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In this work, we focus on the longitudinal control of an air-
breathing hypersonic vehicle (AHV). Linear control methods such
as PID and LQR are explored to stabilize the system and provide
a basic intuition of its different intricacies. A nonlinear feedback
linearization controller is implemented based on work made in [1].
Simulations are performed to test those controllers and explain their
behavior, as well as discover the strengths and shortcomings of those
different methods. Results are compared with previous papers to
validate the implemented model and simulations. Conclusions are
made to assist with further research and the improvement of this
specific project.

Nomenclature
Linear Control Notations

δu⃗ Pertubation in system inputs from
nominal values.

δx⃗ Pertubation in system states from
nominal values.

u⃗ Space state vector notation for in-
put.

x⃗ Space state vector notation for sys-
tem states.

y⃗ Linear system output.

A, B The Jacobian matrices used for lin-
earization.

C, D Define the relation between the
states and inputs of a linear system
to its output.

Kp, Ki, Kd Respective gains for the pro-
portional, integral, and derivative
parts of a PID controller.

Q0 Controllability matrix or nominal
pitch rate (context-dependent).

Model Constants and Variables

α Angle of attack

βi ith thrust fit parameter

δe Abstract elevator deflection

γ Flight path angle

c Mean aerodynamic chord

Φ Stoichiometrically normalized fuel-
to-air ratio

ρ Air density

θ Pitch angle
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C0
D Constant drag coefficient

Cαi

D ith order coefficient of α contribution
to CD

C
δi

e
D ith order coefficient of δe contribu-

tion to CD

ce Elevator coefficient of moment

C0
L Constant lift coefficient

Cαi

L ith order coefficient of α contribution
to CL

C0
M Constant pitching moment coeffi-

cient

Cαi

M ith order coefficient of α contribution
to CM

C0
T Constant thrust coefficient

Cαi

T ith order coefficient of α contribution
to CT

D Drag

g Gravitation constant

h Height

Iy Longitudinal moment of inertia

L Lift

M Pitching moment

m Vehicle mass

Q Pitch rate

q Dynamic pressure

S Reference area

T Thrust

V Air speed (magnitude)

zT Thrust to moment coupling coeffi-
cient

Other symbols

γref Reference trajectory angle.

Lf Lie derivative.

Lg Refers to the control inputs’ coeffi-
cients in normal form derivatives.

ϕA Root locus asymptote angles.

σA Root locus asymptote center of grav-
ity.

ε The small perturbation used for nu-
meric linearization and derivative.

z⃗ Normal form state notation.

Ac The normal-from decoupling matrix.

j The square root of �1.

Vref Reference speed.

1 Introduction

In recent years, the application of AHVs in civil and military fields has become the center of
attention of many institutes and countries alike due to its promising capabilities. Alongside
its many complex anecdotes, such vehicles are highly unstable and nonlinear in nature,
introducing a complex set of challenges that must be overcome to control such aircraft.

This project is the first step of our research regarding air-breathing hypersonic vehicles.
Its goals are to understand the basic methods present in controlling such challenging vehicles,
study their complex dynamics and behavior, and gain experience in implementing Matlab
and Simulink models as well as performing different control-related analyses using these tools.

To achieve these goals, we will follow the footsteps of [1, 2] and attempt to recreate some
of their work, while explaining and examining the results and techniques implemented by
them to develop our understanding. First, a widespread longitudinal model is reconstructed,
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studied, tested, and linearized to provide the infrastructure for this project. Results regarding
the model are verified against previous works to confirm it is proper. This model is known to
be highly unstable and includes several challenging coupling between the control inputs and
forces acting upon the vehicle.

Having derived the linear system we will attempt to stabilize the pitch angle θ using
linear control methods acting on δe as the control input, including the use of a multiloop PID
controller utilizing Φ and an LQ controller, both of which are tested at the trim condition
of the aircraft and away from it to examine the performance of these methods. Since the
system’s linearization is relevant only near the trim conditions, these methods are unlikely to
be useful for tracking problems, and so a better alternative will be proposed using nonlinear
control.

A nonlinear control law is explained and developed according to work done in [1], where
the system is brought to a normal-form representation, some weak couplings are neglected,
and dynamic extension is added to achieve full vector relative degree. Dynamic inverse is
applied to this system to gain a linear system composed of two integration chains. This
system is linear through the entire range of operation, and with the application of an LQ
controller, we can attempt tracking commands.

