
Basic Control of a Generic Air-Breathing
Hypersonic Vehicle

Research Project Report, Course #085851
Omer Wexler

Advisor: Moshe Idan

September 2024

In this work, we focus on the longitudinal control of an air-
breathing hypersonic vehicle (AHV). Linear control methods such
as PID and LQR are explored to stabilize the system and provide
a basic intuition of its different intricacies. A nonlinear feedback
linearization controller is implemented based on work made in [1].
Simulations are performed to test those controllers and explain their
behavior, as well as discover the strengths and shortcomings of those
different methods. Results are compared with previous papers to
validate the implemented model and simulations. Conclusions are
made to assist with further research and the improvement of this
specific project.

Nomenclature
Linear Control Notations

δu⃗ Pertubation in system inputs from
nominal values.

δx⃗ Pertubation in system states from
nominal values.

u⃗ Space state vector notation for in-
put.

x⃗ Space state vector notation for sys-
tem states.

y⃗ Linear system output.

A, B The Jacobian matrices used for lin-
earization.

C, D Define the relation between the
states and inputs of a linear system
to its output.

Kp, Ki, Kd Respective gains for the pro-
portional, integral, and derivative
parts of a PID controller.

Q0 Controllability matrix or nominal
pitch rate (context-dependent).

Model Constants and Variables

α Angle of attack

βi ith thrust fit parameter

δe Abstract elevator deflection

γ Flight path angle

c Mean aerodynamic chord

Φ Stoichiometrically normalized fuel-
to-air ratio

ρ Air density

θ Pitch angle

1

C0
D Constant drag coefficient

Cαi

D ith order coefficient of α contribution
to CD

C
δie
D ith order coefficient of δe contribu-

tion to CD

ce Elevator coefficient of moment

C0
L Constant lift coefficient

Cαi

L ith order coefficient of α contribution
to CL

C0
M Constant pitching moment coeffi-

cient

Cαi

M ith order coefficient of α contribution
to CM

C0
T Constant thrust coefficient

Cαi

T ith order coefficient of α contribution
to CT

D Drag

g Gravitation constant

h Height

Iy Longitudinal moment of inertia

L Lift

M Pitching moment

m Vehicle mass

Q Pitch rate

q Dynamic pressure

S Reference area

T Thrust

V Air speed (magnitude)

zT Thrust to moment coupling coeffi-
cient

Other symbols

γref Reference trajectory angle.

Lf Lie derivative.

Lg Refers to the control inputs’ coeffi-
cients in normal form derivatives.

ϕA Root locus asymptote angles.

σA Root locus asymptote center of grav-
ity.

ε The small perturbation used for nu-
meric linearization and derivative.

z⃗ Normal form state notation.

Ac The normal-from decoupling matrix.

j The square root of −1.

Vref Reference speed.

1 Introduction

In recent years, the application of AHVs in civil and military fields has become the center of
attention of many institutes and countries alike due to its promising capabilities. Alongside
its many complex anecdotes, such vehicles are highly unstable and nonlinear in nature,
introducing a complex set of challenges that must be overcome to control such aircraft.

This project is the first step of our research regarding air-breathing hypersonic vehicles.
Its goals are to understand the basic methods present in controlling such challenging vehicles,
study their complex dynamics and behavior, and gain experience in implementing Matlab
and Simulink models as well as performing different control-related analyses using these tools.

To achieve these goals, we will follow the footsteps of [1, 2] and attempt to recreate some
of their work, while explaining and examining the results and techniques implemented by
them to develop our understanding. First, a widespread longitudinal model is reconstructed,

2

studied, tested, and linearized to provide the infrastructure for this project. Results regarding
the model are verified against previous works to confirm it is proper. This model is known to
be highly unstable and includes several challenging coupling between the control inputs and
forces acting upon the vehicle.

Having derived the linear system we will attempt to stabilize the pitch angle θ using
linear control methods acting on δe as the control input, including the use of a multiloop PID
controller utilizing Φ and an LQ controller, both of which are tested at the trim condition
of the aircraft and away from it to examine the performance of these methods. Since the
system’s linearization is relevant only near the trim conditions, these methods are unlikely to
be useful for tracking problems, and so a better alternative will be proposed using nonlinear
control.

A nonlinear control law is explained and developed according to work done in [1], where
the system is brought to a normal-form representation, some weak couplings are neglected,
and dynamic extension is added to achieve full vector relative degree. Dynamic inverse is
applied to this system to gain a linear system composed of two integration chains. This
system is linear through the entire range of operation, and with the application of an LQ
controller, we can attempt tracking commands.

Finally, we will discuss the results of this paper. Then, based on those findings, future
work and research will be addressed.

2 The Model

This paper considers the curve fitted model (CFM) proposed in [1]. It is based on a rich truth
model (TM) also presented in the same article, but not in full detail. The CFM encapsulates
the aerodynamics and thrust via

L ≈ 1

2
ρV 2SCL(α, δe), D ≈ 1

2
ρV 2SCD(α, δe), (1a)

M ≈ zTT +
1

2
ρV 2Sc[CM,α(α) + CM,δe(δe)], (1b)

T ≈ Cα3

T α3 + Cα2

T α2 + Cα
Tα + C0

T . (1c)

The normalized coefficients are composed of

CL = Cα
Lα + Cδe

L δe + C0
L, (2a)

CD = Cα2

D α2 + Cα
Dα + C

δ2e
D δ2e + Cδe

D δe + C0
D, (2b)

CM,α = Cα2

M α2 + Cα
Mα + C0

M , CM,δe = ceδe, (2c)

Cα3

T = β1(h, q)Φ + β2(h, q), Cα2

T = β3(h, q)Φ + β4(h, q), (2d)
Cα

T = β5(h, q)Φ + β6(h, q), C0
T = β7(h, q)Φ + β8(h, q), (2e)

while all relevant coefficients are listed in Appendix A.

In addition to the CFM, a control-oriented model (COM) is obtained when neglecting
elevator couplings (Cδe

L), flight altitude, and the flexible states (that will not be mentioned in

3

detail in this paper). The relevant equations of the COM (in state space) are

x⃗ =
{
V α Q θ

}T
, u⃗ =

{
δe Φ

}T (3a)

f⃗(x⃗) =

f1(x⃗)
f2(x⃗)
f3(x⃗)
f4(x⃗)

 =

V̇
α̇

Q̇

θ̇

 =

1

m

(
T cos(α)−D

)
− g sin(θ − α)

1

mV

(
− T sin(α)− L

)
+Q+

g

V
cos(θ − α)

M

Iy

Q

. (3b)

The CFM is used for simulation purposes, whereas the COM is used for analysis and
control design. The CFM is implemented in Matlab and Simulink and validated using
the information provided in [1] (trim conditions, step responses, linearization pole-zero
configurations, etc.). Results are also compared with [2].

