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Abstract

This research investigates a biologically inspired combined guidance law for interception
with obstacle avoidance, based on the work of Fabian et al. who observed this law in the
flight of a miniature robber fly. The law merges Proportional Navigation with an avoidance
term proportional to the rate of change of the obstacle’s angular size. Unlike prior work, we
focus on scenarios where Proportional Navigation alone results in collision. The behavior of
the guidance law was found to be highly sensitive to the chosen avoidance gain parameter c.
For low values of c, the Proportional Navigation component dominates, and the interceptor
often fails to avoid the obstacle. In contrast, for sufficiently high values of c, the avoidance
becomes effective, resulting in a significant clearance distance from the obstacle. We also
examined the influence of first-order dynamics and observed that they reduce the clearance
distance and introduce a delay, sometimes causing the interceptor to maneuver around the
obstacle from different sides. A field-of-view constraint was implemented but was found to
have negligible impact on performance under the conditions tested. Finally, we compared
the combined law with an optimal avoidance strategy derived for a point obstacle.
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Nomenclature

aM Interceptor acceleration command in practice
aMc Interceptor commanded acceleration
aT Target acceleration command in practice
aPN PN acceleration command
aMN , aTN Acceleration components projected along normal directions (Kumar’s law)
aMNo Obstacle avoidance acceleration command in Kumar’s law for the case of a single obstacle
aobs Obstacle Avoidance acceleration command
c Dimensionless parameter weighting the avoidance behavior
N Navigation constant
r The range between the target and the interceptor
rMo The range between the interceptor and the obstacles’s center
rMR The range between the interceptor and the obstacles’s right bottom corner
rML The range between the interceptor and the obstacles’s left bottom corner
tgo Time to interception
vM Interceptor velocity
vT Target velocity
Vc The closing velocity
(xM , yM ) Interceptor’s position in an inertial frame
(xT , yT ) Target’s position in an inertial frame
δ The angle between the LOS and vM
γ Path angle
γ̇ Rate of change of the path angle
γD Desired interception angle
γM0 Initial heading of missile
γT0 Initial heading of target
λ Angle of LOS relative to a fixed point

λ̇ Rate of change of the angle of LOS
λ0 Initial value of LOS
ϕ Angular size of obstacle — the angle between rML and rMR

ϕ̇ Rate of change of angular size ϕ
θ The angle between the LOS and vT
τ Time constant of first-order dynamics
ω The angle between vM and rMo
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List of Abbreviations

PP Pure Pursuit
LOS Line of Sight
DPP Deviated Pure Pursuit
PN Proportional Navigation
PNP mixed guidance law PP+PN
UAV Unmanned Aerial Vehicle
APN Augmented Proportional Navigation
AV Autonomous Vehicle
FOV Field of View
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1 Literature Review

The literature review will focus on research in the field of guidance, addressing all its components
— from the geometric rule, through the guidance law, to the control mechanism. The geometric
rule defines the kinematic behavior of the system, the guidance law specifies the algorithm that
implements this rule, and the control mechanism ensures the stability of the inner control loop.
In this review, the primary emphasis will be on the first two levels, and the focus will be mainly
on bio-inspired guidance laws. In addition, we will review studies on obstacle avoidance during
interception, both in general systems and in the animal domain.

1.1 Interception Strategies in Nature

Many animals use simple and effective strategies to intercept moving targets, making them a
valuable source of inspiration for guidance systems. These natural behaviors often rely on basic
geometric rules and can be modeled with guidance laws similar to those used in actual guidance
systems. In this subsection, we focus on biologically inspired interception strategies to highlight
the first two levels of the guidance process: the geometric rule and the guidance law.

1.1.1 Geometric Rules

Observing nature, we can gain valuable insights into existing geometric rules and potentially
uncover different strategies. One rule is Line of Sight (LOS) geometric rule. According to this
rule, the interceptor is always on the ray that starts at a reference point and passes through
the target. [1]

Another rule is the Pure Pursuit (PP) geometric rule, which dictates that the pursuer
velocity vector vM coincides with the vector r (the range between the target and the pursuer
in the LOS direction). Various examples of animal behaviors that exemplify the PP rule are
presented in the literature. For instance, Shneydor [1] demonstrates that many parents have
observed that most children of tender tend to chase one another according to the PP rule. A
research on ants behavior is demonstrated in [2], in which a leading ant signals others to follow,
maintaining a fixed distance while aligning their movement towards the one ahead, and actually
implementing this geometric rule too. In a related study, Kane [3] explains that goshawks use
the PP rule when capturing stationary prey. Furthermore, houseflies have been shown to employ
this strategy when chasing mates [4], and similar behavior has been observed in teleost fish when
tracking moving food [5].

Next, we consider the Deviated Pure Pursuit (DPP) rule, where vM leads r , where ’leads’
means ’In the direction of the future position of T’. Shneydor [1] further noted that this strategy
is intuitively employed by children around the age of three or four, as well as by certain species
of cats and night insects that approach light sources. McHenry et al. [6] reveal that bluefish
utilize the DPP rule when pursuing prey fish.

Another relevant geometric rule is Parallel Navigation, in which the direction of the LOS is
maintained parallel to the initial LOS. Mathematically, this implies that the rate of rotation of
the LOS vector is zero. This rule is employed by bats when chasing prey, as shown by Ghose
et al. [7]. Similarly, Kane [3] reports that goshawks use Parallel Navigation when capturing
moving prey, same as falcons when pursuing maneuvering targets [8].

We have discussed the geometric rule as implemented by children, but what about adults?
A research by Fajen et al. [9] about people going by foot towards a moving target showed
that their interception behavior exhibits dynamics that include an initial turn onto a straight
path with a heading that leads the target, and a final decrease in the angle at the end of the
approach. This strategy might be described as the known parallel navigation.

Another rule observed both in baseball players chasing fly balls [10] and in dogs pursuing
frisbees [11] is the Liner Optical Trajectory. This strategy results when the pursuer’s running
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speed and direction maintain a rate of change in the horizontal optical angle, that matches the
rate of change in the vertical optical angle.

Some geometric behaviors cannot be explained by current geometric rules. For example,
G. Ribak et al. show in [12] that damselflies can adjust their trajectory to minimize the angle
between their longitudinal axis and the line of sight to the target—without altering body yaw.

