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Introduction 
The project centers on developing an advanced control design algorithm for Hypersonic Gliding Vehicles 
(HGV) which typically have nonlinear coupled dynamics and includes significant uncertainties, in 
cooperation with Israel Aerospace Industries (IAI). This collaboration aims to address challenges in stability 
and performance across various operating points within the flight envelope. The algorithm's primary goal is 
to maintain both stability and optimal performance across multiple defined operating points within the 
flight envelope. This dual requirement is crucial for achieving robust, reliable control that adapts to varying 
conditions. Before delving into the control design, a preliminary analysis of the model’s behavior and 
properties is essential. This stage includes characterizing the HGV’s dynamic modes and understanding how 
the uncertainty model impacts the system's behavior. Such an analysis provides critical insights into the 
system’s stability boundaries and performance limitations under uncertain conditions. To support this 
characterization, linearizing the model around specific operating points is helpful. At this stage, we ignore 
the coupling between the longitudinal and lateral dynamics. However, in later stages, it will be necessary to 
integrate these models to fully understand the system’s behavior. 
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Longitudinal Model 
The longitudinal nonlinear ordinary differential equations (ODE) system can be expressed in the form of 
𝑥̇̅𝑥 = 𝑓𝑓(𝑥̅𝑥,𝑢𝑢), where 𝑥𝑥 represents the state vector and 𝑢𝑢 represents the control inputs. In this form, 𝑓𝑓(𝑥̅𝑥,𝑢𝑢) 
encapsulates the nonlinear dynamics governing the longitudinal behavior of the system. The system is (see 
reference [1]) 

 𝑥̅𝑥 = [𝕍𝕍 𝛼𝛼 𝜃𝜃 𝑄𝑄]𝑇𝑇 ;   𝑢𝑢 = 𝛿𝛿𝑒𝑒 
 

𝑥̇̅𝑥 = �

𝕍̇𝕍
𝛼̇𝛼
𝜃̇𝜃
𝑄̇𝑄

� =
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⎥
⎤

 

(1) 

 

 
 

where the aerodynamic forces and moments are defined by 

𝐷𝐷 =
1
2
𝜌𝜌𝜌𝜌𝕍𝕍2𝐶𝐶𝐷𝐷(𝛼𝛼, 𝛿𝛿𝑒𝑒)     ;            𝐶𝐶𝐷𝐷 = −𝐶𝐶𝑧𝑧(𝛼𝛼, 𝛿𝛿𝑒𝑒) sin(𝛼𝛼) − 𝐶𝐶𝑥𝑥(𝛼𝛼, 𝛿𝛿𝑒𝑒) cos(𝛼𝛼) 

𝐿𝐿 =
1
2
𝜌𝜌𝜌𝜌𝕍𝕍2𝐶𝐶𝐿𝐿(𝛼𝛼, 𝛿𝛿𝑒𝑒)      ;            𝐶𝐶𝐿𝐿 = −𝐶𝐶𝑧𝑧(𝛼𝛼, 𝛿𝛿𝑒𝑒) cos(𝛼𝛼) + 𝐶𝐶𝑥𝑥(𝛼𝛼, 𝛿𝛿𝑒𝑒) sin(𝛼𝛼) 

𝑀𝑀 =
1
2
𝜌𝜌𝜌𝜌𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝕍𝕍2𝐶𝐶𝑚𝑚(𝛼𝛼, 𝛿𝛿𝑒𝑒) 

 

(2) 

 

The aerodynamic coefficients are given as a function of the angle of attack and elevator deflection 