3 Trim Conditions

Trim conditions are found for both models, used for validation and later on - linearization.
The trim condition is defined as steady, level flight, requiring

γ = θ − α = 0 =⇒ θ0 = α0, (Zero flight path angle), (4a)
Q0 = 0, (Pitch rate is zero). (4b)

The flight conditions for this trimmed state as detailed in Parker (2007) are listed in Table 1

Table 1: Flight conditions.

Set Variable Set Value
h0 85000 [ft]
V0 7702.0808 [ft/sec]

Using (3) and (4), we are left with the following equations, where the variables we are
trying to solve for are y⃗ =

[
α0 δe,0 Φ0

]
,

V̇
α̇

Q̇

 =

1

m

(
T cos(α0)−D(α0, δe,0,Φ0)

)
1

mV0

(
− T sin(α0)− L(α0, δe,0,Φ0)

)
+

g

V0

M(α0, δe,0,Φ0)

Iyy

= 0. (5)

Solving this system of equations, one could find the appropriate trim conditions for the COM
or CFM. The detailed solution approach is described in Appendix B.

Table 2 details the different trim conditions found in [1, 2], and in this paper. Note that
[1] provides only trim conditions found regarding the TM, which are slightly different than
those presented here and in [2], hinting at a slight model mismatch (as one would expect).

4

Table 2: Trim conditions of [1, 2], and what was calculated in this paper.

State/Input COM
(Computed)

CFM
(Computed)

COM
(Vaknin)

CFM
(Vaknin)

Truth Model
(Parker)

α0 3.684◦ 1.646◦ 3.65◦ 1.62◦ 1.515◦

δe,0 16.368◦ 12.544◦ 16.29◦ 12.49◦ 11.463◦

Φ 0.161 0.268 0.16 0.27 0.2514

Substituting the results from Table 2 into (5), we find the state derivatives at trim are

f⃗(y⃗sol) =

V̇
α̇

Q̇

θ̇

 =

1.518 · 10−15

0
−4.729 · 10−17

0

for the COM, and

f⃗(y⃗sol) =

V̇
α̇

Q̇

θ̇

 =

0

−8.673 · 10−19

−3.638 · 10−17

0

for the CFM. This indicates that the trim conditions found solve our problem. As we will
demonstrate later on, this point is unstable and the aircraft cannot maintain it.

4 Model Validation

The model is implemented in Simulink via the MATLAB Function block. First, to validate
the implemented model, we simulate the system with the initial conditions specified in Table 3.
The comparison will be made with results presented in [2]. The implemented model will be
initialized with both conditions to validate what was found and qualitatively compare the
open-loop responses.

Table 3: Simulated Trim Conditions, Compared to with [2].

V0 [ft/sec] α0[
◦] Q0 [◦/sec] θ0[◦] h0 [ft] δe,0[

◦] Φ0

Vaknin (CFM) [2] 7702.0808 1.6232◦ 0 1.6232◦ 85000 12.4895◦ 0.2665
Found Trim (CFM) 7702.0808 1.6465◦ 0 1.6465◦ 85000 12.5447◦ 0.2682

Figure 1 shows simulation results with said initial conditions, performed on the CFM
configuration. The results are qualitatively similar, both diverge at approximately the same
point in time and trim the aircraft to some extent (for a short time). As expected by previous
articles such as [1], the aircraft’s dynamics are unstable, and left uncontrolled, it will diverge.
These results imply that the model is indeed valid and can be used to simulate the system.

5

Figure 1: Open loop simulation results.

6

5 Numeric Linearization

This section will focus on the numeric linearization performed on the CFM. For this, we will
use central differences to numerically calculate the values of the Jacobian matrices A and B,
which is derived from the equations of motion (3) in the following manner

δ ˙⃗x = Aδx⃗+Bδu⃗, (6a)

Aij =
∂fi
∂xj

, Bij =
∂fi
∂uj

, (6b)

∂f⃗

∂xi

=
f⃗(x⃗0 + εxe⃗i, u0)− f⃗(x⃗0 − εxe⃗i, u0)

2εx
, εx → 0, (e⃗i)j =

{
1, j = i

0, otherwise
, (6c)

∂f⃗

∂ui

=
f⃗(x⃗0, u⃗0 + εuk⃗i)− f⃗(x⃗0, u⃗0 − εuk⃗i)

2εu
, εu → 0, (k⃗i)j =

{
1, j = i

0, otherwise
. (6d)

Applying (6) with εx = 1 · 10−5 and εu = 1 · 10−5, the results for A and B are

A =

−0.00155 19.8572 0 −32.2

−1.0798 · 10−6 −0.06968 1 0
−7.8283 · 10−6 2.9879 0 0

0 0 1 0

 , B =

−40.7230 24.7000
−0.0112 −9.2182 · 10−5

−1.4909 0.12394
0 0

 . (7)

The matrices presented in [2],

A =

−0.0015 19.95 0 −31.9

−1.06 · 10−6 −0.0697 1 0
−7.71 · 10−6 2.981 0 0

0 0 1 0

 , B =

−40.54 24.65
−0.0112 −9.07 · 10−5

−1.491 0.1237
0 0

 , (8)

are almost the same as those presented here1, with negligible difference. There are some
reassuring elements to these results, for example, we find that indeed θ̇ = Q according to
the last row of A, and that Q directly affects α according to the second row. This further
validates our model, hinting it is correctly implemented and captures the system’s essence.

Equation (6) applies central differences to derive a linearized model, so the choice of ε
matters. To justify the choice made, Fig. 2 shows a sensitivity test for the SVDs of A and
B. According to this test, the selected values are past numerical convergence and numerical
errors should be suppressed.

1Note Vaknin’s definition of the input is: u =
[
Φ, δe

]
and here it is: u =

[
δe,Φ

]
.

7

Figure 2: SVDs of A and B as a function of the numerical parameters.

Figure 3 shows the resulting Pole-Zero map of the linearized system, compared to the
pole-zero map in [2]. Both maps use the definition y = [V, γ] as the output, according to [1].
Figure 4 depicts the pole-zero maps presented by Parker. In Parker’s map, there are four
additional sets of poles and zeros resulting from the flexible modes, which are neglected here
and in Vaknin’s work. Besides the flexible modes, all maps match each other well.