1.1.2 Guidance Laws

Now, we shift our focus to the second level—the guidance law. Initially, we will examine
Proportional Navigation (PN), a guidance law that implements parallel navigation, which is
widely employed in guided interceptor systems. As explained in [13], PN issues acceleration
commands, perpendicular to the instantaneous interceptor-target LOS, which are proportional
(by a proportionality constant known as the Navigation constant (N)) to the LOS rate and
closing velocity. As demonstrated in [14], the terminal attack trajectories of peregrine falcons
align with this guidance law. A notable case is presented in [15], where it is explained that the
trajectories of both captive-bred gyrfalcons and peregrine falcons is modeled by PN. In addition,
the analysis in [16] reveals that pigeons steering toward vertical gaps follow flight trajectories
well-modeled by PN with estimated navigation constant (N) of about 2.6, which closely matches
the theoretical optimum of 3. Additionally, Fabian et al. [17] show that two species of robber
flies employ PN: Holcocephala with N = 3, and Coenosia with N = 1.5, the latter exhibiting
a shorter time delay. This suggests that Coenosia can adjust its flight path with minimal lag,
reducing the risk of missing a rapidly maneuvering target. In contrast, the longer time delay in
Holcocephala implies a more predictive approach, relying on internal models to compensate for
the delay. Moreover, in [18] it is shown that the tiger beetle adopts this guidance law as well,
with a delay of one half-stride.

Certain animals do not adhere to conventional guidance laws. For example, in [15],[19] it is
presented that the attack trajectories of Harris’ hawks are best modeled by a mixed guidance
law PP+PN (PNP) coupling low-gain proportional navigation with a low-gain pure pursuit. In
[20], it is distinguished between inertial-PNP, which uses inertial measurements of the line-of-
sight rate, and background-PNP, which estimates the line-of-sight rate relative to the visual
background. It is shown there that inertial-PNP provides the closest fit to the data of the
hawks’ pursuit trajectories. Another animal that exhibits a mixed guidance strategy combining
PP and PN is the blowfly, as described in [21].

Another strategy is shown in [22], where it is shown that the dragonfly’s interception strategy
is based on prey fixation, where predictive head rotations stabilize the prey’s image.

In [23] it is suggested that dragonflies (Hemianax papuensis) actively use Motion Camouflage
to disguise themselves as stationary during territorial aerial maneuvers. This method is further
explained by Justh et al. in [24], where a biologically plausible guidance law is proposed for
this method. It is explained that it uses range information to support a high gain in the initial
phase of the engagement, ramping down to a lower value in the terminal phase.

One more strategy is presented in [25], involving the Holcocephala fusca robber flies, previ-
ously discussed in the context of PN. While the initial phase of pursuit follows the PN guidance
law, the study reveals that in the final stage—approximately 29 cm from the target—the flies
switch to an interception strategy which is described as a ”lock-on” process. This phase is
characterized by a new heading and a speed slightly exceeding that of the prey.

1.2 Obstacle Avoidance During Pursuit

During the interceptor’s trajectory toward the target, it is common for obstacles—such as
aircraft crossing the interceptor’s path—to interfere. This challenge has been the subject of
extensive research, and we will highlight some notable findings in this area.
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There is a wide research about the way autonomous vehicles (AVs) are guided to avoid obsta-
cles, some of them are presented here. In [26] it is explained about ”The Electric Field Model”
as a way to avoid obstacles. This approach consists of two main components: an egocentric
risk map representing obstacles, and a potential field model that treats obstacles as repelling
charges, guiding the vehicle like an electron through the field. Another approach is shown in
[27], where the main idea is to present a path planning method for autonomous vehicles that
uses a parametric sigmoid function and a rolling horizon strategy to generate smooth paths in
real time. Lowe et al. [28] show Emergency Obstacle Avoidance Maneuver methodology for AVs
traveling at higher speeds and lower road surface friction using optimization. The optimization
minimizes the total longitudinal distance traveled during an emergency maneuver by adjusting
acceleration and steering inputs, subject to vehicle dynamics and control constraints.

1.2.1 Geometric Rules

Obstacle avoidance during pursuit has been studied through several geometric and control
strategies. A collision cone method for detecting and avoiding collisions between moving objects
with constant relative velocities was proposed in [29], while [30] introduced velocity obstacles to
select safe velocities without requiring full trajectory integration. The environment partitioning
technique of avoidance maps was developed in [31] and further optimized in [32] to improve com-
putational efficiency and reduce control effort. In [33], Giovannangeli et al. propose geometric
constraints to deal with a two-players pursuer evader games in presence of a single unknown
convex obstacle.

Geometric path planning approaches have also been explored. In [34], Bernstein–Bézier
curves, previously applied for single-robot guidance in [35], are extended to multi-robot collision
avoidance, generating smooth paths that respect velocity and acceleration constraints. An
alternative, analytically feasible method using Four Parameter Logistic curves was proposed
in [36], offering closed-form S- and half-S-shaped continuous-curvature paths with fewer design
parameters compared to Bézier, B-spline [37], and clothoid1 -based approaches. As shown in
[38], General scale of O(

√
h + log(n)) pursuers can deterministically capture an evader in any

polygon with n vertices with h obstacles under equal speed assumptions.

1.2.2 Guidance Laws

Several guidance laws has been found for avoiding obstacles while pursuing, and some will
be presented here. In [39], for instance, a collision avoidance algorithm for Unmanned Aerial
Vehicles (UAV) based on PN guidance is proposed, modeling both the UAV and obstacle as
particles in a 2D plane and guiding the UAV’s relative velocity toward a safety boundary while
ensuring stability. In [40], Anderson et al. present an optimal-stopping control method for
collision avoidance and return-to-course flight without requiring prior knowledge of collision
timing, showing improved maneuvering efficiency and minimal path deviation compared to
predefined stopping strategies.

Several works have extended classical Augmented Proportional Navigation (APN) guidance
to include obstacle avoidance. For example, in [41], Weiss et al. showed that linear quadratic
optimal control, and techniques developed in [42], can produce guidance laws with this form
for intercepting maneuvering targets while avoiding a single obstacle. Kumar et al. [43] gen-
eralized this approach to handle multiple obstacles and imposed an intercept angle constraint.
Building on these ideas, Jha et al. [44] proposed a cooperative guidance law for n − on − n
engagements, extending APN by incorporating collision avoidance among pursuers while min-
imizing team effort, with closed-form results for the 2-on-2 case validated through simulations
and experiments.

1A clothoid is a type of curve whose rate of change of curvature varies linearly with distance.(MathWorks)
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In addition, [45] proposes a hybrid feedback law for spherical obstacle avoidance in Rn,
guaranteeing global asymptotic stabilization with robust switching between motion-to-goal and
obstacle-avoidance modes.

