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1 Introduction

Control laws often require gain tuning. In Ref. [1], a new stationkeeping control law

for geostationary satellites was designed, based on eccentricity and angular momen-

tum matching. This control law includes control gains and control parameters that

can be manipulated in order to minimize fuel consumption while adhering to the

latitude and longitude constraints.

In this research paper, the control law from Ref. [1] is adapted for continuous,

discrete, and constant magnitude thrust, and the control parameters are separated

into groups. Optimal control gains are identified for each thrusting method, demon-

strating a reduction in ∆V compared to previous studies, while ensuring the satellite

is still within the desired area in space. The discrete thrust method achieves the best

performance, with a ∆V of 55.5 m/s/year.

2 Control Parameters

The control law designed in Ref. [1] and reconstructed in my first research paper [2]

is given by

u = −[kh∆hTr̃+
ke
µ
eT

(
ṽr̃− h̃

)
]T (1)

where e = [ex, ey, ez]
T is the eccentricity vector, h = [hx, hy, hz]

T is the angular

momentum vector, r = [x, y, z]T , v = [x′ − ωy, y′ + ωx, z′]T are the position and

velocity vectors of the satellite in the ECEF system, µ is the gravity constant of

Earth, and kh, ke are the control gains. In addition,

∆h = h− hd (2)

where hd is the desired angular momentum and is determined by

hd = [0, 0, R̂d

2
ω]T = [0, 0, (R + kλ (λ− λd − λb))

2 ω]T (3)

R̂d = R + kλ (λ− λd − λb) (4)
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where R = 42164.16 km is the geostationary radius, kλ is the longitude control gain,

λ is the satellite real longitude, λd is the desired sub-satellite longitude, and λb is a

station-dependent bias.

There are four control gains and parameters that can be change in order to find

optimized values under constrains – kh, ke, kλ, λb, where we can split them into two

groups – long timescale (kh, ke) and short timescale (kλ, λb). This paper will focus

on the long-timescale parameters; therefore, we will set kλ, λb to be the same as in

the last study, while our optimized variables are kh, ke.

In addition, the control law was modified for three different thrust implementa-

tions: Continuous thrust, subject to the maximum thrust acceleration u0,

uC =

u ∥u∥ ≤ u0

0 ∥u∥ > u0

(5)

Discrete thrust, subject to chosen acceleration thresholds (σx,y,z), as described in

Ref. [3],

(ux,y,z)D =

σx,y,zsign(ux,y,z) |ux,y,z| ≥ σx,y,z

0 |ux,y,z| < σx,y,z

(6)

where
√
σ2
x + σ2

y + σ2
z = u0, and constant–magnitude thrust,

uM =

u0
u

∥u∥
∥u∥ ≥ u0

0 ∥u∥ < u0

(7)

The maximal thrust acceleration is u0 = 4.5351× 10−9 km/s2 which corresponds to

10mN thrust of thrust for a 2205-kg satellite.

Note that for the discrete thrust method, we have two additional control param-

eters, because we can choose the ratio between the three thresholds; so, for example,

we can choose σx, σz as optimization parameters while σy will be determined by the
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maximal acceleration u0.

In the case of constant-magnitude thrust, the thruster can be separated from the

satellite by using mechanical gimbals. Thus, the thruster can be directed to any

direction, obtaining thrust-steering independently of the satellite body orientation

[4].

3 Optimization

In order to find the optimal kh, ke for the control law, we define the following opti-

mization problem.

We wish to minimize the total velocity change during one year,

min(∆V )
kh,ke

= min

∫ tf

0

∥u∥dt (8)

The operational constraints are defined in terms of latitude (δ) and longitude (λ)

limits. Therefore, the optimization problem becomes

min(∆V )
kh,ke

= min

∫ tf

0

∥u∥dt (9)

s.t.

δ2 −∆2
s ≤ 0

(λ− λd)
2 −∆2

s ≤ 0
(10)

where λd = 10◦,∆s = 0.05◦.
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3.1 Optimal Continuous Thrust

For the optimization of the control law using continuous thrust the optimization

problem is

min(∆V )
kh,ke

= min

∫ tf

0

∥uC∥dt (11)

s.t.

