceptor’s speed to the target’s speed

M Interceptor mark

r Range between the target and the interceptor

riP , r
i
Z Range at the i-th stage of PP and IPP, respectively

(rixZ
, riyZ ) x and y coordinates of the range, respectively at the i-th stage of IPP

t Time from launch

ti Time from the beginning of the i-th stage

tp The duration of pure pursuit

tz The duration of the delay in pure pursuit

T Target mark

VM Interceptor speed

VT Target speed

(XM , YM) x and y coordinates of the interceptor, respectively

(XT , YT ) x and y coordinates of the target, respectively

IPP Intermittent Pure pursuit

IPPs Intermittent Pure pursuit stage

LOS Line of sight

PP Pure pursuit

PPs Pure pursuit stage

X–O–Y Inertial Cartesian reference frame
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2 Introduction

In missile guidance, the interceptor’s trajectory is planned towards a predetermined target,
whether it is stationary or moving. In general, the guidance problem consists of two levels,
geometric rule and guidance rule. The geometric law describes the desired kinematics between
the pursuer and the target. Pure pursuit (PP) is a simple example of a geometric law. This
law is based on the idea that the velocity vector of the pursuer (vM) coincides with the vector
between the pursuer and the pursued r. Parallel navigation is another geometric rule, in which
the pursuer must keep the direction of the ’line-of-sight’ (LOS) constant relative to the inertial
space. These two rules are part of a set of rules that requires two points, the pursuer and the
target. There are also geometric rules that require three points, meaning that in addition to the
pursuer and the target, there is another reference point. An example of this type of geometrical
rule is called LOS guidance which requires the pursuer to be constantly on LOS between the
target and a reference point.
The second level is a guidance law, which is the implementation of the geometrical rule, An
example of guidance law is proportional navigation (PN), where with lateral acceleration that is
proportional to the rate of change of the LOS it is possible to implement the parallel navigation
geometrical rule. [1]
The development of both defense and attack technologies has accelerated in recent decades, re-
quiring advanced guidance laws beyond the traditional PN law. Nowadays, additional require-
ments exist such as impact angle control and multi-missile attacks. An important parameter in
the pursuit problem is the impact time, and one of the earliest papers on the topic is [2], which
proposes a closed-form solution based on the PN and feedback on the impact time error, which
is defined as the difference between the approximated impact time from PN and the desired
impact time. A more accurate estimate of impact time was achieved by utilizing higher-order
terms in subsequent research [3] using the nonlinear formulation.
As part of the discussion of time of impact, the term ”time-to-go” (tgo) represents the remain-
ing time until the collision occurs. It is possible to estimate this time in several different ways,
including range-over-range rates, but this method is only accurate if there is a small amount
of direction error relative to the collision path. A method for estimating tgo has been proposed
in [4] by updating the time estimate noniteratively. Using this method, a simple and clear
estimate of tgo is obtained for PN and augmented PN applications.
An algorithm for estimating the time to target based on the guidance command history was
presented in the [5] research, where an algorithm was proposed to estimate the time until im-
pact. It is possible to develop a Taylor series expansion for the expression tgo containing a
trigonometric function. [6] presents a method for determining the impact time for PN to a
static target using interpolation. [4]-[6] are methods to estimated the tgo but did not control
the impact time.
Regarding the methods for influencing impact time, the suggested guidance laws based on slid-
ing mode control were proposed in [7] in order to impact the target at a desired time. Several
types of targets were evaluated, including stationary and constant velocity targets. According
to the study [8], impact time is defined as a beta function influenced by initial conditions and
controlled by a single parameter. By applying a polynomial shape to the look-angle profile for
a static target in [9], they were able to control impact time. Further research [10] extended the
polynomial method to cover changes in target velocity as well.
Furthermore, there are studies that propose methods for controlling the impact angle in con-
junction with the impact time, in addition to enforcing a specific impact time. As an example of
such a scenario, [11] introduces a guidance concept based on geometric principles that constrain
the interceptor to follow a circular trajectory toward the target as a result of the geometric
principle. By scheduling the interceptor’s launch, the desired impact time and angle can be
enforced. There is also a guidance law proposed in [12] that is aimed at leading a vehicle to a
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target at a predetermined impact time with a predetermined impact angle at a desired impact
time. A feedback loop is included in the law to achieve the desired impact angle, as well as an
additional control command to control the impact time. As proposed in [13], a guidance law
based on a polynomial of the guidance command with three unknown coefficients is proposed.
There is a coefficient that is determined to achieve the desired impact time, and the remaining
coefficients are determined to meet the constraint of the final impact angle and to ensure zero
miss distance.