𝐶𝐶𝑧𝑧 = 𝐶𝐶𝑧𝑧0 + 𝐶𝐶𝑧𝑧𝛼𝛼𝛼𝛼 + 𝐶𝐶𝑧𝑧2𝛼𝛼𝛼𝛼
2 + 𝐶𝐶𝑧𝑧3𝛼𝛼𝛼𝛼

3 + 𝐶𝐶𝑧𝑧𝛿𝛿𝑒𝑒𝛿𝛿𝑒𝑒 + 𝐶𝐶𝑧𝑧𝛼𝛼𝛼𝛼𝑒𝑒𝛼𝛼𝛿𝛿𝑒𝑒 + 𝐶𝐶𝑧𝑧2𝛼𝛼𝛿𝛿𝑒𝑒𝛼𝛼
2𝛿𝛿𝑒𝑒 + 𝐶𝐶𝑧𝑧𝛼𝛼2𝛿𝛿𝑒𝑒𝛼𝛼𝛿𝛿𝑒𝑒

2 + 𝐶𝐶𝑧𝑧3𝛿𝛿𝑒𝑒𝛿𝛿𝑒𝑒
3 

 
 

(3) 

 

𝐶𝐶𝑥𝑥 = 𝐶𝐶𝑥𝑥0 + 𝐶𝐶𝑥𝑥𝛼𝛼𝛼𝛼 + 𝐶𝐶𝑥𝑥2𝛼𝛼𝛼𝛼
2 + 𝐶𝐶𝑥𝑥3𝛼𝛼𝛼𝛼

3 − 𝐶𝐶𝑥𝑥𝛿𝛿𝑒𝑒|𝛿𝛿𝑒𝑒| − 𝐶𝐶𝑥𝑥𝛼𝛼𝛿𝛿𝑒𝑒𝛼𝛼|𝛿𝛿𝑒𝑒| − 𝐶𝐶𝑥𝑥2𝛼𝛼𝛿𝛿𝑒𝑒𝛼𝛼
2|𝛿𝛿𝑒𝑒| + 𝐶𝐶𝑥𝑥𝛼𝛼2𝛿𝛿𝑒𝑒𝛼𝛼𝛿𝛿𝑒𝑒

2 − 𝐶𝐶𝑥𝑥3𝛿𝛿𝑒𝑒|𝛿𝛿𝑒𝑒|3 (4) 

 

 
𝐶𝐶𝑚𝑚 = 𝐶𝐶𝑚𝑚0 + 𝐶𝐶𝑚𝑚𝛼𝛼 + 𝐶𝐶𝑚𝑚2𝛼𝛼𝛼𝛼

2 + 𝐶𝐶𝑚𝑚3𝛼𝛼𝛼𝛼
3 + 𝐶𝐶𝑚𝑚𝛿𝛿𝑒𝑒

𝛿𝛿𝑒𝑒 + 𝐶𝐶𝑚𝑚𝛼𝛼𝛿𝛿𝑒𝑒
𝛼𝛼𝛿𝛿𝑒𝑒 + 𝐶𝐶𝑚𝑚2𝛼𝛼𝛿𝛿𝑒𝑒

𝛼𝛼2𝛿𝛿𝑒𝑒 + 𝐶𝐶𝑚𝑚𝛼𝛼2𝛿𝛿𝑒𝑒
𝛼𝛼𝛿𝛿𝑒𝑒2 + 𝐶𝐶𝑚𝑚3𝛿𝛿𝑒𝑒

𝛿𝛿𝑒𝑒3 
 
The model parameters and their uncertainties, provided by IAI, are presented in the appendix. 

(5) 

Equilibrium States 
Currently, only one operating point has been specified, with the following parameters: 

• Air density 𝜌𝜌 = 0.65 𝑘𝑘𝑘𝑘
𝑚𝑚3 

• Velocity 𝕍𝕍0 = 1500 𝑚𝑚
𝑠𝑠
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• Angle of attack 𝛼𝛼0 = 1.5∘  

• Pitch rate 𝑄𝑄0 = constant 

• Pitch moment 𝑀𝑀 = 0 

This operating point serves as a reference for initial analysis, providing a baseline for stability and 
performance assessments. By starting with this specific configuration, we can gain insights into the model’s 
behavior and refine the control algorithm to accommodate varying flight conditions and uncertainties. 