1.2.3 Obstacle Avoidance in Nature

Some research has been conducted about the way animals pursuit while avoiding obstacles in
their way. Fabian et al. [46] describe this kind of flight of the fly Holcocephala fusca as the
result of two competing navigational systems: PN and a simple obstacle avoidance algorithm.
This model, termed combined guidance, integrates obstacle avoidance and target interception by
activating the second component only when obstacles appear to increase in angular size (ϕ̇ > 0),
indicating potential collision. It assumes the pursuer visually fixates on the target, leading to a
limited field of view, and only considers obstacles within a certain angular range of the LOS to
the target. It is fascinating that similarities can be found here to the form of the guidance law
for multiple-obstacle avoidance obtained by Kumar et al. in [43]. How exactly the two guidance
systems, potentially operating at different time delays (∼30 ms for PN and ∼90 ms for obstacle
avoidance), are integrated to form a response is uncertain but worthy of interest.

Another example is reported in [47], Harris’ hawks continue to follow a mixed guidance
law (PNP) during obstructed pursuit. However, they appear to apply an additional discrete
steering adjustment, redirecting their flight path to maintain a clearance of approximately one
wing length from an upcoming obstacle, once they reach a specific distance threshold. In
addition, as shown in [48], big brown bats avoid obstacles during pursuit by actively steering
their sonar beam and aligning head direction with flight control. A different example is shown
in [49], where it is suggested the locusts initiate avoidance when the obstacle in the flight path
exceeds a retinal image size of around 10 degrees. Fajen et al. show in [50] that humans can
navigate and pursue targets while avoiding obstacles using real-time information-based control,
without relying on an internal map or complex path planning. Instead, movement emerges from
continuous local adjustments to goals and surrounding obstacles.

1.3 Conclusions from the Literature Review

This literature review reveals that many animal species employ guidance strategies that can
be modeled using classical geometric rules such as PP, DPP, and Parallel Navigation. While
some species rely on simple, consistent rules, some use mixed guidance laws or rely on other
strategies (such as the Motion Camouflage shown in [24]).

In addition, a wide range of geometric and control-based strategies for obstacle avoidance
during pursuit has been investigated, from deterministic capture methods and techniques to
optimal path planning. Extensions of classical guidance laws, particularly PN, have been devel-
oped to incorporate obstacle avoidance, both through optimal control frameworks and hybrid
switching strategies. Additionally, various species exhibit the ability to pursue targets while
avoiding obstacles, integrating real-time steering adjustments, such as the combined law for
obstacle avoidance observed in flies in [46]. Despite these insights, there remains much to dis-
cover about understanding and then formalizing and translating natural obstacle avoidance
mechanisms into practical applications.
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2 Mathematical Model
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Figure 1: Geometric description

This research investigates the guidance law employed by flies during obstacle avoidance, as
inspired by the findings in [46]. The engagement is analyzed in a two-dimensional plane, with
the obstacle modeled as a bar-shaped object. Both the interceptor and the target are represented
as point masses.

2.1 Kinematic Equations (Interceptor and Target)

The geometric description is shown in Figure (1). The positions of the interceptor and target
evolve based on their respective headings and speeds:

ẋM = vM cos(γM ) (1)

ẏM = vM sin(γM ) (2)

ẋT = vT cos(γT ) (3)

ẏT = vT sin(γT ) (4)

where x is the position, v is the velocity and γ is the heading angle.

The interceptor acceleration command aMc(t) is given by

aMc(t) = aPN(t) + aobs(t)1{ϕ̇(s)>0 ∀s≤t}, (5)

where aPN is the acceleration resulting from the pure pursuit (PN) guidance law, and aobs is the
acceleration component responsible for obstacle avoidance. The indicator function 1{ϕ̇(s)>0 ∀s≤t}
equals 1 as long as the rate of change of the obstacle’s angular size, ϕ̇, has never been negative
up to time t, and 0 afterwards.

In other words, the avoidance acceleration aobs is applied only while ϕ̇ > 0, which indicates
that the interceptor is approaching the obstacle. Once ϕ̇ becomes negative—meaning the in-
terceptor is moving away from the obstacle—aobs is set to zero, regardless of any subsequent
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increase in ϕ̇. This prevents singularities as the interceptor passes the obstacle and is consistent
with scenarios involving a single obstacle. Meanwhile, aPN remains active throughout, ensuring
that the interceptor continues to pursue the target.

The law was derived and tested in the context of flies avoiding a single obstacle, and there-
fore it cannot be assumed to represent the general avoidance behavior of flies in more complex
environments. In reality, flies are not limited to encountering only one obstacle, and their nav-
igation strategies are likely to involve more sophisticated mechanisms when multiple obstacles
are present.

2.2 Filtered (Lag) Dynamics

When implementing first-order dynamics, the acceleration does not instantaneously reach its
desired value, but rather converges to it exponentially. This behavior is characterized by the
system’s time constant, typically denoted as τ . A smaller time constant results in a faster
response, meaning the acceleration approaches its desired value more quickly. Conversely, a
larger time constant leads to slower convergence. This exponential convergence models physical
systems more realistically, particularly in the presence of actuator dynamics or response delays.
Single-lag dynamics is defined:

G(s) =
1

1 + τs
(6)

And in time domain:

aM (t) + τ
daM
dt

= aMc (7)

The heading rate of the interceptor is related to its lateral acceleration:

γ̇M =
aM
vM

(8)

When no dynamics is implemented, the acceleration command aMc is equal to the acceleration
in practice aM .

γ̇T =
aT
vT

(9)

We will assume constant velocity for the target, i.e. aT = 0 and therefore:

γ̇T = 0 (10)

Relative Geometry and LOS Rate

Let the distance between interceptor and target be:

r =
√
(xT − xM )2 + (yT − yM )2 (11)

the LOS angle λ and its rate of change is defined:

λ = arctan

(
yT − yM
xT − xM

)
(12)

λ̇ =
(xT − xM )(ẏT − ẏM )− (yT − yM )(ẋT − ẋM )

r2
(13)
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2.3 Guidance law

The guidance law for interception while avoiding an obstacle, as presented in [46], is as follows:

γ̇ = Nλ̇+ sign(ω)cϕ̇

While using (8) we get:
aMc = vM ·N · λ̇+ vM · sign(ω)cϕ̇ (14)

The terms of equation (14) are as follows. The first part is the well-known PN. The variable
ω represents the bearing of the obstacle relative to the pursuer’s heading, while sign(ω) indi-
cates the direction of the obstacle relative to the pursuer—specifically, whether it lies to the
left or right. The constant c is a dimensionless parameter that weights the avoidance behavior,
influencing how strongly the interceptor reacts to nearby obstacles. The symbol ϕ denotes the
angular width of the obstacle, and ϕ̇ refers to the rate of change of this angular size, which be-
comes positive when the obstacle appears to grow in the pursuer’s field of view. It characterizes
the rate at which the interceptor is approaching or moving away from the obstacle. The way to
find ϕ and ϕ̇ is shown in Appendix A.