2.1 Nature Inspired Methods

In science and engineering, biological systems have long served as sources of inspiration. Among
the reasons for studying animal behavior in nature are to gain an understanding of the natural
world and to find solutions to complex problems in a variety of fields not necessarily related to
natural behavior. The study of animals has developed an area of study that focuses on hunting
behavior and attempts to describe this behavior according to currently known guidance laws.
An analysis of the attack process of a hawk on an erratically maneuvering prey is presented
in the article [14]. During the attack, the researchers divided the hawk’s movements into two
components: a PP with a short delay in time, and a PN guidance law.
According to the article [15], the peregrine falcon differs from the hawk in that it uses a PN
guidance law that has a low gain N (feedback gain that is called the navigation constant)
when compared to the hawk. Based on many experiments, it has been determined that median
N = 2.6; first, third quartiles: 1.5, 3.2 for attacking stationary and maneuvering targets. This
coefficient is adapted to the peregrine falcon’s relatively low flight speed. A follow-up study
[16] has found that naive gyrfalcons also use the PN guidance law, but operate at significantly
lower N values than peregrine falcons. The median N = 1.2; the first and third quartiles were
0.5, 1.4 . The difference results in slower turns and a longer path to the target.
In [17], an interesting phenomenon in insects that seek to camouflage their motion while ap-
proaching or escaping from another insect was investigated. The concept of motion camouflage
is that the pursued insect perceives the pursuing insect as if it were stationary at a fixed point,
while in reality, it is approaching. This study demonstrated a connection between this motion
camouflage behavior and PN. According to the research [18], bats also use this method of PN,
which causes the pursuer to ”appear” stationery.
It has already been mentioned that some animals use PP, like the hawk. The method has also
been observed in tiger beetles [19], as well as houseflies [20]. Animals use a variety of guidance
laws as well, and they differ slightly from PP. During chasing, bluefish [21] use deviated PP
methods. For the fish to successfully utilize this strategy of PP or a method based on PP,
it requires a minimal amount of information and a relatively low level of motor coordination,
which appears to suit the fish’s aquatic environment. Another species that uses PP is the
Zebrafish [22], which performs bursts of rapid movement interspersed with pauses. According
to the research, the guidance law for the Zebrafish was identified as intermittent PP (IPP),
which is based on the intermittent movements of the predator.
In this project, we drew inspiration from the pursuit strategy of Zebrafish. We found this
method to be intriguing because it is unclear how the intermittent movement benefits the fish,
in terms of the tgo or in terms of the energy the fish must exert with this method compared to
PP.
The project is structured as follows: First, a review of the relevant topics is presented, followed
by the fundamental definitions and the formulation of the guidance problem in Cartesian coor-
dinates. Next, numerical simulations concerning a scenario of a moving but non-maneuvering
target are shown. Finally, conclusions are drawn.
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3 Problem Formulation

A planar interception problem is treated. Presenting basic definitions from the field of guidance
as a background for formulating the guidance problem relevant to the IPP applicable to this
article.