The trim value for the elevator deflection 𝛿𝛿𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is determined by solving the zeroed Eq.(5), given that 
 𝛼𝛼 = 𝛼𝛼0. Next, the nominal pitch rate 𝑄𝑄0 is obtained by solving the zeroed second equation of Eqs. (1). This 
ensures that the angle of attack 𝛼𝛼 remains constant. Note that in our case, the initial pitch angle 𝜃𝜃0 is set to 
zero. Although it evolves over time since pitch rate is not zero, it has minimal effect on 𝛼𝛼. This assumption 
holds because the gravitational component in the equation 𝛼̇𝛼 (the rate of change of the angle of attack) is 
negligible in our case, where the aerodynamic forces are dominant. Additionally, the resulting effect of 𝜃𝜃 on 
the computed value of 𝑄𝑄0 is small, allowing for the simplification of the system without significantly 
impacting the accuracy of the pitch rate calculation. The variation in the computed pitch rate as a function 
of the pitch angle is depicted in Fig. 1. 

 

Figure 1: Computed pitch rate as a function of the pitch angle. 

For the above flight condition, the resulting trim elevator deflection, 𝛿𝛿𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is found to be -14.6 degrees, 
and the pitch rate 𝑄𝑄0 is 11.7 degrees per second. During the maneuver, the longitudinal deceleration is 
approximately -23 [g]. The variation of this deceleration as a function of the pitch angle is depicted in Fig. 2. 
At the beginning of this short maneuver the perpendicular acceleration |𝑎𝑎𝑧𝑧|  is about 30 [g] which is much 
larger than the contribution of the gravity term in Eq. 1. This observation suggests that the pitch rate is 
relatively insensitive to changes in 𝜃𝜃0, which could be attributed to the small impact of gravitational forces 
and the negligible effect of 𝜃𝜃0 on the pitch dynamics within the given operating conditions. 
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Figure 2: Longitudinal deceleration as a function of the pitch angle. 

The 𝛿𝛿𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 value of -14.6 degrees is considered relatively large for elevator deflection. To further assess 
this, over 10,000 realizations of the uncertainties in the model were performed. The resulting histogram 
shown in Fig. 3 indicates that the typical range for the trim elevator deflection is mostly between -12 and -
17 degrees. This suggests that, while the nominal value is -14.6 degrees, the uncertainty in the model leads 
to a broader spread of potential deflections, about 83% falling within the -12 to -17 degree range. This 
variability must be taken into account when designing the control system to ensure robustness under 
uncertain conditions. 

 

Figure 3: Histogram of elevator deflection trim angle. 

Gravity Contribution 
Aside from the negligible effect of 𝜃𝜃0 variations on the pitch rate and longitudinal deceleration, neglecting 
the gravitational terms in the ODEs would completely nullify the impact of 𝜃𝜃, as it appears only in the 

gravitational term of the equations. Specifically, the gravity contribution in 𝕍̇𝕍 equation is �𝑚𝑚𝑚𝑚 sin(𝜃𝜃0−𝛼𝛼0)
𝐷𝐷

�, and 

the gravity contribution in 𝛼̇𝛼 equation is �𝑚𝑚𝑚𝑚 cos(𝜃𝜃0−𝛼𝛼0)
𝐿𝐿

�. The results shown in Figs. 4 and 5 indicate that the 

contribution of gravity in the force equations are small compared to the aerodynamic terms. Given this 
small effect, it can be considered negligible in the analysis and modeling. This allows for simplifying the 
system by excluding gravity’s influence on the dynamics, ensuring that the focus remains on the more 
significant factors driving the system’s behavior. 
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Figure 4: Contribution of the gravity term in 𝛼̇𝛼 equation. 

 

Figure 5: Contribution of the gravity term in 𝕍̇𝕍 equation. 