The system dynamics as shown in these maps are composed of two phugoid poles with very
low damping, two real short-period poles, and two zeros resulting from the pitch dynamics
of the system. This system is unstable due to the short-period pole on the right, and
non-minimum phase due to the pitch dynamics zero.

Implemented model. Vaknin’s Model.

Figure 3: The Pole-Zero Map of the Linearized System, Compared to Vaknin’s.

In Fig. 5 are the responses of the linearized and nonlinear systems. The linearized system
is unstable as implied by Fig. 3. When initializing it at the trim conditions, we find that
while θ and Q are somewhat “stable” at the beginning of the simulation, V and α diverge
almost immediately. When compared to the non-linear system, we can see the linear one
diverges much faster.

8

Figure 4: The Pole-Zero maps presented in [1].

Figure 5: Comparison of the open loop simulation results for V , α, Q, θ, using the linear and
non-linear model.

9

6 Pitch Angle Controller - Classic PID

This section will focus on an attempt to regulate θ using the actuator δe, within the linearized
system model derived in section 5. First, we must derive the transfer function from θ to δe.
Later, we will see that a derivative feedback controller is required to stabilize the pitch angle.
It will also become apparent that the application of a controller on V is attractive to improve
the dynamics of the system, hence the transfer functions for V and Q will also be derived.
Our linearized model is of the form

δx⃗ =
{
δV δα δQ δθ

}T
, (9a)

δ ˙⃗x = Aδx⃗+Bδu⃗, (9b)
δy⃗ = Cδx⃗+Dδu⃗, (9c)
δx⃗ = x⃗− x⃗0, δu⃗ = u⃗− u⃗0, (9d)

where

A =

−0.00155 19.8572 0 −32.2

−1.0798 · 10−6 −0.06968 1 0
−7.8283 · 10−6 2.9879 0 0

0 0 1 0

 , B =

−40.7230 24.7000
−0.0112 −9.2182 · 10−5

−1.4909 0.12394
0 0

 . (10)

Using Matlab, we can define a linear system and obtain the two transfer functions, setting
the output as θ and V respectively, and ignoring the irrelevant input. Throughout the
following sections, we will not use the δx⃗ notation, but one should keep in mind that all
states express deviations from a nominal one (the trim conditions).

First, let us look at the root locus plot of a proportional pitch angle controller, using δe,
as shown in Fig. 6. Analyzing the plot, we infer that the system is highly unstable, with the
two phugoid poles crossing to the right of the imaginary axis with relative ease (at K ≈ 0.5),
and another unstable ORHP pole associated with the short period of the AHV. There is also
a NMP zero. This matches our experience with the system’s stability (and lack of it).

Figure 6: Root Locus Plot of the Pitch Angle Transfer Function (w.r.t δe).

Recall the asymptotes of an R-L diagram can be obtained as

σA =

∑P
n=0(pn)−

∑Z
m=0(zm)

P − Z
, ϕA =

2k + 1

P − Z
, k = 0, 1, ... (11)

10

In our case, the system has 4 poles and 2 zeros, therefore the vertical asymptote. We could
try and skew the asymptotes in our favor, so there exists a gain for which all poles are stable.
This depends on three factors:

1. The breakaway point.

2. Asymptote center of gravity (σA).

3. Asymptote angle (ϕA).

The asymptote emerges from the center of gravity at the respective angle. This means if
we were to change the angle (increase or decrease P − Z), the direction would depend on the
resulting center of gravity. Another option would be to force a breakaway on the right plane
and a break-in at the left, so the unstable pole advances towards a zero on OLHP.

Increasing P −Z would “tilt” the asymptote to the right, further destabilizing the system.
Decreasing P − Z is a reasonable option and will be explored later. If we were to preserve
the two vertical asymptotes, our only hope is to pull the COG further left, meaning we must
add an equivalent amount of poles and zeros such that the zeros are placed in the ORHP
and the poles are in the OLHP. This calls for a lead/lad compensator, but those will not be
explored here.

First, we will consider classic PID controllers in an attempt to find a suitable candidate
or disprove the use of such controllers. Needless to say, a proportional controller won’t suffice
at all, since the unstable pole is unstable for any gain (according to the R-L asymptotes of
the system). Instinctively, we could try using a PI controller of the form

CPI = KP +KI
1

s
=

K(s+ z)

s
. (12)

This controller maintains a vertical asymptote (since we added the same amount of zeros and
poles). Since the asymptote center of gravity is currently at zero (−0.0019), for the unstable
pole to cross left of the origin, the center of gravity must be pulled left, meaning we would
need z to be positive (since the pole stands at the origin), this is sub-optimal, as already
explained.

Our next proposition would be a PID controller. Usually, we would approach such
suggestions with caution, due to the derivative part not being causal, but in our case, we can
utilize Q. Under the assumption we can perfectly measure the pitch rate, it becomes possible
to implement a derivative controller without the need for a pseudo derivative, meaning PID
controllers such as

CPID = KP +KI
1

s
+KDs =

KDs
2 +Kps+Ki

s
=

K(s+ z1)(s+ z2)

s
(13)

become a feasible option.

This controller adds two zeros with one pole, meaning the overall system has 5 poles and
4 zeros, this is good for us as it forces the asymptote to become horizontal. That way the
unstable pole breaks away at the right plane and back in the left plane. Take

CPID,1 =
(s+ 1.1)(s+ 0.9)

s
(14)

for example, this controller results in the R-L diagram illustrated in Fig. 7. Supposedly, this
result is good as it allows us to stabilize the unstable pole. Close inspection reveals this

11

setup causes the phugoid poles to destabilize. The phugoid “red” pole crosses to the ORHP
very fast (at K ≈ 8 · 10−5), which leaves us with an unstable system over long periods. For
reference, the required gain to stabilize the right-side pole is K ≈ 0.6, hence instability is
inevitable, later it will be shown that we could improve this situation using a speed controller.

Figure 7: Root Locus of the Controlled System.

This result is inevitable. The added zeros and poles force a breakaway for the unstable
pole, meaning another pole must move right to said breakaway point, changing the position
of the zeros is of no use. Another solution worth considering is removing the integrator, and
try using a PD controller as follows:

CPD = KP +KDs = K(s+ a) (15)

Unfortunately, the result is the same - removing the Integrator still entails a right
breakaway point, forcing one pole right. We can explain this behavior using the ORHP zero.
The real part of R-L is only to the left of an odd number of zeros and poles. Because we
have a zero and pole on the right, the real part of R-L is located between the two, and won’t
go left of the zero, this means the breakaway point also must be right of the origin, and that
no matter the controller we won’t be able to prevent one of the stable poles to cross over.
This conclusion encumbers the use of such controllers, but could still redeemed.