Proportional Navigation:

aPN = N · vM · λ̇ (15)

Obstacle Avoidance:

aobs = c · vM · sign(w) · ϕ̇ (16)

2.4 Field of View (FOV) Condition

The guidance logic is activated only if the target is within the interceptor’s field of view. Let

δ = γM − λ (17)

where δ is the angle between r and vM . Then the guidance laws are applied only if:

|δ| ≤ 0.5 · FOV (18)

outside the FOV, aPN = 0. Similarly:

|ω| ≤ 0.5 · FOV (19)

where ω is the angle between the interceptor’s velocity and rMo, the position vector from the
origin to the horizontal midpoint of the obstacle.

The obstacle avoidance acceleration aobs is applied only when the obstacle lies within the
interceptor’s field of view. If the obstacle is outside the field of view, aobs is set to zero.

3 Simulation Results

The initial conditions are listed in Table 1, and the simulation scale is based on [17, 46]. Since
the guidance law is biologically inspired by insect flight, particularly that of flies, the parameters
are intentionally small.
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Table 1: Simulation parameters

Parameter Value

Target speed vT 320mms−1

Velocities ratio K = vM
vT

1.5

Target acceleration aT 0mms−2

Initial target heading γT 0 rad

PN constant N 3.6

Obstacle width (x) obswidth 25 mm

Obstacle height (y) obsheight 1 mm

The interceptor’s initial position varies across the different scenarios, while the obstacle size
remains constant. No acceleration limits are applied. It was observed that imposing a FOV
constraint had no noticeable impact on the results. Therefore, the simulations presented here
are conducted without an FOV limitation; however, the outcomes are comparable to those
obtained with a 130◦ FOV.

3.1 Simulation of the combined guidance law

The simulation was conducted using MATLAB, employing the Euler integration method with a
fixed time step of 1 ·10−3[s]. During the simulation, we examined different cases of obstacle eva-
sion including cases in which only PN was performed, resulting in a collision with the obstacle.
This was done for comparison purposes and to highlight the differences. Even in cases where a
collision with the obstacle occurred, we deliberately continued the simulation until interception.

3.1.1 Scenario 1- Different initial position

First, we will show the simulation results for different initial positions, with small values of c,
similar to those that are found to be used by flies in [46]. Figure (2) shows the interceptor’s
trajectory for different values of c, where the black horizontal bar denotes the obstacle. The
parameters of this scenario are shown in Table 2.

Table 2: Scenario 1 (a)- avoiding from the right side- configuration summary

Parameter Value

Interceptor initial position (xM0, yM0) (340mm,−300mm)

Initial interceptor heading γM 90◦

Initial target position (xT0, yT0) (0.1mm, 0.1mm)

Obstacle center (obsxmid
, obsymid

) (270,−70) mm

Interceptor dynamics None
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Figure 2: Interceptor trajectories with combined (flies) guidance law for scenario-1 (left: full
view, right: zoomed).

From Figure (2) we can see that when c = 0, the guidance law reduces to PN, in which the
interceptor does not avoid the obstacle. It can be seen that for larger values of c the avoidance
is more significant, as expected. The zoomed-in graph highlights that for each gain that was
chosen- the interceptor is avoiding the obstacle successfully.

Figure 3: Left: Angular obstacle size ϕ over time. Right: The angle ω between vM and rMo as
function of time

The plot of ϕ(t) on the left of Figure (3) illustrates the angular size of the obstacle as a
function of time. For the case of c = 0, as expected, the angle reaches its maximum value
of 180◦ when the interceptor collides with the obstacle. As the interceptor approaches the
obstacle, the angle increases, and as it moves away, the angle decreases accordingly. For c > 0,
the angle initially increases as the interceptor approaches the obstacle. However, when the
interceptor reaches the same y-coordinate as the obstacle, the angle decreases toward zero. It
then increases again briefly before finally decreasing as the interceptor moves further away. The
sign of ω indicates whether the interceptor is positioned to the left or right of the obstacle.
Throughout the flight, ω remains negative, which implies that the interceptor approaches from
the right side.
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Figure 4: Rate of change of the obstacle’s angular size ϕ̇ (left: full view, right: zoomed).

As expected, when the angle ϕ increases, its derivative ϕ̇ , presented in Figure (4) is positive.
Initially, ϕ̇ > 0, while toward the end of the trajectory, ϕ̇ < 0. Additionally, abrupt changes in
the derivative can be observed when the interceptor reaches the same height as the obstacle. It
can also be seen that the analytical and numerical calculations of the derivative closely coincide,
which confirms the accuracy of the computation.

Figure 5: Left: Interceptor acceleration aM over time. Right: Comparison between aPN and
aOBS components.

The right graph in Figure (5) illustrates how each acceleration component contributes to
the total commanded acceleration. For c = 0, as expected, aobs = 0. For positive values of c, we
observe that when ϕ̇ is negative, aobs remains zero. However, when ϕ̇ is positive, the obstacle
avoidance component becomes negative and increases in magnitude as ϕ̇ grows.

We will now change the interceptor’s initial position to see the avoidance from the other
side. The parameters are shown in Table 3.
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Table 3: Scenario 1 (b)- avoiding from the left side- configuration summary

Parameter Value

Interceptor initial position (xM0, yM0) (450mm,−300mm)

Initial interceptor heading γM 150 ◦

Initial target position (xT0, yT0) (0.1mm, 0.1mm)

Obstacle center (obsxmid
, obsymid

) (270,−70) mm

Interceptor dynamics None

Figure 6: Interceptor trajectories with combined (flies) guidance law (left: full view, right:
zoomed).

Figure (6) shows that for all values of c, the interceptor successfully avoids the obstacle,
with the evasion occurring this time from the left side. Moreover, the larger the value of c,
the more pronounced and significant the evasion becomes. In all cases, the interception itself is
successfully achieved.