Linearization & Results 
The linearization around the equilibrium states is done numerically by 

 

𝐴𝐴(𝑖𝑖, 𝑗𝑗) =
𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

|𝑥𝑥0,𝑢𝑢0 ≈
𝑓𝑓𝑖𝑖�𝑥̅𝑥0 + 𝜀𝜀𝑒̅𝑒𝑗𝑗 ,𝑢𝑢�0� − 𝑓𝑓𝑖𝑖(𝑥̅𝑥0,𝑢𝑢�0)

𝜀𝜀
  

𝐵𝐵(𝑖𝑖, 𝑗𝑗) =
𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑢𝑢𝑗𝑗

|𝑥𝑥0,𝑢𝑢0 ≈
𝑓𝑓𝑖𝑖�𝑥̅𝑥0,𝑢𝑢�0 + 𝜀𝜀𝑒̅𝑒𝑗𝑗� − 𝑓𝑓𝑖𝑖(𝑥̅𝑥0,𝑢𝑢0)

𝜀𝜀
 

 

(6) 

where 

𝑒̅𝑒𝑗𝑗 = �0,  0 , … ,  1⏞
𝑗𝑗𝑡𝑡ℎ

,  0 ,  … 0�

𝑇𝑇

   ;           𝜀𝜀 ≪ 1 

and 𝑥𝑥0 and 𝑢𝑢0 are the trimmed values of the states and control input at the equilibrium. 𝐴𝐴 is the dynamic 
matrix and 𝐵𝐵 is the input matrix of the linearized model in the form of 

 
𝑥̇̅𝑥 = 𝐴𝐴𝑥̅𝑥 + 𝐵𝐵𝐵𝐵 

 

(7) 
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The numeric results for the trim conditions considered in this study are 

𝐴𝐴 = �

−0.298 −772.8 −9.806 0
−1.451 ⋅ 10−4 −4.684 1.712 ⋅ 10−4 1

0 0 0 1
0 −784.2 0 0

�   

 

𝐵𝐵 =  �

118.4
0.175

0
1513

�  

 

Once the linearized model is obtained, the characteristic polynomial can be calculated by evaluating 
det (𝑠𝑠𝑠𝑠 − 𝐴𝐴) where 𝐼𝐼 the identity matrix is of the appropriate size. The roots of this polynomial are the 
system's eigenvalues and provides insight into the stability and dynamic behavior of the system. 
Mathematically, it is expressed as 

∆(𝑠𝑠) = det (𝑠𝑠𝑠𝑠 − 𝐴𝐴) = 0 
 

(8) 

Solving Eq. 8 yields the eigenvalues of the system which are presented in Fig. 6. In the longitudinal model, 
these eigenvalues are associated with the short-period (S.P.) mode and the phugoid (energy-transfer) 
mode. The S.P. eigenvalues are located at  −2.34 ± 27.9𝑗𝑗, meaning that the natural frequency is 𝜔𝜔𝑛𝑛 =
28 � 1

𝑠𝑠𝑠𝑠𝑠𝑠
� and the damping ratio is 𝜁𝜁 = 0.083, while the eigenvalues associated with the phugoid mode are 

located at −0.005 and −0.293.  

 

Figure 6: Longitudinal nominal eigenvalues 

The eigenvalues of the system vary as a function of the system parameters which are uncertain. Fig. 7 
illustrates the eigenvalues locations for some samples of parameters within the uncertainty range. From 
this, we observe that while the S.P. eigenvalues shift significantly, those associated with the phugoid mode 
exhibit minimal variation, hence allowing us to focus solely on analyzing the eigenvalues associated with 
the S.P. mode.  
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Figure 7: Longitudinal eigenvalues variation due to uncertainties 

 
Out of the 24 possible sources of uncertainty in the longitudinal model (as outlined in the document 
provided by IAI), the location of the reference point (along the x-body axis) was identified as the most 
significant contributor to variations in the dynamic characteristics of the longitudinal model of the aircraft. 
This uncertainty, with a deviation of ±10%, directly affects the pitch moment coefficient, i.e., 

𝐶𝐶𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
= 𝐶𝐶𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ± 0.1 ⋅ 𝐶𝐶𝑧𝑧𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

 

(9) 

The realization of this uncertainty has a significant impact on the stability and damping of the short-period 
mode as is depicted in Fig. 8. 