δ2 −∆2
s ≤ 0

(λ− λd)
2 −∆2

s ≤ 0
(12)

In this research, the other control gains were kept as in Ref. [1], namely kλ =

3200km2/rad, λb = −0.056◦, and the initial conditions for the simulation were a de-

viation of 2 km in each ECEF axis from the desired station, and the correct velocity

of the desired orbit.

Using MATLAB’s fmincon function, we were able to search for the optimal set of

control gains [kh, ke] and found that for kh = 9.3926×10−161/(km2 s), ke = 5.48482×
10−6km2/s3 the cost is ∆V = 62.795 m/s/year, thus saving 6.8 m/s/year compared to

the results in Ref. [1]. While maintaining the satellite with the safety area in space,

as shown in Fig. 1, with ∆λ = ±0.0083◦,∆δ = ±0.047◦, which is less less stringent

than in Ref. [1]. Using these gains the acceleration did not reach saturation at any

point of time, as shown in Fig. 2.
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Figure 1: Ground track For optimal continuous thrust

Figure 2: Thrust acceleration components and total acceleration for continuous
thrust
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3.2 Optimal Discrete Thrust

For the optimization of the control law using discrete thrust our optimization problem

will be:

min(∆V )
kh,ke

= min

∫ tf

0

∥uD∥dt (13)

s.t.

δ2 −∆2
s ≤ 0

(λ− λd)
2 −∆2

s ≤ 0
(14)

In this research, the other control gains kept as in Ref. [1], namely kλ = 3200km2/rad, λb =

−0.022◦, and the initial conditions for the simulation were a deviation of 2 km in

each ECEF axis from the desired station, and the correct velocity of the desired

orbit. In addition, the thresholds were taken as in Ref. [1] for 10mN thrusters:

σx = 6.62× 10−10km/s2, σy = 1.1× 10−9km/s2, σz = 4.14× 10−9km/s2.

Using MATLAB’s fmincon function, we were able to search for the ideal set of con-

trol gains [kh, ke] and found that for kh = 1.6407 × 10−15 1/(km2 s), ke = 6.8936 ×
10−6 km2/s3 the cost is ∆V = 55.55 m/s/year, thus saving 7.7 m/s/year compared

to Ref. [1] results for the same case.

While maintaining the satellite with the safety area in space, as shown in Fig. 3,

with ∆λ = ±0.0176◦,∆δ = ±0.0436◦, which is less stringent on the latitude and

longitude compare to the results of Ref. [1] for the same case.

Using these gains, there was no use of the x-axis component of the control ac-

celeration, as shown in Fig. 4, similar to Ref. [1] results. In addition we found the

duty cycle of the acceleration in y-axis to be 11.5% and in z-axis to be 46.6% with

a repetitive pattern as can be seen in Fig. 5.

Another attempt was done to try and find an optimal combination of long-

timescale gains and thrust thresholds. The results got the thresholds used in Ref. [1];

the optimal combination that was found is σx = 6.62 × 10−10 km/s2, σy = 1.1 ×
10−9 km/s2, σz = 4.14 × 10−9 km/s2, kh = 1.6407 × 10−15 1/(km2 s), ke = 6.8936 ×
10−6 km2/s3.
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Figure 3: Ground track for optimal discrete thrust
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Figure 4: Thrust acceleration components and total acceleration for discrete thrust
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Figure 5: Magnified view of z-axis discrete thrust acceleration
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3.3 Optimal Constant Magnitude Thrust

For the optimization of the control law using Constant Magnitude thrust our opti-

mization problem will be:

min(∆V )
kh,ke

= min

∫ tf

0

∥uM∥dt (15)

s.t.

δ2 −∆2
s ≤ 0

(λ− λd)
2 −∆2

s ≤ 0
(16)

In this research, the other control gains kept as in Ref. [1], namely kλ = 3200km2/rad, λb =

−0.019◦, and the initial conditions for the simulation were a deviation of 2 km in

each ECEF axis from the desired station, and the correct velocity of the desired

orbit.