Figure 7: Left: Angular obstacle size ϕ over time. Right: The angle ω between vM and rMo as
function of time

It can be seen in the graph on the right in Figure (7) that this time ω is positive, so the
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interceptor is avoiding the target from the left. In the left part we can see the obstacle angular
size as function of time which gives similar results as in the previous case.

Figure 8: Left: Interceptor acceleration aM over time. Right: Comparison between aPN and
aOBS components.

We note that this time, the acceleration component of the obstacle evasion, as shown in
Figure (8), is positive in accordance with the sign of ω, while the PN acceleration component
is negative, so the acceleration components still act in opposition to each other.

Figure 9: Rate of change of the obstacle’s angular size ϕ̇ (left: full view, right: zoomed).

In Figure (9), the derivative of ϕ as a function of time is shown. As expected, when the
angle increases, the derivative is positive, and vice versa. In addition, from the moment the
derivative becomes negative, the evasion acceleration drops to zero.

3.1.2 Scenario 2- The effect of the gain c

In this section, we compare the trajectories resulting from small (c = 0.2) and large (c = 5)
values of c to observe how the gain influences the interceptor’s path.
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Table 4: Scenario 2- configuration summary

Parameter Value

Interceptor initial position (xM0, yM0) (450mm,−300mm)

Initial interceptor heading γM 150 ◦

Initial target position (xT0, yT0) (0.1mm, 0.1mm)

Obstacle center (obsxmid
, obsymid

) (270,−70) mm

Interceptor dynamics None

Figure 10: Interceptor trajectories with combined (flies) guidance law (left: full view, right:
zoomed).

As shown in Figure (10), when the avoidance gain is too small (c = 0.2), it is insufficient
to steer the interceptor away from the obstacle, resulting in a collision. In contrast, with a
significantly larger gain of c = 5, the interceptor not only avoids the obstacle successfully but
does so with a considerable clearance distance.

Figure 11: Left: Angular obstacle size ϕ over time. Right: The angle ω between vM and rMo

as function of time

On the left of Figure (11) it is seen that for c = 0.2, which is too small to avoid, the
angular size of the obstacle resembles the one of c = 0. It is clear because when the interceptor
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goes through the obstacle the angular distance is maximal. For a large gain, such as c = 5,
the angular size changes only slightly. This behavior is expected, as the avoidance component
dominates the guidance response. On the right side of the graph, it can be seen that for these
initial conditions the interceptor will try to avoid from the left (ω > 0) for each gain.

Figure 12: Left: Interceptor acceleration aM over time. Right: Comparison between aPN and
aOBS components.

In Figure (12), the right-hand side shows that for a high avoidance gain c, the interceptor
exhibits a significant avoidance acceleration component aobs from the very beginning of the flight.
In contrast, for low values of c, the aobs component remains nearly zero until the interceptor
approaches the obstacle. As illustrated, when the gain is too small, even a sharp increase in
avoidance acceleration near the obstacle is insufficient to prevent a collision, as it occurs over
too short a time interval.

Figure 13: Rate of change of the obstacle’s angular size ϕ̇ (left: full view, right: zoomed).

In Figure (13), it is evident that for larger values of c, the variation in ϕ̇ is smaller, and the
value remains positive for a longer duration. Since the avoidance component is only active until
ϕ̇ becomes negative, we observe that for c = 0.2, it is activated only briefly.

18



3.1.3 Scenario 3- First order dynamics effects

Up to this point, no dynamics have been applied to the interceptor. Next, we examine the
effect of first-order dynamics on the interceptor’s behavior. The time constant of the dynamics
is significantly small due to the scale of the system, as it involves small flying objects with a
very short time-to-go.

Table 5: Scenario 3 (a) configuration summary

Parameter Value

Interceptor initial position (xM0, yM0) (340mm,−300mm)

Initial interceptor heading γM 90◦

Interceptor dynamics First-Order

Dynamics time constant τ 3 · 10−5 s

Figure 14: Interceptor trajectories with combined (flies) guidance law with dynamics (left: full
view, right: zoomed).

We will compare the trajectories with first-order dynamics in Figure (14) to the trajectories
with the same initial conditions without dynamics in Figure (2). First, for c = 0, we observe
that under PN guidance, the interceptor does not collide with the obstacle. This outcome
is due to the delay introduced by the interceptor’s dynamics and should not be considered a
general result. It is interesting that with dynamics, the interceptor is avoiding the obstacle from
different directions for c = 0.5, c = 0.9, while without dynamics — it has avoided the obstacle
from the right for any value of c. It might be caused from the delay that the dynamics cause,
the interceptor takes longer to respond, and the avoidance is delayed.
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Figure 15: Left: Angular obstacle size ϕ over time. Right: The angle ω between vM and rMo

as function of time

On the right of Figure (15), we observe that for c = 0.9, the angle ω is negative, indicating
that the interceptor avoids the obstacle from the right—unlike lower gain values, where avoid-
ance occurs from the left. On the left side of the graph, the angular size initially increases as
the interceptor approaches the obstacle, then drops sharply once it passes by, briefly increases
again, and finally decreases as it continues toward the target.

Figure 16: Left: Interceptor acceleration aM over time. Right: Comparison between aPN and
aOBS components.

On the right side of Figure (16), we observe that the sign of the avoidance component
matches the sign of ω, as expected. Additionally, for higher gain values, the avoidance accel-
eration is stronger, which in turn results in a larger PN component—since it must compensate
for the significant deviation from the trajectory toward the target. Consequently, on the left
side of the graph, we observe that higher gain values result in larger acceleration peaks.
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Figure 17: Rate of change of the obstacle’s angular size ϕ̇ (left: full view, right: zoomed).

In Figure (17), ϕ̇ is shown as a function of time. As expected, for the case where the evasion
distance is the smallest (c = 0.9), the changes in the derivative are the most abrupt. This is
because the angular distance to the obstacle changes most sharply when approaching it, reach-
ing a maximum and then decreasing significantly when moving away.

Now we will change the initial position of the interceptor.

Table 6: Scenario 3 (b)- configuration summary

Parameter Value

Interceptor initial position (xM0, yM0) (450mm,−300mm)

Initial interceptor heading γM 150◦

Interceptor dynamics First-Order

Dynamics time constant τ 3 · 10−5 s

This scenario is simulated using the same initial conditions as Scenario 1(b) and will be
compared to it.

Figure 18: Interceptor trajectories with combined (flies) guidance law with dynamics (left: full
view, right: zoomed).