3.1 Engagement Description

The schematics in Fig. 1 present the planar engagement geometry. The X–O–Y axes form the
flat-Earth inertial Cartesian reference frame M and T denote the positions of interceptor, and
target, respectively.
The line-of-sight angles between the pairs interceptor–target, denoted by LOS. The distances
between the pairs are denoted by r. VM and VT are the speeds of the interceptor and the target,
respectively, assumed to be constant. γM and γT are the path angles of the interceptor and
the target, respectively. δ is the interceptor lead angle and θ is the target lead angle. The
line-of-sight angles between LOS and the reference axis X are denoted as λ.

Figure 1: Schematic of planar engagement

Neglecting the gravitational force, the nonlinear engagement kinematics equations of the
interceptor, expressed in the inertial Cartesian coordinate system, are as follows:

ẊM = VM cos(γM(t))

ẎM = VM sin(γM(t))

γ̇M(t) = aM (t)
VM

(1)

The kinematics equations of the target:
ẊT = VT cos(γT (t))

ẎT = VT sin(γT (t))

γ̇T (t) = aT (t)
VM

(2)
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3.2 Guidance Concept

In this subsection, the geometric concept is outlined. The goal is to reach the target by applying
IPP, meaning that PP is applied for a set period, this stage will be referred to as PPs. After
which the interceptor continues to move in a straight line for another set period, this stage will
be referred to as IPPs. and the process repeats itself. Let i denote the number of times the
coupling PP and IPP was performed, ti represents the time from the beginning of the i − th
stage and tp, tz will be the duration of PPs and IPPs, respectively.
In order for the pursuer to catch the target, the pursuit must end with a phase of PP. The
acceleration will be of the following form:

aM =

{
aMp (tp + tz)(i− 1) < ti ≤ (i− 1)tz + i · tp
0 (i− 1)tz + i · tp < ti ≤ (tp + tz) · i

(3)

The objective of PP is to ensure that the interceptor’s velocity vector VM points directly at the
target’s location, meaning that δ is equal to 0. The clear advantage of PP is that it requires
minimal information (only the target’s location needs to be known).
The angle δ, as shown in Fig. 1, is the angle between the VM and LOS. We will assume that
this angle is zero for PP, and additionally, we will assume that the target is not maneuvering
(aT = 0). Throughout the article, there is an ideal dynamic model of the interceptor.

3.2.1 Kinematics of PPs

Figure 2: Schematic of planar PP

Since aT = 0 ⇒ γ̇T = 0 by assumption (as T is not maneuvering) it follows that:

γ̇T = θ̇ + λ̇ ⇒
γ̇T=0

θ̇ = −λ̇ (4)

The equations of motion for the PPs that are shown in Fig. 2 will be:{
ṙ = VT cos θ − VM

θ̇ = −λ̇ = −VT

r
sin θ

(5)
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K is defined as

K =
VM

VT

(6)

Assuming that K is constant
dr

dθ
=

r(K − cos θ)

sin θ
(7)

By separation of variables and integration, the solution to Eq.(7) is found to be

r(θ) = D ·
sinK−1 θ

2

2cosK+1 θ
2

= D ·
tanK θ

2

sinθ
(8)

Where D is a constant.

From time integration of Eq.(5)

t =
r0
VT

·
K + cosθ0 − ( r

r0
) · (K + cosθ)

K2 − 1
(9)

At the end of IPPs, the angle δ ̸= 0. For PP, it is necessary to bring δ to zero. For this, the
pursuer will apply an acceleration that will be a⃗M ⊥ V⃗M , and its magnitude will be:

aMp = −CV 2
Msinδ (10)

Where C is a constant.

3.2.2 Kinematics of IPPs

When the PPs ends, the pursuer transitions to the IPPs phase, where at the beginning, δ = 0
will be 0, and as ti increases, the absolute value of δ will also increase. In Fig. 3, the planar
engagement geometry between the pursuer and the target is shown.

