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Abstract

This research study examines the two-point boundary value problem as
outlined by Kepler (unperturbed), applied to scenarios involving both rotating
and non-rotating earth, focusing on the path of least energy consumption. For
the scenario considering a non-rotating earth, a solution is derived analytically,
leveraging the symmetry inherent to the problem. In contrast, for the rotating
earth scenario, the approach adopts a numerical strategy, specifically the fixed-
point iteration (FPI) method, starting with the solution for the non-rotating
case as the initial guess. The results of this method manifests in behaviors akin
to first or second-order responses, which is elucidated through the examination
of the relationship between angular distance and Time of Flight (ToF). We
present an exponential convergence rate fitting of the miss distance for FPI.

1 Preliminaries

1.1 Kepler’s Problem

This section presents a qualitative approach to Kepler’s problem, which models the
trajectory of a point of mass m orbiting under the gravitational influence of another
point of mass M, such that m << M. The mathematical model of the Kepler’s
problem (represented in an inertial frame of reference) is:

r̈+
µ

r3
r = 0, r (t0) = r0, ṙ (t0) = v0 (1)

where µ = GM is the standard gravitational parameter. Here G stands for Newton’s
universal gravitational constant.

1.1.1 Constants of Motion in Kepler’s Problem

The specific energy is derived by dot-multiplying Equation (1) with the velocity
vector v and utilizing the relationship ṙ = v·r

r
, ṙ ≡ v:

ε =
v2

2
− µ

r
=

v2
0

2
− µ

r0
(2)

The specific angular momentum is obtained by taking the cross product of equation
(1) with the position vector r:
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h = r× v = r0 × v0 (3)

The Laplace-Runge-Lenz vector is found by differentiating the normalized position
vector r

r
:

µe = v × h− µ
r

r
= v0 × (r0 × v0)− µ

r0
r0

(4)

The conservation of angular momentum implies that the motion takes place in a
fixed plane. More specifically, on a conic section, whose polar equation can be
deduced from:

e · r+ r = p ≡ h2

µ
(5)

r =
p

1 + e cos f
, f ≜ ∠ (r, e) (6)

In the elliptic case, the periapsis and apoapsis, representing the minimum and max-
imum values of the radial distance r, are defined as follows:

rp = rmin =
p

1 + e
(7)

ra = rmax =
p

1− e
(8)

The semimajor axis is:

a =
ra + rp

2
=

p

1− e2
(9)

The conserved energy is evaluated at the periapsis, where the velocity is perpendic-
ular to the position vector:

h2 = (rp × vp) · (rp × vp) = v2
pr

2
p (10)

Similarly, the relationship between the specific energy ε and the semimajor axis, in
the elliptical case, is derived as:

ε =
v2
p

2
− µ

rp
=

h2

2r2p
− µ

rp
(11)

=
µ

rp

(
p

2rp
− 1

)
(12)

=
µ

2rp
(e− 1) = − µ

2a
(13)
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1.1.2 Kepler’s Time Equation

For elliptical orbits, the eccentric anomaly E is defined as:

cosE =
e+ cos f

1 + e cos f
; sinE =

√
1− e2 sin f

1 + e cos f
(14)

This implies that the radial distance r can be expressed with respect to the eccentric
anomaly as:

r = a (1− e cosE) (15)

while the differential of the eccentric anomaly satisfies:

rdE = a

√
µ

a3
dt ≜ na · dt (16)

From the latter:

∆t =
1

n

∫
(1− e cosE) dE =

∆(E − e sin (E))

n
≜

∆M

n
(17)

1.2 The Velocity Hodograph

From [Condurache, 2007] we can isolate the velocity in terms of h, r, e by taking the
cross product of equation (4) with h:

h× e = h×
(
v × h

µ

)
− h× r

r
=

h2

µ
v − h× r

r
(18)

v =
h

p

(
h

h
× e+

h

h
× r

r

)
(19)

Thus, the velocity vector consists of two components: a constant and a rotating
component.