 

Figure 8: Short-period eigenvalues vs displacement of reference point 

A scatter plot featuring thousands of realizations, representing the entire types of uncertainties (distributed 
uniformly) in the longitudinal model, specifically for the given deviations of the location of the reference 
point are presented in Fig. 9. 
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Figure 9: Short-period eigenvalues variation 

Interestingly, the wide range of uncertainties in the system leads to outcomes ranging from a stable but 
low-damping configuration to a highly unstable system, with an unstable eigenvalue reaching magnitudes 
near 30 in extreme cases. This variability highlights the significant challenge in designing a robust control 
system capable of managing such a broad spectrum of dynamic behavior. A highly responsive control 
system is essential to accommodate these uncertainties, emphasizing the need for careful design to ensure 
stability across all scenarios. 

Lateral Model 
The lateral nonlinear ODE system is based on the 4 equations of the full 6-DOF model, i.e., it includes only 
the equations relevant to the lateral dynamics. These equations are 

 
𝑚𝑚�𝑉̇𝑉 − 𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅 − 𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛(𝜙𝜙) cos(𝜃𝜃0)� = 𝑌𝑌 
𝐼𝐼𝑥𝑥𝑃̇𝑃 + �𝐼𝐼𝑧𝑧 − 𝐼𝐼𝑦𝑦�𝑅𝑅𝑅𝑅 = 𝐿𝐿 
𝐼𝐼𝑧𝑧𝑅̇𝑅 + �𝐼𝐼𝑦𝑦 − 𝐼𝐼𝑥𝑥�𝑃𝑃𝑃𝑃 = 𝑁𝑁 
𝜙̇𝜙 = 𝑃𝑃 + 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄(𝜙𝜙) tan(𝜃𝜃) + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜙𝜙) tan(𝜃𝜃) 

 
 

(10) 

where 

 

𝑌𝑌 =
1
2
𝜌𝜌𝜌𝜌𝕍𝕍2𝐶𝐶𝑦𝑦(𝛼𝛼,𝛽𝛽, 𝛿𝛿𝑒𝑒 , 𝛿𝛿𝑎𝑎, 𝛿𝛿𝑟𝑟) 

𝐿𝐿 =
1
2
𝜌𝜌𝜌𝜌𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝕍𝕍2𝐶𝐶𝑙𝑙(𝛼𝛼,𝛽𝛽, 𝛿𝛿𝑒𝑒 , 𝛿𝛿𝑎𝑎, 𝛿𝛿𝑟𝑟) 

𝑁𝑁 =
1
2
𝜌𝜌𝜌𝜌𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝕍𝕍2𝐶𝐶𝑛𝑛(𝛼𝛼,𝛽𝛽, 𝛿𝛿𝑒𝑒 ,  𝛿𝛿𝑎𝑎, 𝛿𝛿𝑟𝑟) 

 
 

(11) 

The model parameters and their uncertainty, provided by IAI, are presented in the appendix. 
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Equilibrium States 
In addition to the parameters specified in the longitudinal model, the equilibrium states of the lateral 
model are: 

• Slip angle 𝛽𝛽0 = 0 

• Roll angle 𝜙𝜙0 = 0 

• Roll rate 𝑃𝑃0 = 0 

• Yaw rate 𝑅𝑅0 = 0 

• Pitch rate 𝑄𝑄0 = 11.7 [∘/𝑠𝑠𝑠𝑠𝑠𝑠]  (obtained in the longitudinal model) 

The velocity components in the body frame can be determined once the angle of attack and the slip 
angle are known. In the case addressed here, 

 
𝑈𝑈0 = 𝕍𝕍0 cos(𝛽𝛽0) cos(𝛼𝛼0) ≈ 1500

𝑚𝑚
𝑠𝑠

 
𝑉𝑉0 = 𝕍𝕍0 sin(𝛽𝛽0) = 0 
𝑊𝑊0 = 𝕍𝕍0 cos(𝛽𝛽0) sin(𝛼𝛼0) ≈ 40

𝑚𝑚
𝑠𝑠

 

(12) 

Linearization 
Linearization of the lateral model can be performed numerically, similarly to the method used for the 
longitudinal dynamics. However, here we opted to carry out the linearization analytically, as this is the first 
research project, and we wanted to practice both methods to gain experience and better understand their 
applications. The linearization is performed by introducing small perturbations around the temporary 
current equilibrium states of the nonlinear model. Parameters like the Moment of Inertia 𝐼𝐼 ̅ ̅and equilibrium 
conditions from the longitudinal model are included, along with the derivative coefficients provided in the 
full model. The linearized equations are 