Using MATLAB’s fminconfunction, we were able to search for the ideal set of

control gains [kh, ke] and found that for kh = 2.7147× 10−15 1/(km2 s), ke = 1.043×
10−5 ke the cost is ∆V = 56.0879 m/s/year, thus saving 2.7121 m/s/year compared

to Ref. [1].

While maintaining the satellite with the safety area in space, as shown in Fig. 6,

with ∆λ = ±0.0437◦,∆δ = ±0.0288◦, which is less compact on the latitude and the

longitude than in Ref. [1] results for the same case.

The control acceleration use is shown in Fig. 7, where the duty cycle for the

acceleration on each axis is 46.7%, similar to the duty cycle of z-axis for the discrete

thrust method.
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Figure 6: Ground Track For Optimal Constant Magnitude Thrust
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Figure 7: Thrust Components And Total For Constant Magnitude Thrust
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4 Result Summary

Using optimization, we were able to find control gains that produced better results

in terms of the yearly ∆V than the results shown in Ref. [1], while still keeping the

satellite within its original slot in space, although with larger latitude and longitude

oscillations.

The optimization worked for three different kinds of thrust implementations –

continuous thrust, discrete thrust and constant-magnitude thrust.

The best results were found for the discrete thrust method, as can be seen in

Table 1, which managed to keep the satellite within its geostationary slot by using

only ∆V = 55.55 m/s/year, thus saving another 7.7 m/s/year compared to Ref. [1],

with no use of thrust acceleration in the x-axis and a “bang-bang”-type acceleration

in the z-axis with a duty cycle of 46.6%.

The method that was the least optimal is the continuous thrust, which used

∆V = 62.795 m/s/year in order to keep the satellite within its GEO.

Table 1: Results Summary
Thrust Method ∆V kh ke Lon x Lat Improvement

[m/s/year] [1/(km2 s)] [km2/s3] (◦) [m/s/year]
Continuous 62.795 9.39× 10−16 5.48× 10−6 ±0.008×±0.047 6.8
Discrete 55.55 1.64× 10−15 6.89× 10−6 ±0.018×±0.044 7.7
Constant Magnitude 56.088 2.71× 10−15 1.04× 10−5 ±0.044×±0.029 2.71

5 Future Research

• During the simulation to find the optimal gains, there was a high sensitivity to

the initial guess; therefore, future research will focus on Genetic Algorithm in

an attempt to find even more accurate optimal gains.

• This paper focused on the long-timescale gains; future research will try to find

an optimal short-timescale gains as well.

12



• Find the optimal combination for control gains and discrete thrust thresholds,

while ensuring the stability of the system.

• Modify the control law for a system of collocated satellites.

References

[1] P. Gurfil, “Milankovitch-lyapunov geostationary satellite stationkeeping,”

Journal Of Guidance, Control, And Dynamics, 2024. [Online]. Available:

https://doi.org/10.2514/1.G008263

[2] D. Katz and P. Gurfil, “Geostationary satellite stationkeeping using milankovitch-

lyapunov,” Department of Aerospace Engineering, Technion – Israel Institute

of Technology, Research Project, August 2024. [Online]. Available: https:

//aerospace.technion.ac.il/wp-content/uploads/2024/08/Project-Dor-Katz.pdf

[3] M. M. Guelman, “Geostationary satellites autonomous closed loop station

keeping,” Acta Astronautica, vol. 97, pp. 9–15, 2014. [Online]. Available:

https://doi.org/10.1016/j.actaastro.2013.12.009

[4] H. Luebberstedt, J. Bastante, M. Lau, S. Beekmans, M. Tata, and A. Schneider,

“Electra-full electric propulsion satellite platform for geo missions,” Tech. rep.,

OHB Electra, 2018.

13

https://doi.org/10.2514/1.G008263
https://aerospace.technion.ac.il/wp-content/uploads/2024/08/Project-Dor-Katz.pdf
https://aerospace.technion.ac.il/wp-content/uploads/2024/08/Project-Dor-Katz.pdf
https://doi.org/10.1016/j.actaastro.2013.12.009

	Introduction
	Control Parameters
	Optimization
	Optimal Continuous Thrust
	Optimal Discrete Thrust
	Optimal Constant Magnitude Thrust

	Result Summary
	Future Research