7 Multiloop Controller Design

As evident by section 6, a single controller on θ inevitably results in divergence, and hence we
would like to try and add a velocity controller to dampen the phugoid motion. The velocity
controller’s purpose will be to draw the phugoid poles further from the origin, allowing for
greater gains using PID and PD controllers without the phugoid poles becoming unstable.

Figure 8 depicts
V (s)

Φ(s)
in CL when paired with a proportional controller, which is clearly

very different from
θ(s)

δe(s)
. Because the phugoid poles are now drawn left instead of right

(since the NMP zero is gone), we can use a proportional controller to move them further from
the complex axis. This will improve the system’s dynamics and dampen the phugoid motion.

12

Figure 8: Closed loop root locus for
V (s)

Φ(s)
with a proportional controller.

For this purpose, we can use the controller

Φ = KV (0− V) = −KV V. (16)

Since we would like to “regulate” V , the command in this case is 0. Do keep in mind - this
controller will not stabilize the velocity and is not meant to, its purpose is to improve phugoid
dynamics.

As for the actual value of KV - we would ideally like to pull the phugoid poles left, the
gain for which the closest of the two is leftmost is the break-away point. Any gain lower will
pull the “red” pole right, higher gain will pull the “cyan” pole right as well. Hence the ideal
gain is KV = 7.6829 · 10−4 to yield two real stable and equal poles. Note, that it increases
the distance of the poles from the origin by orders of magnitude, hopefully allowing us to
stabilize θ. While that choice for KV has no guarantee of working, it is a good starting point.

With (16) in place, the new system could be written as (the δ notation is removed, but
not forgotten)

x⃗ =
{
V α Q θ

}T
, u⃗ =

{
δe u

}T
,

˙⃗x = Ax⃗+Bu⃗ = Ax⃗+
[
B1 B2

]{δe
Φ

}
= Ax⃗+B1δe −B2KV V =

= Ax⃗+B1δe −KVB2(
{
1 0 0 0

}
x⃗) = (A−B2K⃗V)x⃗+B1δe,

(17)

where K⃗V =
{
KV 0 0 0

}
. This effectively transforms the linear system into a SIMO

system.

With the improved phugoid, we can now attempt to stabilize θ once again. Let’s begin
by examining the new closed-loop poles of θ(s)

δe(s)
when applying a proportional controller, as

seen in Fig. 9.

This new system is different than what one might expect. We previously saw that the
system should have a vertical asymptote, which is clearly not present. To understand why,
we could take a look at the respective transfer function:

θ(s)

δe(s)
=

−1.491s2 − 0.1617s− 0.002207

s4 + 0.08853s3 − 2.987s2 − 0.05749s− 0.0003099
(18)

13

Figure 9: Closed loop root locus for
θ(s)

δe(s)
with a proportional controller, when applying said

velocity controller.

This transfer function has a negative gain by default. This means we should instead look
at a ZARL diagram of the closed loop instead. The closed loop ZARL plot of the system
with a proportional controller is shown in figure Fig. 10.

Figure 10: Closed loop ZARL for
θ(s)

δe(s)
with a proportional controller, when applying said

velocity controller.

These are the loci we are more familiar with for this system. Now we can see that the
phugoid poles indeed move leftwards, as expected (since V and θ share the same poles).
What we already learned about the system is still valid, and we could try applying a PID
controller once again.

A PID controller would add two zeros and one pole, meaning we would expect the
asymptote to become horizontal. Since the asymptote is now horizontal, the two rightmost
poles (that currently break away into the asymptote) would have to break in somewhere
within the left plane where the poles could connect with the zeros. The breakaway is forced
because the poles have no other zeros to go to.

14

Consider the controller

CPID = KP +KI
1

s
+KDs =

KDs
2 +Kps+Ki

s
=

K(s+ z1)(s+ z2)

s
. (19)

A ZARL for θ with this controller in a closed loop could be found in Fig. 11. This controller
is much better, since the phugoid poles are now always stable, and the new origin pole is
drawn to the OLHP alongside the unstable pole. The loci reveal this system now has a
threshold gain that guarantees stability (in our case K ≈ 1.35).

Figure 11: Closed loop ZARL for
θ(s)

δe(s)
with a PID controller, when applying said velocity

controller.

In fact, we don’t really need the integrator and could achieve a very similar result (in
terms of stability) using a PD controller. Figure 12 depicts the ZARL of θ in closed loop
with the controller

CPD = KP +KDs = (s+ 1.1). (20)

Figure 12: Closed loop ZARL for
θ(s)

δe(s)
With a PD controller, when applying said velocity

controller.

Further analysis of the system using rltool, with the added PD controller shows that the
system can be stabilized. For our purpose, the following controller will be used,

C(s) = −5(s+ 1), (21)

15

which corresponds to the time-domain controller

δe = KQ(−Q+Kθ(θcom − θ)), (22)

where KQ = −5, Kθ = 1. Since we are interested in regulating θ, and the linear model has
no physical meaning far from trim conditions anyway, we will set θcom to zero. The resulting
controller is

δe = KQ(−Q−Kθθ). (23)

To summarize, we will apply two controllers, one over V and the other over θ, defined as

δe = KQ(−Q−Kθθ), KQ = −5, Kθ = 1, (24a)
Φ = −KV V, KV = 7.6829 · 10−4. (24b)

8 Simulation Results - Multiloop PD Controller

Applying both controllers described in (24), we can simulate the linear and non-linear model’s
response in different scenarios. Table 4 lists the initial conditions that were simulated.

Figure 13 shows simulation results using the two controllers, where the system is initialized
at the trim conditions. Note the controller handles the system well, with the linear simulation
steady on the trim condition, while the non-linear system drifts from the trim condition, but
is stable, and the deviation is negligible. The control inputs don’t deviate too much from
nominal values as well.

Table 4: Simulated initial conditions.

State\Input Value
V0 7702.0808 [ft/s]
α0 1.6465◦

Q0 0 [deg/s]
θ0 1.6465◦

h0 85000 [ft]
δe,0 12.5447◦

Φ0 0.2682

Additionally, to confirm the stability and ability of the controller to converge, the controller
was initiated at near-trim conditions. Results are shown in Fig. 14. The controller handles
the deviations well, being capable of regulating the system. Do note the control inputs are
quite high, with δe reaching values as high as 50◦. The deviations from trim conditions (at
initialization) are shown in Table 5.

While δe exceeds acceptable values, it could be possible to restrict the controller such
that convergence may be slower but it will not surpass allowed values. Keep in mind this
controller is “unreasonable” as it strives to minimize deviations immediately (since it is a step
response), multiple solutions could be proposed to solve this issue, but are irrelevant. Later
on, a more advanced controller will be proposed, where these issues could be handled more
elegantly with some fine-tuning.