1.3 Rodrigues’ Rotation Formula (Lie groups derivation)

Claim 1.3.1 a rotation of v around unitary vector u with angle α (i.e. an orthog-
onal operator R ∈

{
M3,RTR = I

}
= SOn) can be represented as:

R (α,u) = I+ sin (α)u+ (1− cos (α)) ũ2 (20)

Where:

ũ =

 0 −u3 u2

u3 0 −u1

−u2 ω1 0

 (21)

Proof. From [Murray, 1994]
exp (ω̃ωω) ∈ SOn (22)

exp (ω̃ωω) = I+ω̃ωω +
ω̃ωω2

2
+ ... (23)
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In the 3D case:
ω̃ωω2 = −ω2ω̃ωω (24)

so equation (23) becomes:

exp (ω̃ωω) = I−
(
ω2

2
+

ω3

6
...

)
ω̃ωω (25)

= I+ sinω
ω̃ωω

ω
+ (1− cosω)

ω̃ωω

ω
≜ R (α,u) (26)

2 Results

In this section, we will present solutions for Kepler’s boundary value problem. The
first solution is an analytical one for the non-rotating earth case, while the second
solution consists of numerical results obtained for a rotating earth. Both solutions
operate under the constraint of minimal energy elliptic trajectory. Only gravita-
tional forces are modeled, with atmospheric drag, J2, and other perturbations being
ignored.
We also note, that the results assume an orthonormal inertial frame of reference
(with the origin located at the center of the earth) and that the Dirichlet’s bound-
ary conditions for Kepler’s problem, denoted by A (launch) and B (target), satisfy
being equidistant (R) from the center of the earth.

2.1 Analytical Solution (non-rotating Earth)

The result is obtained by utilizing the symmetry of the problem. A key scalar pa-
rameter governing the problem, as we will presently present, is the angular distance
between the boundaries A,B:

2γ = arccos(
A ·B
R2

), γ ∈
(
0,

π

2

)
(27)

since A,B span the plane of motion (assuming they are not co-linear, i.e. not a
self-launch):

h

h
=

A×B

||A×B||
(28)

From (11) and (7), for the elliptic case (0 < e < 1, ε < 0) we have the relations:

p = r (1 + e · cos(f)) = R
(
1 + e · cos(fA/B)

)
(29)

εmin ⇐⇒ amin (30)

Employing the Euclidean metric and denoting F as the second foci of the ellipse

(the first being at the center of the earth) results in:

d(A,0) + d(A,F) = d(B,0) + d(B,F) (31)

d(A,F) = d(B,F) (32)
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The latter symmetry implies that point F lies on the angle bisector of ∠ (A,0,B).
Since F is collinear with the eccentricity vector e, we can leverage this symmetry
to partition the solution into two cases based on the direction of the eccentricity
vector:

e

e
= ± A+B

||A+B||
(33)

2.1.1 Cases Study

Case 2.1.1

e

e
= − A+B

||A+B||
(34)

fA = π − γ, fB = π + γ (35)

From (29):

p = R (1− e cos (γ)) (36)

a =
R (1− e cos (γ))

1− e2
(37)

Since γ is known, we have obtained a = a(e). Differentiating to find the minimal
energy trajectory using Ferma’s Theorem:

da(e)

de
=

−R (1− e2) cos (γ) + 2eR (1− e cos (γ))

(1− e2)2
(38)

0 = (cos (γ)) e2 − 2e+ cos (γ) (39)

e1,2 =
1

cos (γ)
±

√
1

cos2 (γ)
− 1 (40)

emin ε(γ) =
1

cos (γ)
−

√
1

cos2 (γ)
− 1 =

1− sin(γ)

cos (γ)
(41)

We can see that the solution is governed by the value of γ, and is decreasing as γ
reaches it upper limit (π

2
).Using the second derivative test, one can verify that this

is indeed a local minimum.

Case 2.1.2 repeating a similar process

e

e
=

A+B

||A+B||
(42)

fA = 2π − γ, fB = γ (43)
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a =
R (1 + e · cos(γ))

1− e2
(44)

e1,2 = -
1

cos (γ)
∓

√
1

cos2 (γ)
− 1 (45)

The latter indicates that the two cases coincide.