𝛽̇𝛽 = 𝑌𝑌𝑣𝑣 ⋅ 𝛽𝛽 + 𝑌𝑌𝛿𝛿𝑟𝑟
⋆ ⋅ 𝛿𝛿𝑟𝑟 + 𝑌𝑌𝛿𝛿𝑎𝑎

⋆ ⋅ 𝛿𝛿𝑎𝑎 +
𝑊𝑊0

𝕍𝕍0
𝑝𝑝 −

𝑈𝑈0
𝕍𝕍0

𝑟𝑟 +
𝑔𝑔𝑔𝑔
𝕍𝕍0

𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃0) 

𝑝̇𝑝 = 𝐿𝐿𝛽𝛽 ⋅ 𝛽𝛽 + 𝐿𝐿𝛿𝛿𝑟𝑟 ⋅ 𝛿𝛿𝑟𝑟 + 𝐿𝐿𝛿𝛿𝑎𝑎 ⋅ 𝛿𝛿𝑎𝑎 +
𝐼𝐼𝑦𝑦 − 𝐼𝐼𝑧𝑧

 𝐼𝐼𝑥𝑥
𝑄𝑄0𝑟𝑟 

𝑟̇𝑟 = 𝑁𝑁𝛽𝛽 ⋅ 𝛽𝛽 + 𝑁𝑁𝛿𝛿𝛿𝛿 ⋅ 𝛿𝛿𝑟𝑟 + 𝑁𝑁𝛿𝛿𝑎𝑎 ⋅ 𝛿𝛿𝑎𝑎 +
𝐼𝐼𝑥𝑥 − 𝐼𝐼𝑦𝑦
𝐼𝐼𝑧𝑧

𝑄𝑄0𝑝𝑝 

𝜙̇𝜙 = 𝑝𝑝 + 𝑡𝑡𝑡𝑡𝑡𝑡(𝜃𝜃0) 𝑟𝑟 + 𝑄𝑄0 𝑡𝑡𝑡𝑡𝑡𝑡(𝜃𝜃0)𝜙𝜙 
 

(13) 

where 

𝑌𝑌𝑣𝑣 = 𝜌𝜌𝜌𝜌𝕍𝕍0
2𝑚𝑚

𝐶𝐶𝑦𝑦𝛽𝛽     ;    𝑌𝑌𝛿𝛿⋆ = 𝜌𝜌𝜌𝜌𝕍𝕍0
2𝑚𝑚

𝐶𝐶𝑦𝑦𝛿𝛿  

𝐿𝐿𝛽𝛽 = 𝜌𝜌𝜌𝜌𝕍𝕍02𝐿𝐿
2𝐼𝐼𝑥𝑥

𝐶𝐶𝑙𝑙𝛽𝛽   ;    𝐿𝐿𝛿𝛿 = 𝜌𝜌𝜌𝜌𝕍𝕍0
2𝐿𝐿

2𝐼𝐼𝑥𝑥
𝐶𝐶𝑙𝑙𝛿𝛿  

𝑁𝑁𝛽𝛽 = 𝜌𝜌𝜌𝜌𝕍𝕍0
2𝐿𝐿

2𝐼𝐼𝑧𝑧
𝐶𝐶𝑛𝑛𝛽𝛽   ;    𝑁𝑁𝛿𝛿 = 𝜌𝜌𝜌𝜌𝕍𝕍0

2𝐿𝐿
2𝐼𝐼𝑧𝑧

𝐶𝐶𝑛𝑛𝛿𝛿  
 

(14) 
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The linearized model (Eqs. 13) can now be written in matrix form 

⎣
⎢
⎢
⎡𝛽̇𝛽
𝑝̇𝑝
𝑟𝑟
𝜙̇𝜙
̇
⎦
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑌𝑌𝑣𝑣 𝑡𝑡𝑡𝑡𝑡𝑡 (𝛼𝛼0) −1