16

Figure 13: Linear and nonlinear system responses, simulated at trim conditions (as seen in
Table 4).

Table 5: Simulated Trim Deviations.

State\Input Value
∆V0 300 [ft/ses]
∆α0 5◦

∆Q0 3 [◦/sec]
∆θ0 5◦

17

Figure 14: Linear and Non-Linear System Responses, Simulated near Trim Conditions.

18

9 LQR Controller Design

Consider now a controller designed using LQR. For this purpose we will use the lqr method
in Matlab, to solve the optimization problem

min
x⃗,u⃗

∫ ∞

0

(
x⃗TQx⃗+ u⃗TRu⃗+ 2x⃗TNu⃗

)
dt, (25)

that according to the theory of LQR controllers is solved using the control input

u⃗ = −Kx⃗. (26)

Here K is defined by the solution of the algebraic Ricati equation

ATP + PA− (PB +N)R−1(BTP +NT) +Q = 0,

K = R−1(BTP +NT).
(27)

Controller application requirements are:

• The system must be controllable.

• Q must be a PSD matrix, and P , R a PD matrix.

• The pair (A,Q) must not contain unobservable states.

First, let us check Controllability using the Kalman Test:

Q0 =
[
B AB A2B A3B

]
(28)

Performing the Kalman Test, over Φ and δe, we discover that the system is controllable by
δe, with |Q0,δe | = −1.33 ̸= 0. For Φ the |Q0,Φ| = −0.0001, which is close to zero but is not
zero by definition.

Next, we will select Q to be a simple diagonal matrix, with its members chosen according
to Bryson’s Law. Since we can’t accurately determine the maximum values of all the states,
we will use values of the maximum deviations we are willing to test, in this case, the deviations
in Table 5 should do well. Consequently,

Q =

1.1111 · 10−5 0 0 0

0 131.312 0 0
0 0 364.756 0
0 0 0 131.312

 . (29)

This matrix is indeed PSD. For R we can see that a good value for Φ can be 0.3, where the
weight for δe will be 5◦ since we know from the PD controller it tends to have high values,
and it wouldn’t make sense to apply high deflection angles at hypersonic speeds. These values
produce

R =

[
131.31 0

0 11.111

]
(30)

As for N , we will simply use 0 since we have no interest in the mixed weight of x and u.
Solving for the given weights, we get the following results,

K =

[
3.375 · 10−4 −3.392 −4.219 −1.868
7.749 · 10−4 0.3788 0.9952 0.8229

]
, (31)

P =

4.385 · 10−4 −0.1793 −0.01806 0.1419
−0.1793 1196.023 70.596 −994.151
−0.01806 70.596 92.868 44.750
0.1419 −994.151 44.750 1261.522

 . (32)

P is indeed PD.

19

10 Simulation Results - LQR

As before, the controller is simulated for two scenarios - exactly at the trim condition, and
offset from it. Tables 4 and 5 describe the tested trim conditions and deviations from them.
Figure 15 shows simulation results using the proposed LQR controller when using the trim
conditions as the initial condition. Figure 16 shows the same simulation, with the initial
conditions skewed by the rates described in Table 5.

The LQR controller too, is capable of regulating the system. Note that when compared
to the PD controller, the LQR controller is slightly slower, but uses about 15◦ less in δe. This
is a great improvement in terms of applicability, and having tuned the controller we could
probably improve upon this result. With that aside, the controller handles the system in
a similar manner to the PD controller presented earlier. As previously seen, the linear and
nonlinear (CFM) models react similarly, meaning the linear approximation is rather accurate
at these deviations.

20

Figure 15: Linear and nonlinear system responses, simulated exactly at the trim conditions,
using the LQR controller.

21

Figure 16: Linear and nonlinear system responses, simulated near the trim conditions, using
the LQR controller.

22

11 Normal Form Model

The remaining sections of this project will focus on recreating the feedback linearization
controller developed in [1]. This particular section will detail the model’s transformation to
normal form, which is made of two integration chains with two control inputs (Φc and δe).
This transformation is advantageous since it will ease the application of dynamic inverse over
the model.

With the addition of a dynamic extension (on Φ) to the COM, it consists of a space state
with 6 states. The relative degree is 6, this is partly because weak elevator couplings (namely
Cδe

L , Cδe
D , Cδ2e

D) were previously neglected. With the dynamic extension in place, (3) effectively
becomes

x⃗ =
{
V α Q θ Φ Φ̇

}T
, u⃗ =

{
δe Φc

}T
, (33a)

f⃗(x⃗) =

f1(x⃗)
f2(x⃗)
f3(x⃗)
f4(x⃗)
f5(x⃗)
f6(x⃗)

=

V̇
α̇

Q̇

θ̇

Φ̇

Φ̈

=

1

m

(
T cos(α)−D

)
− g sin(θ − α)

1

mV

(
− T sin(α)− L

)
+Q+

g

V
cos(θ − α)

M

Iyy

Q

Φ̇

−2ζωΦ̇− ω2Φ + ω2Φc

. (33b)

Written in space state, (33) becomes

x⃗ =
{
x1 x2 x3 x4 x5 x6

}T
, u⃗ =

{
δe Φc

}T
, (34a)

˙⃗x =

f1(x⃗, u⃗)
f2(x⃗, u⃗)
f3(x⃗, u⃗)
f4(x⃗, u⃗)
f5(x⃗, u⃗)
f6(x⃗, u⃗)

=

1
m

(
T (x⃗, u⃗) cos(x2)−D(x⃗, u⃗)

)
− g sin(x4 − x2)

1

mx1

(
− T (x⃗, u⃗) sin(x2)− L(x⃗, u⃗)

)
+ x3 +

g

x1

cos(x4 − x2)

M(x⃗, u⃗)

Iyy

x3

x6

−2ζωx6 − ω2x5 + ω2Φc

. (34b)

For the normal form, the input will be defined as u⃗ =
{
uV uγ

}T and the output as
y⃗ =

{
V γ

}T . We will denote the states of the normal as z⃗. Let us begin the transformation
with the following definitions: z1 = V , z3 = γ. The remaining 4 states will be inhibited by
the Lie derivatives of V and γ,

z⃗ =
{
V LfV L2

fV γ Lfγ L2
fγ

}T
. (35)

23

Using this definition, and neglecting the weak elevator couplings, allows us to perform
feedback linearization on the system, the dynamics of which is