2.1.2 Outcome IC’s

We previously presented the solution for emin ε(γ), which, settles the minimal energy
ellipse for the given boundaries. We now proceed in deriving the IC’s (i.e. the
velocity required at the launch point, A)

emin ε(A,B) = emin ε
A+B

||A+B||
(46)

pmin ε(A,B) = R (1− emin ε cos γ) (47)

hmin ε(A,B) =
√
µpmin ε

A×B

||A×B||
(48)

v
A min ε(A,B) =

hmin ε

pmin ε

(
hmin ε

hmin ε

× emin ε +
hmin ε

hmin ε

× A

R

)
(49)

Remark 2.1.3 Earths rotation is not deducted from the output velocity launch vec-
tor since the model is used outside the atmosphere (for example replace R[km] with
6371 + 100 for Kármán line).

Time of flight calculation can also be simplified using the governed symmetry:

ToFA→Bminε = 2∆tA→apoapsis =
2

nmin ε

[π − (EA − emin ε sinEA)] (50)

F (γ) ≜

√
1− e2min ε sin γ

emin ε − cos γ
(51)

ToF (γ) =
2

n(γ)

[π − arctan (F (γ)) + e(γ) sin (arctan (F (γ)))] (52)

2.2 Numerical Results for Rotating Earth

When dealing with 1D root-finding problems, where the root is also a local minimum,
traditional root-finding methods like Newton’s method may not perform optimally.
Hence, a numerical fixed point iteration method was chosen.
Consider the earth’s rotation and utilizing the analytical solution previously found
as the initial guess. The problem is redefined as follows:

Problem 2.2.1 which aiming point B(n) will result in hitting B at t = ToF
A→B

(n)
min ε

?

6



Where B(n) is defined as:

B(n) = R
(
ω · ToF

A→B
(n−1)
min ε

,
ωωω

ω

)
B, n = 1, ... (53)

ωωω is earth’s rotation axis, |ωωω| = ω is earth’s rotation rate and ToF
A→B

(0)
min ε

stands

for the analytical non-rotating solution given by A,B.
Since 2π

ω
>> ToF we expect the solution to be in the vicinity of the solution (and

eastward to B = B(0)). After convergence is achieved the Analytical results as de-
scribed in (46) for B(n) are returned to the user.

Remark 2.2.2 The frame of reference that is utilized in the code is ECEF which is
a non inertial since it rotates with the earth. The reason that it is possible to use it,
is that we assumed for the analytical part, a non-rotating frame of reference. Hence,
the outputted minimal velocity vector is in ECEF coordinates.

Remark 2.2.3 The method’s stopping conditions is about the miss (angular) dis-
tance ∆(n) between the aiming point B(n) and the target at time of hit B(n−1):

∆(n) = arccos

(
B(n)·B(n−1)

R2

)
< δ (54)

2.3 Method’s behaviour

In this section we present graphs of 2 representing cases: each for targeting a coor-
dinate that is either west/east relative to launch point A.

The results are for launch coordinates in GCS

 R [km]
longitude ◦ deg
latitude ◦ deg

 :

 6371 + 100
30.997569 ◦ deg
35.142919 ◦ deg

Launch (Dimona) (55)

 6371 + 100
51.695562 ◦ deg
32.621066 ◦ deg

East target (Isfahan) (56)

 6371 + 100
16.596731 ◦ deg
31.063835 ◦ deg

West target (Lybia) (57)

With 1[m] allowed of miss distance and 10−5[rad] meshing resolution (used for val-
idation of the method as we will presently explain).

2.3.1 ToF-γ relation

To presently explain the method’s behaviour, see appendix A for dTof(γ)
dγ

> 0 proof.
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2.3.2 ’East’ Targets (Relative to A and ωωω)

For aiming point that are east relative to launch point and axis of rotation (since
for earth, axis of rotation is z, ’east’ receives it’s nominal interpretation):

γ(1) > γ(0) ⇒ ToF (1) > ToF (0) ⇒ (58)

γ(2) > γ(1) ⇒ ... ⇒ γ and ToF both increase until convergence (59)

⇒ Convergence exhibit a first-order response behaviour (60)
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Figure 1: Temporal first order response (upper), spatial first order response (lower)