Finally, we will discuss the results of this paper. Then, based on those findings, future
work and research will be addressed.

2 The Model

This paper considers the curve fitted model (CFM) proposed in [1]. It is based on a rich truth
model (TM) also presented in the same article, but not in full detail. The CFM encapsulates
the aerodynamics and thrust via

L � 1

2
ρV 2SCL(α, δe), D � 1

2
ρV 2SCD(α, δe), (1a)

M � zTT +
1

2
ρV 2Sc[CM,α(α) + CM,δe(δe)], (1b)

T � Cα3

T α3 + Cα2

T α2 + Cα
Tα + C0

T . (1c)

The normalized coefficients are composed of

CL = Cα
Lα + Cδe

L δe + C0
L, (2a)

CD = Cα2

D α2 + Cα
Dα + C

δ2
e

D δ2e + Cδe
D δe + C0

D, (2b)

CM,α = Cα2

M α2 + Cα
Mα + C0

M , CM,δe = ceδe, (2c)

Cα3

T = β1(h, q)Φ + β2(h, q), Cα2

T = β3(h, q)Φ + β4(h, q), (2d)
Cα

T = β5(h, q)Φ + β6(h, q), C0
T = β7(h, q)Φ + β8(h, q), (2e)

while all relevant coefficients are listed in Appendix A.

In addition to the CFM, a control-oriented model (COM) is obtained when neglecting
elevator couplings (Cδe

L ), flight altitude, and the flexible states (that will not be mentioned in
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detail in this paper). The relevant equations of the COM (in state space) are

x⃗ =
�
V α Q θ

	T
, u⃗ =

�
δe Φ

	T (3a)

f⃗(x⃗) =

8>><>>:
f1(x⃗)
f2(x⃗)
f3(x⃗)
f4(x⃗)

9>>=>>; =

8>><>>:
V̇
α̇

Q̇

θ̇

9>>=>>; =

8>>>>>>>>><>>>>>>>>>:

1

m

�
T cos(α)�D

�
� g sin(θ � α)

1

mV

�
� T sin(α)� L

�
+Q+

g

V
cos(θ � α)

M

Iy

Q

9>>>>>>>>>=>>>>>>>>>;
. (3b)

The CFM is used for simulation purposes, whereas the COM is used for analysis and
control design. The CFM is implemented in Matlab and Simulink and validated using
the information provided in [1] (trim conditions, step responses, linearization pole-zero
configurations, etc.). Results are also compared with [2].

3 Trim Conditions

Trim conditions are found for both models, used for validation and later on - linearization.
The trim condition is defined as steady, level flight, requiring

γ = θ � α = 0 =) θ0 = α0, (Zero flight path angle), (4a)
Q0 = 0, (Pitch rate is zero). (4b)

The flight conditions for this trimmed state as detailed in Parker (2007) are listed in Table 1

Table 1: Flight conditions.

Set Variable Set Value
h0 85000 [ft]
V0 7702.0808 [ft/sec]

Using (3) and (4), we are left with the following equations, where the variables we are
trying to solve for are y⃗ =

�
α0 δe,0 Φ0

�
,

8<:
V̇
α̇

Q̇

9=; =

8>>>>>>><>>>>>>>:

1

m

�
T cos(α0)�D(α0, δe,0,Φ0)

�
1

mV0

�
� T sin(α0)� L(α0, δe,0,Φ0)

�
+

g

V0

M(α0, δe,0,Φ0)

Iyy

9>>>>>>>=>>>>>>>;
= 0. (5)

Solving this system of equations, one could find the appropriate trim conditions for the COM
or CFM. The detailed solution approach is described in Appendix B.

Table 2 details the different trim conditions found in [1, 2], and in this paper. Note that
[1] provides only trim conditions found regarding the TM, which are slightly different than
those presented here and in [2], hinting at a slight model mismatch (as one would expect).
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Table 2: Trim conditions of [1, 2], and what was calculated in this paper.