ż1 = z2, ż2 = z3, ż3 = L3
fV +

(
LΦcL2

fV
)
Φc +

(
LδeL2

fV
)
δe, (36a)

ż4 = z5, ż5 = z6, ż6 = L3
fγ +

(
LΦcL2

fγ
)
Φc +

(
LδeL2

fγ
)
δe, (36b)

i.e., it is in normal form. The notation Lui
L2

fV (ui is either Φc or δe) refers to the coefficients
of the control inputs that are obesered in the higher derivatives. The derivation is done using
a symbolic Matlab code. To verify its results, we will derive L2

fV manually and compare it
with results from the code,

LfV =
dV

dt
f⃗(x⃗, u⃗) = f1(x⃗) =

1

m
(T (x⃗, u⃗) cos(x2)−D(x⃗, u⃗))− g sin(x4 − x2),

L2
fV =

dLfV

dt
=

∂LfV

∂x⃗
f⃗(x⃗, u⃗) =

=

− 1

m
ρV SCD(α)

− 1

m
ρV 2S

dCD

dα
+ g cos(θ − α)

0

−g cos(θ)

α3β1 + α2β3 + αβ5 + β7

0

T

1
m

(
T (x⃗, u⃗) cos(x2)−D(x⃗, u⃗)

)
− g sin(x4 − x2)

. . .

. . .

. . .

. . .

. . .

.

(37)

Making the full calculation would be incredibly long, so, we will only look at the coefficient of
f1 (the first row in (33)). The coefficient of this function according to Matlab should amount
to

3.8209 · 10−6 x1

(
5.8224x2

2 − 0.0453x2 + 0.0101
)
. (38)

Note we can see the exact quantities of the model, where x1 is V and x2 is α. We easily verify
the coefficients by hand, according to the manual derivation of the lie derivative. The actual
coefficient should be − 1

m
ρV SCD(α), expanding the coefficient of drag, and substituting values

according to the known model as listed in Appendix A, we get

1

m
ρS = 3.8209 · 10−6,

Cα2

D = 5.8224,

Cα
D = −4.5315 · 10−2,

C0
D = 1.0131 · 10−2.

(39)

This validates our normal form model. We can also verify that the derivatives of z1, z2, z4,
and z5 are as stated in (36). This implies a relative degree of 3 (with respect to both inputs)
and corresponds to results shown in [1].

24

12 Feedback Linearization LQ Controller

This section will focus on the implementation of feedback linearization and an LQ controller
for the normal-form model. First, feedback linearization is applied to eliminate the non-
linearity of the higher derivatives; this will be the inner loop controller. Then, a standard
LQ controller serves as the outer loop controller for the now linear system. The complete
control scheme is presented in Fig. 17.

Figure 17: A conceptual block diagram of the controller, taken from [1].

With the system’s normal form representation, we have a non-linear dynamic system,
formed by two decoupled integration chains. The relative degree is 3, and the system’s
non-linearity originates from the higher derivatives. Feedback linearization is applicable for
this structure, utilizing dynamic inversion.

We are interested in ż3 and ż6 for feedback linearization. Specifically, the ideal form of
these derivatives would be {

ż3
ż6

}
=

{
uV

uγ

}
. (40)

Rewriting (36), we get a matrix representation of the model,{
ż3
ż6

}
=

[
LδeL2

fV LΦcL2
fV

LδeL2
fγ LΦcL2

fγ

]{
δe
Φc

}
+

{
L3

fV
L3

fγ

}
. (41)

To get the form seen in (40), we dictate the inner loop controller as{
δe
Φc

}
= Ac(x⃗)

−1

{
uV − L3

fV
uγ − L3

fγ

}
, Ac(x⃗) =

[
LδeL2

fV LΦcL2
fV

LδeL2
fγ LΦcL2

fγ

]
. (42)

This is applicable only if the decoupling matrix Ac is nonsingular. For this reason, the
singularity of Ac was tested along a range of relevant values. It turns out that Ac depends
only on states x1, x2 and x5. Ac also depends on the height h, which is not a state, but should
be considered. Hence, 10 grids were created (for 10 different values of h), where each grid
contains test values for x1, x2, and x5. The tested values for each state are listed in Table 6.
Figures 18 and 19 depicts how the maximum condition number and minimum determinant of
Ac (over the range of tested values) change with height.

The condition number for inversion2 measures the sensitivity of the solution proposed in
(42) to numerical estimates, when this metric approaches infinity, it could be a sign that AC is
singular. Thus, this number is evaluated for Ac. Since the condition number is of a reasonable
order of magnitude (1·106), and the minimum determinant of Ac doesn’t approach 0 (even at
high altitude), we can safely assume Ac is nonsingular within the range of operation we are
interested in.

2There are many condition numbers, we are interested in the one for inversion. For more information,
read about the cond function in Matlab.

25

Table 6: Relevant range of state values, where non-singularity was tested. Values are based
on a range of operations suggested in [1] (for the CFM).

Minimum Value Maximum Value Interval Number of Points
h [kft] 75 95 2.222e3 10

V (x1) [ft/s] 4000 10000 60.2020 100
α (x2) [deg] -10 10 0.0035 100

Φ (x5) 0.1 1.2 0.0111 100

Figure 18: The maximum condition number of Ac along values tested, for different values of
h.

Figure 19: The minimum of det(Ac) along values tested, for different values of h.

26

Using (42) in (36), the system becomes linear with respect to the control inputs uV and
uγ. Now we can design an outer loop controller using linear methods, in our case, LQR.
Integral augmentation is applied before designing the LQR-based outer loop, alongside the
control law as defined in (42), restructuring the system into the form

żi,1 = z1 ż1 = z2 ż2 = z3 ż3 = uV (43a)
żi,2 = z4 ż4 = z5 ż5 = z6 ż6 = uγ. (43b)

To tackle a tracking problem, a reference model will be presented later. From here on,
the notation w will refer to system tracking errors relative to the reference model, such as
w1 = z1 − z1,ref = V − Vref . By definition, the dynamics of the tracking errors still preserve
the normal-form properties. For example,

ẇ1 = ż1 − ż1,ref = z2 − z2,ref = w2. (44)

Expanding this logic to the entire system (recall the higher derivatives must be somewhat
different due to the reference derivatives), we can express the dynamics of the deviations
from the reference model as

ẇi,1 = w1 ≡ V − Vref ẇi,2 = w4 ≡ γ − γref (45a)

ẇ1 = w2 ≡ LfV − V̇ref ẇ4 = w5 ≡ Lfγ − γ̇ref (45b)

ẇ2 = w3 ≡ L2
fV − V̈ref ẇ5 = w6 ≡ L2

fγ − γ̈ref (45c)
ẇ3 = uV −

...
V ref ẇ6 = uγ −

...
γ ref . (45d)