2.3.3 ’West’ Targets (Relative to A and ωωω)

Similarly, for aiming points to that are west relative to launch point and axis of
rotation :

γ(1) < γ(0) ⇒ ToF (1) < ToF (0) ⇒ (61)

⇒ γ(2) > γ(1) ⇒ ... ⇒ γ and ToF both oscillates until convergence (62)

⇒ Convergence exhibit a second-order response behaviour (63)
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Figure 2: Temporal second order response (upper), spatial second order response
(lower)

2.3.4 Poles and ’Self-Aim’

If the target is at the poles of the rotation axis it will not move relative to the aiming
point at t=0. Hence, the code will converge from the first iteration.

Remark 2.3.1 Self aim (A = B) results in e = 1 and the numerical method will
fail.

Remark 2.3.2 For equality in longitude or latitude (but not for both, i.e. not a
self-aim) the ’East’ and ’West’ behaviour applies.

2.3.5 Convergence Rate

The method exhibits an exponential convergence rate

∆(n) = ∆(1)e−2.5(n−1) [rad] (64)
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Figure 3: Eastern target: Miss distance fitting (left), fitting error (right)
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Figure 4: Western target: Miss distance fitting (left), fitting error(right)

2.3.6 Verifying Numerical Results

meshing the circular curve, on which the target is moving, to central angles, and
calculating the miss distance when aiming to each node is one of the way to verify
that the numerical method indeed converges to the desired value.
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Figure 5: Eastern target: FPI mesh verification (upper), A closer look (lower)

Also, the sensitivity of numerical parameters such as meshing resolution and
stopping conditions was examined (see appendix B).

3 Conclusions

� An analytical solution for non-rotating classic Kepler’s boundary value prob-
lem is achieved using symmetry.

� The angular distance between the boundaries (γ) is the scalar that dominates
the analytical solution.

� Investigating the dissection into two topological loci (east and west), we find

10



0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Eastward (longitude) correction from target (B) [rad]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

A
n
g
u
la

r 
m

is
s
 d

is
ta

n
c
e
 [
ra

d
]

iteration #1

iteration #2

iteration #7

Meshing

FPI

Figure 6: Western target: FPI mesh verification (upper), A closer look (lower)

that the suggested convergence behavior exhibits similarities to first and second-
order responses which arises due dTof(γ)

dγ
> 0.

� FPI numerical method is converging exponentially.

� Further research suggested is exploring Banach fixed-point theorem and the
notion of attracting fixed points, to shed more light on the convergence rate
obtained, and whether or not the method’s convergence is assured regardless
to the initial guess (e.g. a slow rotation of the planet relative to ToF is a
requirement for convergence).
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4 Appendix A

ToF =
2

n
[π − EA + e sinEA] (65)

Where EA is corresponding to the true anomaly of A.

dToF

dγ
=

dToF

dn

dn

dγ
+

dToF

dEA

dEA

dγ
+

dToF

de

de

dγ
(66)

dToF

dn

dn

dγ
= − 6 cos γ − sin γ + 1)

√
2mu(e sinE − E + π)

R3/2
√
sin γ + 1(cos γ2 + (− sin γ − 1) cos γ − 2 sin γ − 2)n2

> 0

(67)
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dToF

dEA

dEA

dγ
=

√
2

n
√

sin γ + (sin γ)2
> 0 (68)

dToF

de

de

dγ
=

−2 sinEA

n(sin γ + 1)
< 0 (69)

Even though that the latter is negative, it can be verified that:

dToF

dEA

dEA

dγ
− dToF

de

de

dγ
> 0 (70)

■

5 Appendix B
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Figure 7: Eastern target: miss distance analysis
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Figure 8: Eastern target: mesh resolution convergence graph
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Figure 9: Western target: miss distance analysis

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Mesh resolution [rad]

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

M
in

im
a
l 
v
a
lu

e
 o

f 
d
e
v
ia

ti
o
n
 o

b
ta

in
e
d
 (

lo
g
s
c
a
le

) 
[r

a
d
]

Figure 10: Western target: mesh resolution convergence graph
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