State/Input
COM

(Computed)
CFM

(Computed)
COM

(Vaknin)
CFM

(Vaknin)
Truth Model

(Parker)
� 0 3:684� 1:646� 3:65� 1:62� 1:515�

� e;0 16:368� 12:544� 16:29� 12:49� 11:463�

� 0:161 0:268 0:16 0:27 0:2514

Substituting the results from Table 2 into (5), we �nd the state derivatives at trim are

~f (~ysol) =

8
>><

>>:

_V
_�
_Q
_�

9
>>=

>>;
=

8
>><

>>:

1:518� 10� 15

0
� 4:729� 10� 17

0

9
>>=

>>;

for the COM, and

~f (~ysol) =

8
>><

>>:

_V
_�
_Q
_�

9
>>=

>>;
=

8
>><

>>:

0
� 8:673� 10� 19

� 3:638� 10� 17

0

9
>>=

>>;

for the CFM. This indicates that the trim conditions found solve our problem. As we will
demonstrate later on, this point is unstable and the aircraft cannot maintain it.

4 Model Validation

The model is implemented in Simulink via theMATLAB Function block. First, to validate
the implemented model, we simulate the system with the initial conditions speci�ed in Table 3.
The comparison will be made with results presented in [2]. The implemented model will be
initialized with both conditions to validate what was found and qualitatively compare the
open-loop responses.

Table 3: Simulated Trim Conditions, Compared to with [2].

V0 [ft/sec] � 0[� ] Q0 [� /sec] � 0[� ] h0 [ft] � e;0[� ] � 0

Vaknin (CFM) [2] 7702:0808 1:6232� 0 1:6232� 85000 12:4895� 0:2665
Found Trim (CFM) 7702:0808 1:6465� 0 1:6465� 85000 12:5447� 0:2682

Figure 1 shows simulation results with said initial conditions, performed on the CFM
con�guration. The results are qualitatively similar, both diverge at approximately the same
point in time and trim the aircraft to some extent (for a short time). As expected by previous
articles such as [1], the aircraft's dynamics are unstable, and left uncontrolled, it will diverge.
These results imply that the model is indeed valid and can be used to simulate the system.
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Figure 1: Open loop simulation results.
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5 Numeric Linearization

This section will focus on the numeric linearization performed on the CFM. For this, we will
use central di�erences to numerically calculate the values of the Jacobian matricesA and B,
which is derived from the equations of motion (3) in the following manner

� _~x = A�~x + B�~u; (6a)

A ij =
@fi
@xj

; B ij =
@fi
@uj

; (6b)

@~f
@xi

=
~f (~x0 + " x~ei ; u0) � ~f (~x0 � " x~ei ; u0)

2" x
; "x ! 0; (~ei ) j =

(
1; j = i

0; otherwise
; (6c)

@~f
@ui

=
~f (~x0; ~u0 + "u

~ki ) � ~f (~x0; ~u0 � "u
~ki )

2"u
; "u ! 0; (~ki ) j =

(
1; j = i

0; otherwise
: (6d)

Applying (6) with " x = 1 � 10� 5 and "u = 1 � 10� 5, the results forA and B are

A =

2

6
6
4

� 0:00155 19:8572 0 � 32:2
� 1:0798� 10� 6 � 0:06968 1 0
� 7:8283� 10� 6 2:9879 0 0

0 0 1 0

3

7
7
5 ; B =

2

6
6
4

� 40:7230 24:7000
� 0:0112 � 9:2182� 10� 5

� 1:4909 0:12394
0 0

3

7
7
5 : (7)

The matrices presented in [2],

A =

2

6
6
4

� 0:0015 19:95 0 � 31:9
� 1:06� 10� 6 � 0:0697 1 0
� 7:71� 10� 6 2:981 0 0

0 0 1 0

3

7
7
5 ; B =

2

6
6
4

� 40:54 24:65
� 0:0112 � 9:07� 10� 5

� 1:491 0:1237
0 0

3

7
7
5 ; (8)

are almost the same as those presented here1, with negligible di�erence. There are some
reassuring elements to these results, for example, we �nd that indeed_� = Q according to
the last row of A, and that Q directly a�ects � according to the second row. This further
validates our model, hinting it is correctly implemented and captures the system's essence.

Equation (6) applies central di�erences to derive a linearized model, so the choice of"
matters. To justify the choice made, Fig. 2 shows a sensitivity test for the SVDs ofA and
B. According to this test, the selected values are past numerical convergence and numerical
errors should be suppressed.

1Note Vaknin's de�nition of the input is: u =
�
� ; � e

�
and here it is: u =

�
� e; �

�
.
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Figure 2: SVDs ofA and B as a function of the numerical parameters.