The decoupling of V and γ allows us to look at the system as two separate systems with
4 states. A design for “both systems” will be presented in a decoupled manner. The LQR
weights are chosen as

QV = diag(10, 1, 1, 1), RV = 1, (46a)
Qγ = I4×4, Rγ = 0.1, (46b)

according to the weights presented in [1]. As mentioned in previous sections, the optimal
controller for both systems (up to the choice of weight matrices) will be

uV −
...
V ref = −KV

wi,1

w1

w2

w3

 ⇒ uV =
...
V ref −KV

∫ t

0
[V (τ)− Vref (τ)]dτ

V − Vref

V̇ − V̇ref

V̈ − V̈ref

 , (47a)

uγ −
...
γ ref = −Kγ

wi,2

w4

w5

w6

 ⇒ uγ =
...
γ ref −Kγ

∫ t

0
[γ(τ)− γref (τ)]dτ

γ − γref
γ̇ − γ̇ref
γ̈ − γ̈ref

 . (47b)

Before calculating KV and Kγ , one must make sure the system is controllable. Again, by
applying the Kalman Test, we can derive Q0 and determine controllability,

Q0 =
[
B AB A2B A3B

]
=

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 . (48)

27

The controllability matrix has full rank, meaning the system is indeed controllable. Assuming
the pair (A,Q) doesn’t have any unobservable states (for both γ and V), the LQR design
(performed in Matlab using lqr) yields

KV =
{
3.162 6.568 6.663 3.784

}
, Kγ =

{
3.162 8.482 9.796 5.439

}
, (49a)

SV =

20.770 21.070 11.969 3.162
21.070 31.794 21.698 6.568
11.969 21.698 18.651 6.663
3.162 6.568 6.663 3.784

 , Sγ =

2.682 3.097 1.720 0.316
3.097 6.589 4.298 0.848
1.720 4.298 4.480 0.979
0.316 0.848 0.979 0.543

 . (49b)

Both SV and Sγ are PD matrices. The closed-loop poles of the linearized system with the
above control gains are

PV =

−0.598 + 1.138j
−0.598− 1.138j
−1.294 + 0.487j
−1.294− 0.487j

 , Pγ =

−0.705 + 0.725j
−0.705− 0.725j
−1.029 + 0.000j
−2.999 + 0.000j

 . (50)

13 Simulation Results -
Feedback Linearization LQ Controller

Following the LQR design presented earlier, we must propose a reference model before
assessing controller performance. The maneuver used as a reference starts at the trim point:
altitude of 85 [kft] and speed of 7702.0808 [ft/s]. The AHV will accelerate at 10 [ft/s2], to
a speed of 8500 [ft/s], and simultaneously climb at an angle of γ = 0.3◦. Upon reaching
an altitude of 90 [kft], the AHV will level and maintain speed. The reference model is a
corresponding step command filtered through a unity DC gain low-pass filter. The filter’s
order is chosen to be 5 to ensure all control inputs are smooth, namely, the 4th state of the
filter, i.e., the third derivative of the output, remains smooth regardless of the input. The
reference model filter is detailed in Appendix C.

First, a regulation command is given to the controller (initialized at the trim condition).
Figures 20 to 23 depict the response of the closed-loop system to a regulation command.
Shown are, respectively: state responses, control inputs, absolute errors, and a comparison
with the trim condition.

Notice there is some transient response before settling back to the trim condition. The
reason for this result is that the control inputs aren’t initialized to match the trim condition
(specifically δe), hence a short transient occurs, after which the controller converges on
the trim condition. This problem could be solved in a few ways, initializing the integral
augmentation states to some value that can be calculated and will bring δe to trim at the first
time step of the simulation, or just ignoring the transient and initiating the reference model
after the system settles. For this work, we will initialize the reference model at t = 30 [sec]
so the transient won’t interfere with tracking performance.

Overall, regulation performance is good, the absolute errors seen in Fig. 22 are quite
negligible, with the velocity error peaking at ≈ 8 [ft/s] and the trajectory angle error peaking
at ≈ 0.17◦. It is worth mentioning that due to the transient response, the AHV converges to
a level flight ≈ 56 [ft] higher than the trim condition. This doesn’t contradict the control
design, since the altitude is not controlled actively. Control inputs are well-behaved, and
are within a reasonable range of operation. Keep in mind that according to [1], the CFM is

28

relevant only while δe ∈ [−15◦, 15◦], meaning we are slightly violating the appropriate range
of δe, but in comparison to the performance shown by the other controllers in this paper, it
is the best result we can achieve3.

Figure 20: State responses of the system to a regulation command - V , α, Q, θ, Φ, Φ̇, γ, and
h.

Figures 24 to 28 present the tracking results. Shown are, respectively: the reference
model (as defined earlier), tracking response, control inputs, absolute tracking errors, and a
comparison between the response and reference signals.

Here too, we note the initial transient, but, as seen in Fig. 25, the system has enough time
to settle before issuing the tracking command. Note that when the engine is commanded to
maintain speed, we have a variation in γ that is quickly returned to its commanded value.
As for the rest of the states, there are not many interesting conclusions to draw. Looking at

3Different requirements, such as tracking and regulation will have major differences, and even regulating
different states could yield different results, hence we might see larger violations in δe later.

29

Figure 21: Control inputs for a regulation command.

Figure 22: Absolute errors of h, V and γ from the trim state for a regulation command.

30

Figure 23: Comparison of h, V and γ with their respective trim values to maintain.

the control inputs, one might notice that we are on the verge of violating the limit of δe at
around t = 35 [sec] (besides the peak introduced during the initial transient response). As
for Φ, the input is within the relevant range specified in [1] (which is Φ ∈ [0.1, 1.2]).

Tracking errors (in their absolute values) indicate prominent performance, with the peak
error in γ at ≈ 0.03◦ (which is about 10% from γmax). The maximum error in V is around 2
[ft/s], which is minuscule compared to the velocities we try to achieve. As mentioned before,
the altitude is not actively controlled and reaches about 160 [ft] above its initial value.

31

Figure 24: The reference model - V , γ, h, and the relevant derivatives (after passing the
filter).

32

Figure 25: State responses of the system to a tracking command (reference model) - V , α, Q,
θ, Φ, Φ̇, γ, and h.

33

Figure 26: Control inputs for a tracking command.

Figure 27: Absolute errors of h, V and γ when tracking the reference model.

34

Figure 28: Comparison of h, V and γ with their respective reference signals at tracking.