In Scenario 1(b), we observed that the evasion occurred from the left side for all values of
the gain. This time, as shown in Figure (18), only for the largest gain does the evasion remain
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on the left, which is reasonable since the evasion started with larger acceleration component and
the delay caused by the dynamics did not have enough time to affect the side of the evasion.
For lower gains, the evasion is not significant, so the interceptor does not react strongly to the
obstacle. When there is a delay, it takes time for the interceptor to ”realize” the presence of
the obstacle, and it therefore begins along the shortest path to the target, evading from the
opposite side.

Figure 19: Left: Angular obstacle size ϕ over time. Right: The angle ω between vM and rMo

as function of time

In Figure (19), it can be seen that for evasion from the left with c = 0.9, ω is positive, while
for evasion from the right, ω is negative, as expected. In the graph of the angular distance
to the obstacle, a minimum is reached in all cases when the interceptor passes at the same y
position as the obstacle.

Figure 20: Left: Interceptor acceleration aM over time. Right: Comparison between aPN and
aOBS components.

In Figure (20) the change is particularly noticeable for c = 0.5, where this time the evasion
component is very small. Due to the delay, the interceptor almost performs PN alone without
significant evasion, so its graph resembles that of c = 0 more than that of c = 0.9.
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Figure 21: Rate of change of the obstacle’s angular size ϕ̇ (left: full view, right: zoomed).

In Figure (21), we can observe the difference in the evasion trajectories corresponding to
different gains. For c = 0 and c = 0.5, when the interceptor evades from the right, it passes at
the height of the obstacle (reaching it with a negative ϕ̇) earlier, which is reasonable since it
follows the shortest path to the target. In contrast, for c = 0.9, the interceptor takes a longer
path, passing on the opposite side, so the peak in the derivative occurs later.

3.2 Comparison with a different avoidance guidance law

In this part, we will show a comparison between the combined guidance law used by flies to
an optimal guidance law obtained by Kumar et al. in [43]. The proposed guidance law is
an intercept angle guidance algorithm that minimizes control effort while ensuring a specified
impact angle and point obstacle avoidance using bias-augmented proportional navigation. The
guidance law obtained, which will be referred to as ’Kumar law’, is as follows:

aMN = 6Vcλ̇+ (3 +
v′M
v′T

)aTN + (
2v′M
tgo

)(γM + γT − γD)− aMNo (20)

while γD is represents the desired interception angle. In addition, aMN , aTN are the ac-
celerations of the interceptor and target perpendicular to the initial target–interceptor LOS
accordingly, and are defined:

aMN = aMcos(γM − λo) (21)

aTN = aT cos(γT + λo) (22)

and v′M , v′T are defined:
v′T = vT cos(γTo + λ0) (23)

v′M = vMcos(γMo − λ0) (24)

The signs denoted with Xo represent the initial value of X. Initial values are crucial in the guid-
ance law described by Kumar et al. because the law is derived within a linearized engagement
framework that assumes small deviations from the collision course at the outset. This means
the initial line-of-sight (LOS) angle, initial missile and target positions, and initial velocities
serve as baseline references for the guidance computation. The time to go is defined:

tgo =
r

Vc
(25)

The term aMNo is defined in the case of a single obstacle:

aMNo =
−3tgo
tgo2∆1

ΨR1(Z1c) (26)
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while R1 is the desired minimum distance from the obstacle and ∆1 is defined:

∆1 = tf − tf1 = tgo − tgo1 (27)

and
tgo1 =

r1o
Vm

(28)

r1o detonates the distance between the interceptor and the obstacle. The law is found for a
point obstacle, and therefore, originally r1o represents the distance to a fixed point. In this
research, we investigate a case in which the obstacle is bar-shaped, so we use r1o as the minimal
distance between the bar and the interceptor in each moment.
The function ψR(p) is defined:

ψR(p) =


0 if |p| ≥ R

p−R if 0 ≤ p ≤ R

p+R if −R < p < 0

(29)

And Z1c is defined:

Z1c = t2go1

[
vM θ̇0 +

(
1 +

2∆1

tgo

)
vrθ̇ − aTN

{
1

2
+

∆1

tgo

(
1 +

v′M
v′T

)}]
−
v′M∆1

t2go
(γM+γT−γD) (30)

3.2.1 Scenario 4

The trajectories of the interceptor towards the interceptor while avoiding a single obstacle is
shown in Figure (22) for both guidance laws. The parameters are described in Table 7. During
all comparison scenarios we will use interception angle γD = 20◦.

Table 7: Scenario 4 configuration summary

Parameter Value

Interceptor initial position (xM0, yM0) (240mm, 0mm)

Initial interceptor heading γM 90◦

Initial target position (xT0, yT0) (0.1mm, 300mm)

Obstacle center (obsxmid
, obsymid

) (215, 225) mm

Interceptor dynamics None

Figure 22: Trajectories for both guidance laws (left: full view, right: zoomed).
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Next, we will compare the acceleration command for both laws in Figure (23).

Figure 23: Acceleration command aMc for both guidance laws

The oscillation observed in the acceleration of the optimal (Kumar) guidance law may be
attributed to the breakdown of linearization assumptions, which cannot handle sharp maneuvers
or abrupt changes in path geometry. The law does not incorporate any control smoothing or
damping, so when the missile’s calculated avoidance acceleration switches rapidly—such as
when it passes near the obstacle edge—large and sudden control signals result. Additionally,
divisions by small values or logic discontinuities in the avoidance computation amplify these
swings, especially in a simulated environment without actuator limits or filters.

3.2.2 Scenario 5

In this section, we will change the initial conditions and compare both guidance laws again for
larger values of the gain c of 1 and 5. The parameters are described in Table 8.

Table 8: Scenario 5 configuration summary

Parameter Value

Interceptor initial position (xM0, yM0) (260mm, 0mm)

Initial interceptor heading γM 110◦

Initial target position (xT0, yT0) (0.1mm, 300mm)

Obstacle center (obsxmid
, obsymid

) (215, 225) mm

Interceptor dynamics None
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Figure 24: Interceptor and Target Trajectories for both guidance laws- different values of c-
scenario 3.

In Figure (24), it can be observed that as the gain c increases, the evasion distance becomes
larger, approaching that of Kumar law. For c = 5, a similarity can be seen between the evasion
under the combined law and the evasion under Kumar law.