Figure 3 shows the resulting Pole-Zero map of the linearized system, compared to the
pole-zero map in [2]. Both maps use the de�nitiony = [ V; 
 ] as the output, according to [1].
Figure 4 depicts the pole-zero maps presented by Parker. In Parker's map, there are four
additional sets of poles and zeros resulting from the �exible modes, which are neglected here
and in Vaknin's work. Besides the �exible modes, all maps match each other well.

The system dynamics as shown in these maps are composed of two phugoid poles with very
low damping, two real short-period poles, and two zeros resulting from the pitch dynamics
of the system. This system is unstable due to the short-period pole on the right, and
non-minimum phase due to the pitch dynamics zero.

Implemented model. Vaknin's Model.

Figure 3: The Pole-Zero Map of the Linearized System, Compared to Vaknin's.

In Fig. 5 are the responses of the linearized and nonlinear systems. The linearized system
is unstable as implied by Fig. 3. When initializing it at the trim conditions, we �nd that
while � and Q are somewhat �stable� at the beginning of the simulation,V and � diverge
almost immediately. When compared to the non-linear system, we can see the linear one
diverges much faster.

8



Figure 4: The Pole-Zero maps presented in [1].

Figure 5: Comparison of the open loop simulation results forV , � , Q, � , using the linear and
non-linear model.
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6 Pitch Angle Controller - Classic PID

This section will focus on an attempt to regulate� using the actuator� e, within the linearized
system model derived in section 5. First, we must derive the transfer function from� to � e.
Later, we will see that a derivative feedback controller is required to stabilize the pitch angle.
It will also become apparent that the application of a controller onV is attractive to improve
the dynamics of the system, hence the transfer functions forV and Q will also be derived.
Our linearized model is of the form

�~x =
�

�V �� �Q ��
	 T

; (9a)

� _~x = A�~x + B�~u; (9b)

�~y = C�~x + D�~u; (9c)

�~x = ~x � ~x0; �~u = ~u � ~u0; (9d)

where

A =

2

6
6
4

� 0:00155 19:8572 0 � 32:2
� 1:0798� 10� 6 � 0:06968 1 0
� 7:8283� 10� 6 2:9879 0 0

0 0 1 0

3

7
7
5 ; B =

2

6
6
4

� 40:7230 24:7000
� 0:0112 � 9:2182� 10� 5

� 1:4909 0:12394
0 0

3

7
7
5 : (10)

Using Matlab, we can de�ne a linear system and obtain the two transfer functions, setting
the output as � and V respectively, and ignoring the irrelevant input. Throughout the
following sections, we will not use the�~x notation, but one should keep in mind that all
states express deviations from a nominal one (the trim conditions).

First, let us look at the root locus plot of a proportional pitch angle controller, using� e,
as shown in Fig. 6. Analyzing the plot, we infer that the system is highly unstable, with the
two phugoid poles crossing to the right of the imaginary axis with relative ease (atK � 0:5),
and another unstable ORHP pole associated with the short period of the AHV. There is also
a NMP zero. This matches our experience with the system's stability (and lack of it).

Figure 6: Root Locus Plot of the Pitch Angle Transfer Function (w.r.t� e).

Recall the asymptotes of an R-L diagram can be obtained as

� A =
P P

n=0 (pn ) �
P Z

m=0 (zm )
P � Z

; � A =
2k + 1
P � Z

; k = 0; 1; ::: (11)
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In our case, the system has 4 poles and 2 zeros, therefore the vertical asymptote. We could
try and skew the asymptotes in our favor, so there exists a gain for which all poles are stable.
This depends on three factors:

1. The breakaway point.

2. Asymptote center of gravity (� A ).

3. Asymptote angle (� A ).

The asymptote emerges from the center of gravity at the respective angle. This means if
we were to change the angle (increase or decreaseP � Z ), the direction would depend on the
resulting center of gravity. Another option would be to force a breakaway on the right plane
and a break-in at the left, so the unstable pole advances towards a zero on OLHP.

IncreasingP � Z would �tilt� the asymptote to the right, further destabilizing the system.
DecreasingP � Z is a reasonable option and will be explored later. If we were to preserve
the two vertical asymptotes, our only hope is to pull the COG further left, meaning we must
add an equivalent amount of poles and zeros such that the zeros are placed in the ORHP
and the poles are in the OLHP. This calls for a lead/lad compensator, but those will not be
explored here.