Figure 3: Schematic of planar IPPs
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It can be noted that aT = 0 and aM = 0, ⇒ γ̇M = 0, γ̇T = 0.{
γM = λ+ δ = const

γT = λ+ θ = const
(11)

The equations of motion for the IPPs will be:{
ṙ = VT cos θ − VM cos δ

θ̇ = −λ̇ = 1
r
(−VT · sinθ + VM · sinδ)

(12)

Hence the differential equation

dr

dθ
=

r(cos θ −K cos δ)

− sin θ +K cos δ
(13)
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4 Simulations of IPP and PP

It can be expected that, as with PP, also in the case of IPP, the larger the ratio K, the faster
the interceptor will reach the target.
The scenario includes one interceptor against a non-maneuvering target. The interceptor is
launched from (XM0 , YM0) = (0, 0) with varying speed VM

[
M
S

]
and path angles which are equal

to γM(0) = 90 [deg]. The target is launched from (XM0 , YM0) = (0, 6000[m]) with speed of
VT = 100

[
M
S

]
and path angles which are equal to γT (0) = 0 [deg]. The acceleration aM is

unbounded. Fig. 4 presents the simulation.

(a) Trajectories for different K, PP (b) Trajectories for different K, tp = 1, tz = 1

(c) Trajectories for different K, tp = 2, tz = 2 (d) Trajectories for different K, tp = 3, tz = 3

Figure 4: Trajectories for different K and tp, tz

4.1 Discussion

It can be noted that as K increases, the pursuer indeed hits the target earlier. Additionally,
when using the IPP method, the pursuer will catch the target later than with the PP method.
It can also be observed that the probability of the pursuer making a significant overshoot, that
is, passing the target and then catching up to it, increases as K increases. However, this is
not always the case, as shown in Figures 4b-4d for K = 5. Furthermore, we will notice that as
tp, tz increases although the ratio tp

tz
remains constant, it is possible that the pursuer will make

a larger overshoot.
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5 Guaranteeing target capture

A lower bound is found for which the pursuer will hit the target with certainty.
From Eq.(12):

ṙ = VT cos θ − VM cos δ

In order to find a lower bound:

ṙ = VT cos θ − VM cos δ ⇒
δ=180◦

ṙ = VT cos θ + VM

The change in distance between the target and the pursuer in this case will be:

∆rz = ṙ · tz ⇒
δ=180◦

∆rz = (VT cos θ + VM) · tz

From Eq.(5):
ṙ = VT cos θ − VM ⇒ ∆rp = ṙ · tp

Since ∆rz is defined as positive, we will also require that ∆rp be positive.

∆rp = −(VT cos θ − VM) · tp

To ensure reaching the target, we will require:

∆rz < ∆rp ⇒ (VT cos θ + VM) · tz < (VM − VT cos θ) · tp

(cos θ +K) · tz < (K − cos θ) · tp

cos θ +K

K − cos θ
<

tp
tz

(14)

The variable µ is defined as:

µ =
cos θ +K

K − cos θ
(15)

For a tp
tz
> µ, the pursuit will intercept the target. For K ≤ 1, the interceptor will not be able

to reach the target, unless it is the singular case of head-on, in which adversaries fly toward
each other. As shown in Fig. 5, the conditions for interception are determined by the angle θ
for different values of K.

Figure 5: µ as a function of θ for different K values
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5.1 Simulation

The engagement simulated in the section includes one interceptor against a non-maneuvering
target. The interceptor is launched from (XM0 , YM0) = (0, 0) with speed of VM = 200

[
M
S

]
and

path angles which are equal to γM(0) = 0◦. The target is located at (XM0 , YM0) = (5000[m], 0)
with speed of VT = 100

[
M
S

]
and path angles which are equal to γT (0) = 90◦.

The acceleration aM is unbounded. The simulation is presented in Fig. 6. The scenario is for
different values of tp

tz
.

(a) Trajectories (b) δ◦ As a function of time

Figure 6: Implementation of IPP for different ratio tp
tz
.