Figure 25: Interceptor Lateral Acceleration for both guidance laws- different values of c

It can be seen in Figure (25) that for this specific case of evasion from a single-bar obstacle
under the combined law, where the evasion distance is almost identical to that of Kumar law,
the required acceleration is much smaller.

3.2.3 Conclusions from the comparison

In this part of the research, a comparison is made between the obstacle avoidance guidance
law inspired by flies and the optimal guidance law proposed in [43]. It is observed that for
the fly-inspired law, low values of the gain parameter c bring to a smaller avoiding distance
from the obstacle. Increasing the gain improves obstacle avoidance capability. In contrast,
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the guidance law developed by Kumar et al. performs reliably with a large avoiding distance
across various initial conditions without requiring gain adjustments, while maintaining stable
trajectories. Moreover, the combined law is derived for the motion of a fly toward a target while
evading a single obstacle, and its implementation is therefore limited to a single-bar obstacle. As
a result, it is restricted in more general scenarios, unlike the optimal law, which can be applied
even when multiple point obstacles are present. Overall, the optimal guidance law exhibits
better performance (aside from the chattering) but requires more information in order to be
used, which may be one reason why flies do not employ it.

4 Conclusions

This research investigates the combined guidance law for interception while avoiding an obstacle,
which is found by Fabian et al. in [46]. The law is inspired by a miniature robber fly, and
combines PN with an obstacle avoidance component. The avoidance behavior is proportional
to the rate of change of the angular size of the obstacle. Differently from [46], in this research
we focus on trajectories in which for PN - the interceptor is passing through the obstacle.

The implementation and simulation of this law revealed a clear dependence on the gain
parameter c: when c is too low, the PN term dominates and the interceptor fails to avoid
the obstacle; for sufficiently high values, the avoidance behavior becomes effective, resulting
in significant clearance. However, the structure of the law—being a linear combination of two
competing objectives—presents a challenge: the optimal value of c is not fixed and must be
tuned carefully for each scenario, particularly under varying initial conditions.

When first-order dynamics were introduced to better represent physical limitations, the
simulations showed delayed responses and smaller avoidance distances, with the interceptor
sometimes steering around the obstacle from different sides. Additionally, while a FOV con-
straint was tested, it had minimal effect in this context, likely due to the large FOV that was
chosen, the short engagement time and the small spatial scale of the scenario.

To benchmark the combined law, we compared it against an optimal avoidance strategy
designed for a point obstacle, found by Kumar et al. in [43]. The optimal law yielded con-
sistent interception and obstacle clearance but at the cost of high-frequency acceleration os-
cillations—likely due to the mismatch between the rectangular shape of the obstacle and the
point-based assumptions in the optimal model. For comparison, we evaluated the Kumar avoid-
ance law, which employs a geometric construction based on the angle between the line-of-sight
and the tangential contact point on the obstacle boundary. Although Kumar’s law effectively
produces avoidance maneuvers, it suffers from divergence in the commanded acceleration. In
contrast, the combined law maintains bounded accelerations and offers controllable trade-offs
between interception aggressiveness and avoidance strength, though it requires careful param-
eter tuning.

These findings support and extend insights from the literature. Many animals, as reviewed,
employ simple guidance laws—such as Proportional Navigation—and some exhibit hybrid or
mixed guidance laws, adjusting in real time to obstacles, as seen in flies in [46]. The simulations
here affirm that such biologically inspired laws can achieve effective obstacle avoidance, but
also highlight the trade-offs between simplicity, robustness, and dynamic responsiveness. While
nature-inspired models offer valuable frameworks, their practical application in engineered sys-
tems requires careful parameter tuning and consideration of dynamic effects.

5 Possible Future Work

Future work could focus on determining the optimal value of the gain parameter c in the com-
bined guidance law presented in [46], particularly under varying initial conditions, to enhance
performance and robustness. In addition, implementing the combined guidance law on robotic
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platforms would allow for experimental validation and exploration of real-world applications.
Further research might also examine the geometric rule of the avoidance maneuver performed
when intercepting a target while avoiding bar-shaped obstacles. Extending the law—originally
designed for point-like obstacles—to accommodate extended or non-point obstacles, as was done
with Kumar’s guidance law, represents another relevant avenue. Another interesting direction
can be to implement the combined law on an obstacle with a different shape than a bar.

In addition, finding other options to implement the limited field of view of the interceptor
is a possible direction. Finally, comparing the trajectories generated by the flies guidance law
with optimal paths computed using optimization tools such as FALCON could provide insight
into the law’s efficiency and how closely it approximates optimal behavior.
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robots based on bernstein–bézier curves. Robotics and Autonomous systems, 58(1):1–9,
2010.

[35] KG Jolly, R Sreerama Kumar, and R Vijayakumar. A bezier curve based path planning in
a multi-agent robot soccer system without violating the acceleration limits. Robotics and
Autonomous Systems, 57(1):23–33, 2009.

[36] Saurabh Upadhyay and Ashwini Ratnoo. Continuous-curvature path planning with obstacle
avoidance using four parameter logistic curves. IEEE Robotics and Automation Letters,
1(2):609–616, 2016.

[37] Tomas Berglund, Andrej Brodnik, H̊akan Jonsson, Mats Staffanson, and Inge Soderkvist.
Planning smooth and obstacle-avoiding b-spline paths for autonomous mining vehicles.
IEEE transactions on automation science and engineering, 7(1):167–172, 2009.

[38] Kyle Klein and Subhash Suri. Catch me if you can: Pursuit and capture in polygonal envi-
ronments with obstacles. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 26, pages 2010–2016, 2012.

[39] Su-Cheol Han, Hyochoong Bang, and Chang-Sun Yoo. Proportional navigation-based col-
lision avoidance for uavs. International Journal of Control, Automation and Systems,
7:553–565, 2009.

[40] Paul M Zapotezny-Anderson and Jason J Ford. Optimal-stopping control for airborne
collision avoidance and return-to-course flight. In 2011 Australian Control Conference,
pages 155–160. IEEE, 2011.

[41] Martin Weiss and Tal Shima. Linear quadratic optimal control-based missile guidance
law with obstacle avoidance. IEEE Transactions on Aerospace and Electronic Systems,
55(1):205–214, 2018.

[42] Martin Weiss and Tal Shima. Minimum effort pursuit/evasion guidance with specified miss
distance. Journal of Guidance, Control, and Dynamics, 39(5):1069–1079, 2016.

[43] Shashi Ranjan Kumar, Martin Weiss, and Tal Shima. Minimum-effort intercept angle
guidance with multiple-obstacle avoidance. Journal of Guidance, Control, and Dynamics,
41(6):1355–1369, 2018.