First, we will consider classic PID controllers in an attempt to �nd a suitable candidate
or disprove the use of such controllers. Needless to say, a proportional controller won't su�ce
at all, since the unstable pole is unstable for any gain (according to the R-L asymptotes of
the system). Instinctively, we could try using a PI controller of the form

CP I = K P + K I
1
s

=
K (s + z)

s
: (12)

This controller maintains a vertical asymptote (since we added the same amount of zeros and
poles). Since the asymptote center of gravity is currently at zero (� 0:0019), for the unstable
pole to cross left of the origin, the center of gravity must be pulled left, meaning we would
needz to be positive (since the pole stands at the origin), this is sub-optimal, as already
explained.

Our next proposition would be a PID controller. Usually, we would approach such
suggestions with caution, due to the derivative part not being causal, but in our case, we can
utilize Q. Under the assumption we can perfectly measure the pitch rate, it becomes possible
to implement a derivative controller without the need for a pseudo derivative, meaning PID
controllers such as

CP ID = K P + K I
1
s

+ K D s =
K D s2 + Kps + K i

s
=

K (s + z1)(s + z2)
s

(13)

become a feasible option.

This controller adds two zeros with one pole, meaning the overall system has 5 poles and
4 zeros, this is good for us as it forces the asymptote to become horizontal. That way the
unstable pole breaks away at the right plane and back in the left plane. Take

CP ID; 1 =
(s + 1:1)(s + 0:9)

s
(14)

for example, this controller results in the R-L diagram illustrated in Fig. 7. Supposedly, this
result is good as it allows us to stabilize the unstable pole. Close inspection reveals this
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setup causes the phugoid poles to destabilize. The phugoid �red� pole crosses to the ORHP
very fast (at K � 8 � 10� 5), which leaves us with an unstable system over long periods. For
reference, the required gain to stabilize the right-side pole isK � 0:6, hence instability is
inevitable, later it will be shown that we could improve this situation using a speed controller.

Figure 7: Root Locus of the Controlled System.

This result is inevitable. The added zeros and poles force a breakaway for the unstable
pole, meaning another pole must move right to said breakaway point, changing the position
of the zeros is of no use. Another solution worth considering is removing the integrator, and
try using a PD controller as follows:

CP D = K P + K D s = K (s + a) (15)

Unfortunately, the result is the same - removing the Integrator still entails a right
breakaway point, forcing one pole right. We can explain this behavior using the ORHP zero.
The real part of R-L is only to the left of an odd number of zeros and poles. Because we
have a zero and pole on the right, the real part of R-L is located between the two, and won't
go left of the zero, this means the breakaway point also must be right of the origin, and that
no matter the controller we won't be able to prevent one of the stable poles to cross over.
This conclusion encumbers the use of such controllers, but could still redeemed.

7 Multiloop Controller Design

As evident by section 6, a single controller on� inevitably results in divergence, and hence we
would like to try and add a velocity controller to dampen the phugoid motion. The velocity
controller's purpose will be to draw the phugoid poles further from the origin, allowing for
greater gains using PID and PD controllers without the phugoid poles becoming unstable.

Figure 8 depicts
V(s)
�( s)

in CL when paired with a proportional controller, which is clearly

very di�erent from
� (s)
� e(s)

. Because the phugoid poles are now drawn left instead of right

(since the NMP zero is gone), we can use a proportional controller to move them further from
the complex axis. This will improve the system's dynamics and dampen the phugoid motion.
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Figure 8: Closed loop root locus for
V(s)
�( s)

with a proportional controller.

For this purpose, we can use the controller

� = K V (0 � V) = � K V V: (16)

Since we would like to �regulate�V , the command in this case is0. Do keep in mind - this
controller will not stabilize the velocity and is not meant to, its purpose is to improve phugoid
dynamics.

As for the actual value ofK V - we would ideally like to pull the phugoid poles left, the
gain for which the closest of the two is leftmost is the break-away point. Any gain lower will
pull the �red� pole right, higher gain will pull the �cyan� pole right as well. Hence the ideal
gain is K V = 7:6829� 10� 4 to yield two real stable and equal poles. Note, that it increases
the distance of the poles from the origin by orders of magnitude, hopefully allowing us to
stabilize � . While that choice for K V has no guarantee of working, it is a good starting point.