5.2 Discussion

We defined interception of the target only when the scenario ends in PP. In the case presented
in Fig.6 K =2. Thus, tp

tz
≥ µ = 3 ensures that the target is intercepted. It can be seen that

for tp
tz

= 4, the scenario ends in PP (δ = 0 at the end of the scenario). It can be observed

that even for tp
tz
= 1, the scenario ends with PP. This result is appropriate because the ratio µ

presented in Fig. 5 is not a tight bound, in the worst-case scenario, this ratio will ensure target
interception, but interception is also possible at tp

tz
< µ. In contrast, for tp

tz
= 0.5, it can be seen

that the scenario does not end in PP (δ = 88.6◦ at the end of the scenario). This means that
the pursuer will pass by the target. Indeed, the miss distance in this case will be 3.08 [m].
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6 Boundary case analysis, tz → 0

In this chapter, we will examine the effect of reducing the time tz on the IPP law.

6.1 Simulation

The engagement simulated in the section includes one interceptor against a non-maneuvering
target. The interceptor is launched from (XM0 , YM0) = (0, 0) with speed of VM = 100

[
M
S

]
and path angles which are equal to γM(0) = 0[deg]. The target is located at (XM0 , YM0) =
(1000[m], 0) with speed of VT = 50

[
M
S

]
and path angles which are equal to γT (0) = 90[deg].

The acceleration aM is unbounded. The simulation is presented in Fig. 7.

(a) Trajectories (b) δ◦ As a function of time

Figure 7: Implementation of IPP for different tZ , tP .

6.2 Discussion

During IPPs:
γ̇M = δ̇ + λ̇ ⇒

γ̇M=0
δ̇ = −λ̇

δ̇ = −λ̇ =
1

r
(−VT · sinθ + VM · sinδ) (16)

Assuming that the scenario begins in a nominal PPs where δ = 0. As tZ → 0, we find that δ
will not have time to change and will be δ → 0.
In this state, it can be seen that Eq.(12), which describes the motion during the IPP phase,
will tend to become:{

ṙ = VT cos θ − VM cos δ → ṙ = VT cos θ − VM

θ̇ = −λ̇ = 1
r
(−VT · sinθ + VM · sinδ) → θ̇ = 1

r
(−VT · sinθ)

(17)

Eq.(17) is essentially the equation of motion for PPs, as described in Eq.(5). From this, we
can conclude that, as shown in Fig. 7, for tZ → 0 the equations of motion will approach to PP
(δ → 0).
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7 Overshoot Prevention

We would want to prevent overshooting by the interceptor for many reasons, such as a fuel
shortage. In the case of PP, no overshoot will occur, but for IPP, there is a possibility that
the interceptor will overshoot the target if, upon approaching the target, it is in a phase where
IPPs is happening. Fig. 4b-4d illustrates the overshoot in the pursuit process. To prevent this
phenomenon, we would want the pursuer to reach the target with PPs so that the interceptor
can capture the target. If the interceptor is in the IPPs when it reaches the target, it will
overshoot and pass the target.
Definitions:

(18)
λi
P , λ

i
Z λ at the i-th stage of PP and IPP, respectively

θiP , θ
i
Z θ at the i-th stage of PP and IPP, respectively

riP , r
i
Z Range at the i-th stage of PP and IPP, respectively

(rixZ
, riyZ ) x and y coordinates of the range, respectively at the i-th stage of IPP

The scenario begins with PPs. based on Eq.(8) and Eq.(9)
riP (θ) = D ·

sinK−1

(
θiP
2

)
2cosK+1

(
θi
P
2

) = D ·
tanK

(
θiP
2

)
sin(θiP )

riP (θ) =
riP0

K+cos(θiP )
·

[
K + cos(θiP0

)− VT ·tp(K2−1)

riP0

] (19)

From the initial conditions of the i-th stage of PPs, the constant D can be determined.
We have obtained two equations with two unknowns: the distance r and the angle θ.
For the first stage, the initial conditions are the interceptor’s departure conditions, while for
the subsequent stages, the initial conditions are the endpoint conditions of the IPPs phase.