[44] Bhargav Jha, Ronny Tsalik, Martin Weiss, and Tal Shima. Cooperative guidance and
collision avoidance for multiple pursuers. Journal of Guidance, Control, and Dynamics,
42(7):1506–1518, 2019.

31



[45] Soulaimane Berkane, Andrea Bisoffi, and Dimos V Dimarogonas. A hybrid controller for
obstacle avoidance in an n-dimensional euclidean space. In 2019 18th European Control
Conference (ECC), pages 764–769. IEEE, 2019.

[46] Samuel T Fabian, Mary E Sumner, Trevor J Wardill, and Paloma T Gonzalez-Bellido.
Avoiding obstacles while intercepting a moving target: a miniature fly’s solution. Journal
of Experimental Biology, 225(4):jeb243568, 2022.

[47] Caroline H Brighton, James A Kempton, Lydia A France, Marco KleinHeerenbrink, Sof́ıa
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6 Appendix A- finding ϕ and its derivative

In this section, the definition of the angles will be shown, as well as their derivative in time.
The obstacle is a static rectangular bar, as described in Figure (26), in which:

• (xL, yL) represents the x, y-position of the lower left vertex of the rectangle

• (xR, yR) represents the x, y-position of the lower right vertex of the rectangle

• (xmid, ymid) is the midpoint of the lower (horizontal) side of the rectangle

• (xM , yM ) represents the location of the interceptor

Y

X

(xL, yL) (xR, yR)

(xM , yM )

φ

rMRrML

Obstacle

Figure 26: Obstacle description

Finding ϕ

We will describe the angle ϕ with the dot product between r⃗MR and r⃗ML, while

r⃗MR = (xR − xM , yR − yM , 0) (31)

r⃗ML = (xL − xM , yL − yM , 0) (32)

Since the obstacle is horizontal, yR = yL. so we will denote both by yo. We will also denote:

dxR = xR − xM (33)

dxL = xL − xM (34)

dy = y0 − yM (35)

rMR =
√

(xR − xM )2 + (yo − yM )2 =
√
dx2R + dy2 (36)

rML =
√

(xL − xM )2 + (yL − yM )2 =
√
dx2L + dy2 (37)

cos(ϕ) =
r⃗MR · r⃗ML

rMR rML
(38)
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sin(ϕ) =
|r⃗MR × r⃗ML|
rMR rML

(39)

And of course:

tan(ϕ) =
sin(ϕ)

cos(ϕ)
(40)

And therefore:

tan(ϕ) =
|r⃗MR × r⃗ML|
r⃗MR · r⃗ML

(41)

ϕ = arctan

(
|r⃗MR × r⃗ML|
r⃗MR · r⃗ML

)
(42)

|r⃗MR × r⃗ML| = dy(dxR − dxL) (43)

r⃗MR · r⃗ML = dxRdxL + dy2 (44)

Finally,

ϕ =

∣∣∣∣arctan(dy · (dxR − dxL)

dxR · dxL + dy2

)∣∣∣∣ (45)

In practice, we are interested in the magnitude of the angle, which is always a non-negative
quantity. Therefore, we take the absolute value of the arctangent expression to ensure that
ϕ ≥ 0.

ϕ =


arctan

(
dy·(dxR−dxL)
dxR·dxL+dy2

)
, if ϕ ≥ 0

− arctan
(
dy·(dxR−dxL)
dxR·dxL+dy2

)
, if ϕ < 0

(46)

Finding the derivative of ϕ

To find the derivative in time of the angle ϕ we will use that:

˙dxR = ˙dxL = −vMx (47)

ḋy = −vMy (48)

We begin with the expression for the angle ϕ:

ϕ = arctan

(
dy · (dxR − dxL)

dxR · dxL + dy2

)
Let:

f =
dy · (dxR − dxL)

dxR · dxL + dy2
⇒ ϕ = arctan(f) (49)

Then, by the chain rule:

ϕ̇ =
1

1 + f2
· ḟ (50)

Define the numerator and denominator of f :

N = dy · (dxR − dxL), D = dxR · dxL + dy2 ⇒ f =
N

D
(51)

Then:

ḟ =
Ṅ ·D −N · Ḋ

D2
(52)

We compute Ṅ and Ḋ:
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1. Compute Ṅ :

Ṅ =
d

dt
[dy · (dxR − dxL)] = ḋy · (dxR − dxL) + dy · (ḋxR − ḋxL) (53)

Given:
ḋxR = ḋxL = −vMx, ḋy = −vMy (54)

So:
ḋxR − ḋxL = −vMx − (−vMx) = 0 ⇒ Ṅ = −vMy · (dxR − dxL) (55)

2. Compute Ḋ:

Ḋ =
d

dt
(dxR · dxL + dy2) = ḋxR · dxL + dxR · ḋxL + 2 · dy · ḋy (56)

Substituting:

Ḋ = (−vMx) · dxL + dxR · (−vMx) + 2 · dy · (−vMy) = −vMx(dxL + dxR)− 2dyvMy (57)

3. Plug into ḟ :

ḟ =
[−vMy(dxR − dxL)] · (dxRdxL + dy2)− [dy(dxR − dxL)] · [−vMx(dxL + dxR) + (−2dyvMy)]

(dxRdxL + dy2)2

(58)
4. Finally, plug into ϕ̇:

ϕ̇ =

{
1

1+f2 · ḟ , if ϕ ≥ 0

− 1
1+f2 · ḟ , if ϕ < 0

(59)

This accounts for the time derivative of the absolute angle ϕ = | arctan(f)|, and this is the
complete expression for the time derivative of the angle ϕ.

35


	Literature Review
	Interception Strategies in Nature
	Geometric Rules
	Guidance Laws

	Obstacle Avoidance During Pursuit
	Geometric Rules
	Guidance Laws
	Obstacle Avoidance in Nature

	Conclusions from the Literature Review

	Mathematical Model
	Kinematic Equations (Interceptor and Target)
	Filtered (Lag) Dynamics
	Guidance law
	Field of View (FOV) Condition

	Simulation Results
	Simulation of the combined guidance law
	Scenario 1- Different initial position
	Scenario 2- The effect of the gain c
	Scenario 3- First order dynamics effects

	Comparison with a different avoidance guidance law
	Scenario 4 
	Scenario 5
	Conclusions from the comparison


	Conclusions
	Possible Future Work
	Appendix A- finding phi and its derivative