With (16) in place, the new system could be written as (the� notation is removed, but
not forgotten)

~x =
�

V � Q �
	 T

; ~u =
�

� e u
	 T

;

_~x = A~x + B~u = A~x +
�
B1 B2

�
�

� e

�

�
= A~x + B1� e � B2K V V =

= A~x + B1� e � K V B2(
�

1 0 0 0
	

~x) = ( A � B2
~K V )~x + B1� e;

(17)

where ~K V =
�

K V 0 0 0
	

. This e�ectively transforms the linear system into a SIMO
system.

With the improved phugoid, we can now attempt to stabilize� once again. Let's begin
by examining the new closed-loop poles of� (s)

� e(s) when applying a proportional controller, as
seen in Fig. 9.

This new system is di�erent than what one might expect. We previously saw that the
system should have a vertical asymptote, which is clearly not present. To understand why,
we could take a look at the respective transfer function:

� (s)
� e(s)

=
� 1:491s2 � 0:1617s � 0:002207

s4 + 0:08853s3 � 2:987s2 � 0:05749s � 0:0003099
(18)
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Figure 9: Closed loop root locus for
� (s)
� e(s)

with a proportional controller, when applying said

velocity controller.

This transfer function has a negative gain by default. This means we should instead look
at a ZARL diagram of the closed loop instead. The closed loop ZARL plot of the system
with a proportional controller is shown in �gure Fig. 10.

Figure 10: Closed loop ZARL for
� (s)
� e(s)

with a proportional controller, when applying said

velocity controller.

These are the loci we are more familiar with for this system. Now we can see that the
phugoid poles indeed move leftwards, as expected (sinceV and � share the same poles).
What we already learned about the system is still valid, and we could try applying a PID
controller once again.

A PID controller would add two zeros and one pole, meaning we would expect the
asymptote to become horizontal. Since the asymptote is now horizontal, the two rightmost
poles (that currently break away into the asymptote) would have to break in somewhere
within the left plane where the poles could connect with the zeros. The breakaway is forced
because the poles have no other zeros to go to.
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Consider the controller

CP ID = K P + K I
1
s

+ K D s =
K D s2 + Kps + K i

s
=

K (s + z1)(s + z2)
s

: (19)

A ZARL for � with this controller in a closed loop could be found in Fig. 11. This controller
is much better, since the phugoid poles are now always stable, and the new origin pole is
drawn to the OLHP alongside the unstable pole. The loci reveal this system now has a
threshold gain that guarantees stability (in our caseK � 1:35).

Figure 11: Closed loop ZARL for
� (s)
� e(s)

with a PID controller, when applying said velocity

controller.

In fact, we don't really need the integrator and could achieve a very similar result (in
terms of stability) using a PD controller. Figure 12 depicts the ZARL of� in closed loop
with the controller

CP D = K P + K D s = ( s + 1:1): (20)

Figure 12: Closed loop ZARL for
� (s)
� e(s)

With a PD controller, when applying said velocity

controller.

Further analysis of the system using rltool, with the added PD controller shows that the
system can be stabilized. For our purpose, the following controller will be used,

C(s) = � 5(s + 1) ; (21)
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which corresponds to the time-domain controller

� e = K Q(� Q + K � (� com � � )) ; (22)

whereK Q = � 5, K � = 1. Since we are interested in regulating� , and the linear model has
no physical meaning far from trim conditions anyway, we will set� com to zero. The resulting
controller is

� e = K Q(� Q � K � � ): (23)

To summarize, we will apply two controllers, one overV and the other over� , de�ned as

� e = K Q(� Q � K � � ); K Q = � 5; K � = 1; (24a)

� = � K V V; KV = 7:6829� 10� 4: (24b)

8 Simulation Results - Multiloop PD Controller

Applying both controllers described in (24), we can simulate the linear and non-linear model's
response in di�erent scenarios. Table 4 lists the initial conditions that were simulated.

Figure 13 shows simulation results using the two controllers, where the system is initialized
at the trim conditions. Note the controller handles the system well, with the linear simulation
steady on the trim condition, while the non-linear system drifts from the trim condition, but
is stable, and the deviation is negligible. The control inputs don't deviate too much from
nominal values as well.

Table 4: Simulated initial conditions.

State\Input Value
V0 7702:0808[ft/s]
� 0 1:6465�

Q0 0 [deg/s]
� 0 1:6465�

h0 85000[ft]
� e;0 12:5447�

� 0 0:2682

Additionally, to con�rm the stability and ability of the controller to converge, the controller
was initiated at near-trim conditions. Results are shown in Fig. 14. The controller handles
the deviations well, being capable of regulating the system. Do note the control inputs are
quite high, with � e reaching values as high as50� . The deviations from trim conditions (at
initialization) are shown in Table 5.