35

14 Summary

This work discusses the longitudinal control of an air-breathing hypersonic vehicle. First,
a model is implemented based on the one used in [1], numeric linearization and open-loop
simulation are performed to validate the model and provide a framework for linear control
methods. Later, linear control methods are proposed, namely PID and LQR which are
applied to the linearized model. Finally, we implement a nonlinear controller using feedback
linearization, comparing the simulation results with [1, 2].

We saw that as for the linear control methods, simply applying a PID controller is not
enough to stabilize the system: a multiloop controller is required to dampen the phugoid
poles and resolve the NMP zero present in the linearized system. Simulations show that linear
control methods can regulate the aircraft and maintain trim conditions. These methods could
also stabilize the aircraft when initializing the simulation further from the trim conditions.
One of the most dominant shortcomings of linear controllers is their excessive use of the
control input δe, which violated the relevant range of operation of the model.

The nonlinear controller performance demonstrated in simulations confirms the nonlinear
controller implemented is capable of tracking commands. A reference maneuver is proposed
and used to assess tracking performance, with a pre-filter to smooth the command and
avoid aggressive control inputs. This type of controller exhibits a transient response when
attempting to maintain the trim conditions. It requires more intricate initialization to prevent
it when starting the simulation. This problem is solved in [2] analytically by calculating the
required initial conditions of the integral states, so the initial control input by the controller
matches the trim conditions. The resulting tracking errors of this controller are within
reasonable values for the trajectory angle and negligible for the velocity. Since altitude was
not controlled, its final values were different from the nominal one. As opposed to the linear
methods, this controller was far more restrained in its use of control inputs, being on the
verge of allowed values. This of course is a function of the reference model, and a more
aggressive maneuver could make the controller violate the relevant range of operation.

This project is a part of our research and represents a basic introduction to controlling an
AHV. It will assist in further research of our group. Further work could improve the quality
of this project and make it more comprehensive, such as attempting to implement lead/lag
compensators to enrich the linear control that is discussed in this paper. It is recommended
to initialize the integral states of the nonlinear controller to avoid the transient response
and test more complex missions and scenarios to better understand controller strengths and
weaknesses, it could also prove interesting to test the feedback linearization controller without
integral augmentation. Further research in the context of this work will focus on the use
of 6-DOF models, incorporating lateral control. In addition, no control input limitations
were discussed in this project, further research could include hard or soft constraints on
control inputs and aircraft states to ensure applicability in physical systems, which could
suffer greatly from unlimited inputs or states.

References
[1] Jason T. Parker et al. “Control-Oriented Modeling of an Air-Breathing Hypersonic

Vehicle”. In: Journal of Guidance, Control, and Dynamics 30.3 (May 2007), pp. 856–869.

[2] Ofir Vaknin and Moshe Idan. “Survey of Control Methods for Hypersonic Vehicles
(Project A)”. In: Faculty of Aerospace Engineering, Technion (Dec. 2022).

36

Appendix A Coefficient Tables

The following tables refer to the different coefficients that comprise the CFM and COM,
according to [1], there are two more tables that refer to the flexible modes of the model, but
these are of no interest in this paper.

Table A.1: Miscellaneous coefficient values Table A.2: Lift coefficient values

Table A.3: Drag coefficient values Table A.4: Moment coefficient values

Table A.5: Thrust coefficient values

Appendix B Trim Condition Solution Approach

The implementation strategy: Commonly used terms such as L, D, M , and T will be
implemented as Matlab Functions according to the CFM model. These basic building
blocks could be used in Simulink using the Matlab Function block or directly implemented in
other Matlab functions.

Said functions will depend on various coefficients, as well as relevant states. To simplify,
a Struct represents global simulation parameters. It will be initialized via a helper function,
which if needed could set certain parameters to zero, yielding the COM (conditioned according
to function input). The aforementioned Struct is passed between functions as a parameter.
Table B.1 lists the names of all mentioned coefficients in Matlab.

37

Table B.1: Matlab names of the difference coefficients.

Name Relevant Symbol Property Name
Lift Coefficients Cα

L , C
δe
L , C0

L CLa, CLd, CL0
Drag Coefficients Cα2

D , Cα
D, C

δ2e
D , Cδe

D , C0
D CDa2, CDa, CDd2, CDd, CD0

Moment Coefficients zT , c, C
α2

M,α, C
α
M,α, C

0
M,α, ce zT, mac, CMa2, CMa, CM0, ce

Thrust Coefficients βi bi
Physical Properties Lv, Iyy,m, S Lv, Iyy, m, S
Flight Conditions ρ0, h0, hs rho0, h0, hs

Using the implemented model, a solution to (5) is found via fsolve.

Appendix C Simualtion Reference Model Filter

The filter is constructed via a fifth-order transfer function,

Yref

Yex

=

(
ω2
n

s2 + 2ζωns+ ω2
n

)2
ωn

s+ ωn

=
ω5
n

(s+ ωn)(s4 + 4ζωns3 + (4ζ2ω2
n + 2ω2

n)s
2 + 4ζω3

ns+ ω4
n)
. (C.1)

It has four imaginary poles - two pairs in the same location, and another real pole with the
same natural frequency (wn - distance from the origin) as the others. Equation (C.1) can be
reformulated in controllable canonical form to yield the space state representation

˙⃗x =

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
−a −b −c −d −e

 x⃗+

0
0
0
0

ω5
nYex

 , x⃗ =

Yref

Ẏref

Ÿref...
Y ref

Y
(4)
ref

 , (C.2)

where

a = ω5
n, b = ω4

n(4ζ + 1), (C.3a)
c = ω3

n(4ζ
2 + 4ζ + 2), d = ω2

n(4ζ
2 + 4ζ + 2), (C.3b)

e = ωn(4ζ + 1). (C.3c)

The selected values for the said filter are

ζV = 1, ωn,V = 1.5 [rad/s], (C.4a)
ζγ = 1, ωn,γ = 1 [rad/s]. (C.4b)

This filter is used for simulations presented in section 13. The coefficients a, b, c, d, and e
are calculated in Matlab and used to define state-space matrices, which are later fed into
Simulink to implement the filter.

38

	Introduction
	The Model
	Trim Conditions
	Model Validation
	Numeric Linearization
	Pitch Angle Controller - Classic PID
	Multiloop Controller Design
	Simulation Results - Multiloop PD Controller
	LQR Controller Design
	Simulation Results - LQR
	Normal Form Model
	Feedback Linearization LQ Controller
	Simulation Results - Feedback Linearization LQ Controller
	Summary
	Coefficient Tables
	Trim Condition Solution Approach
	Simualtion Reference Model Filter