For the IPPs phase :
γM = λ+ δ = const

The change in distance r will be:{
rixZ

= riZ0
· cos(λi

Z0
)− VM · tz · cos(λi

Z0
) + VT · tz · cos(γT )

riyZ = riZ0
· sin(λi

Z0
)− VM · tz · sin(λi

Z0
) + VT · tz · sin(γT )

(20)

Where riZ0
and λi

Z0
is the distance r and the angle λ at the end of the PPs i-th stage respectively.riZ =

√
(rixZ

)2 + (riyZ )
2

λi
Z = arctan

riyZ
rixZ

(21)

Assuming that:
γT = λ+ θ = const ⇒ θiZ = γT − λi

Z

riP0
and λi

P0
is the distance r and the angle λ at the end of the IPPs (i−1)-th stage respectively.
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7.1 Simulation

The scenario includes one interceptor against a non-maneuvering target. The interceptor is
launched from (XM0 , YM0) = (0, 0) with speed of VM = 200

[
M
S

]
and path angles which are

equal to γM(0) = 0[deg]. The target is launched from (XM0 , YM0) = (2500[m], 0) with speed of
VT = 100

[
M
S

]
and path angles which are equal to γT (0) = 90[deg]. tp = 2, tz = 2.

(a) θ◦ As a function of time (b) δ◦ As a function of time

(c) Trajectories

Figure 8: Implementation of IPP for tZ = tP = 2[sec].

7.2 Discussion

For the initial conditions of the chosen scenario, if the interceptor had used PP throughout
the entire scenario, then θ would have remained positive until the end of the scenario, where it
would have been θ = 0. When we perform IPP, during the IPPs phase, there is a possibility
that θ will be negative. This is an undesirable situation, as a θ < 0 indicates that the interceptor
is overshooting the target.
Therefore, if during the IPPs i-th stage of the scenario, θ < 0 is obtained, It is necessary to
evaluate the PPs i-th stage so that the interceptor reaches the target without overshooting.
In the simulation presented in this section, θ4Z = −16.2◦ at the end of IPPs i = 4; therefore, it
is necessary to extend the PPs operation i = 4 to avoid overshooting.
The extension of the PPs at i = 4 is shown in Fig.8b at 14[sec] < t, where instead of δ will
change, δ = 0 , meaning that PPs be extended.
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8 Conclusions

An intermittent pure pursuit guidance concept was presented and investigated. The idea is
based on the fact that by applying pure pursuit at regular intervals, it is possible to influence
the movement of the pursuer while improving the information on the prey’s location by mini-
mizing the disturbances created by the pursuer’s movement. The performance of the guidance
law was evaluated in nonlinear simulations for a moving target with constant velocity.
It was found that for pursuers with high speed, there is a greater chance of a significant over-
shoot during the pursuit. This result holds even when tz increases, in the case where the ratio
tp
tz
and pursuers velocity remains constant. It was also found that the faster the pursuer’s speed,

the sooner the target will be captured.
Subsequently, a parameter µ was found for which target capture is guaranteed using the IPP
method. It was determined that for the ratio tp

tz
≥ µ, target capture is assured, but it was also

shown that even for tp
tz
< µ, target interception may still occur because the µ parameter is not

strict, but guarantees interception for an extreme case.
Afterward, a boundary case was examined where the activation time of IPPs approaches zero
(tz → 0). It was found that for this case, IPP will approach PP, where the angle delta will be
equal to zero throughout the scenario. Finally, a method was presented to prevent overshoot
by finding the stage i at which the pursuer would pass the target, while extending the use of
PP during the i− th stage of the pursuit scenario.
The advantages of the proposed guidance concept include the simplicity of the geometric princi-
ple of PP, relying solely on the angular position of the target. Motion pauses allow computation
time to plan the trajectory in the best possible way, while reducing the noise generated by the
pursuer’s engines in the case of an interceptor or robot.
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