While � e exceeds acceptable values, it could be possible to restrict the controller such
that convergence may be slower but it will not surpass allowed values. Keep in mind this
controller is �unreasonable� as it strives to minimize deviations immediately (since it is a step
response), multiple solutions could be proposed to solve this issue, but are irrelevant. Later
on, a more advanced controller will be proposed, where these issues could be handled more
elegantly with some �ne-tuning.

16



Figure 13: Linear and nonlinear system responses, simulated at trim conditions (as seen in
Table 4).

Table 5: Simulated Trim Deviations.

State\Input Value
� V0 300 [ft/ses]
� � 0 5�

� Q0 3 [� /sec]
� � 0 5�
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Figure 14: Linear and Non-Linear System Responses, Simulated near Trim Conditions.
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9 LQR Controller Design

Consider now a controller designed using LQR. For this purpose we will use thelqr method
in Matlab, to solve the optimization problem

min
~x;~u

Z 1

0

�
~xT Q~x + ~uT R~u + 2~xT N~u

�
dt; (25)

that according to the theory of LQR controllers is solved using the control input

~u = � K~x: (26)

Here K is de�ned by the solution of the algebraic Ricati equation

AT P + PA � (PB + N )R� 1(B T P + N T ) + Q = 0;

K = R� 1(B T P + N T ):
(27)

Controller application requirements are:

ˆ The system must be controllable.

ˆ Q must be a PSD matrix, andP, R a PD matrix.

ˆ The pair (A; Q) must not contain unobservable states.

First, let us check Controllability using the Kalman Test:

Q0 =
�
B AB A 2B A 3B

�
(28)

Performing the Kalman Test, over� and � e, we discover that the system is controllable by
� e, with jQ0;� e j = � 1:33 6= 0. For � the jQ0;� j = � 0:0001, which is close to zero but is not
zero by de�nition.

Next, we will select Q to be a simple diagonal matrix, with its members chosen according
to Bryson's Law. Since we can't accurately determine the maximum values of all the states,
we will use values of the maximum deviations we are willing to test, in this case, the deviations
in Table 5 should do well. Consequently,

Q =

2

6
6
4

1:1111� 10� 5 0 0 0
0 131:312 0 0
0 0 364:756 0
0 0 0 131:312

3

7
7
5 : (29)

This matrix is indeed PSD. For R we can see that a good value for� can be 0.3, where the
weight for � e will be 5� since we know from the PD controller it tends to have high values,
and it wouldn't make sense to apply high de�ection angles at hypersonic speeds. These values
produce

R =
�
131:31 0

0 11:111

�
(30)

As for N , we will simply use0 since we have no interest in the mixed weight ofx and u.
Solving for the given weights, we get the following results,

K =
�
3:375� 10� 4 � 3:392 � 4:219 � 1:868
7:749� 10� 4 0:3788 0:9952 0:8229

�
; (31)

P =

2

6
6
4

4:385� 10� 4 � 0:1793 � 0:01806 0:1419
� 0:1793 1196:023 70:596 � 994:151
� 0:01806 70:596 92:868 44:750

0:1419 � 994:151 44:750 1261:522

3

7
7
5 : (32)

P is indeed PD.
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10 Simulation Results - LQR

As before, the controller is simulated for two scenarios - exactly at the trim condition, and
o�set from it. Tables 4 and 5 describe the tested trim conditions and deviations from them.
Figure 15 shows simulation results using the proposed LQR controller when using the trim
conditions as the initial condition. Figure 16 shows the same simulation, with the initial
conditions skewed by the rates described in Table 5.

The LQR controller too, is capable of regulating the system. Note that when compared
to the PD controller, the LQR controller is slightly slower, but uses about15� less in� e. This
is a great improvement in terms of applicability, and having tuned the controller we could
probably improve upon this result. With that aside, the controller handles the system in
a similar manner to the PD controller presented earlier. As previously seen, the linear and
nonlinear (CFM) models react similarly, meaning the linear approximation is rather accurate
at these deviations.
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Figure 15: Linear and nonlinear system responses, simulated exactly at the trim conditions,
using the LQR controller.
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