𝑔𝑔
𝕍𝕍0

𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃0)

𝐿𝐿𝛽𝛽 0
𝐼𝐼𝑦𝑦 − 𝐼𝐼𝑧𝑧
𝐼𝐼𝑥𝑥

𝑄𝑄0 0

𝑁𝑁𝛽𝛽
𝐼𝐼𝑥𝑥 − 𝐼𝐼𝑦𝑦
𝐼𝐼𝑧𝑧

𝑄𝑄0 0 0

0 1 𝑡𝑡𝑡𝑡𝑡𝑡(𝜃𝜃0) 𝑄𝑄0 𝑡𝑡𝑡𝑡𝑡𝑡(𝜃𝜃0)⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

�����������������������������
𝐴𝐴

�

𝛽𝛽
𝑝𝑝
𝑟𝑟
𝜙𝜙
� +

⎣
⎢
⎢
⎡
𝑌𝑌𝛿𝛿𝑟𝑟
∗ 𝑌𝑌𝛿𝛿𝑎𝑎

∗

𝐿𝐿𝛿𝛿𝑟𝑟 𝐿𝐿𝛿𝛿𝑎𝑎
𝑁𝑁𝛿𝛿𝑟𝑟 𝑁𝑁𝛿𝛿𝑎𝑎

0 0 ⎦
⎥
⎥
⎤

�������
𝐵𝐵

�𝛿𝛿𝑟𝑟𝛿𝛿𝑎𝑎
�  

 

(15) 

Results 
Solving Eq. 8 where the matrix 𝐴𝐴 is given in Eq. 15 yields the eigenvalues of the system. The lateral model 
usually consists of three known modes. The Dutch-roll mode (which is analogous to the short-period mode 
in the longitudinal model) has a pair of complex eigenvalues, the roll mode has a single real eigenvalue and 
is fast and highly damped, and the spiral mode has a single real eigenvalue and is typically very slow and 
can be stable or unstable. However, the resulting eigenvalues, presented in Fig. 10, indicate that our 
nominal case is atypical, perhaps due to the complexity of the model. All four eigenvalues are real, with one 
of them being very unstable. In fact, it is not clear which of the eigenvalues corresponds to which mode. 
Later, we will discuss how the modes behave to gain better insight. 

 

Figure 10: Lateral nominal eigenvalues 

Similarly to the longitudinal model, the dominant uncertainty (in terms of dynamic characteristics of the 
lateral model) arises from deviations in the location of the reference point, as is reflected in the yaw 
moment coefficient with respect to the slip angle 𝛽𝛽, 

𝐶𝐶𝑛𝑛𝛽𝛽𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
= 𝐶𝐶𝑛𝑛𝛽𝛽 ∓ 0.1 ⋅ 𝐶𝐶𝑦𝑦𝛽𝛽 

 

(16) 

Effectively, 𝐶𝐶𝑛𝑛𝛽𝛽 becomes less negative as the reference point deviates forward, resulting in increasing 
stability, and vice versa. The results are presented in Figs. 11 and 12.  
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Figure 11: Lateral eigenvalues when reference point deviates forward 

 

 

Figure 12: Lateral eigenvalues when reference point deviates backward 

 

A scatter plot featuring thousands of realizations, representing the different types of uncertainties 
(distributed uniformly) in the lateral model, specifically for the deviations of the location of the reference 
point is shown in Fig. 13. 

 

Figure 13: Scattered lateral eigenvalues 
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The presence of uncertainties results in varying degrees of instability in the system. It is clear that the 
lateral model is always unstable, with eigenvalues consistently in the right half-plane. The primary variation 
lies in the severity of the instability, reflected by how far to the right the eigenvalues are located. Note that 
in both the longitudinal and lateral models, shifting the reference point forward enhances stability (in this 
case, decreasing instability). 

Modes Analysis 
Recall that the nominal eigenvalues, as shown in Fig. 10, are not as typical as we would expect. To analyze 
them, we can examine the eigenvectors corresponding to each eigenvalue. The components of the 
eigenvectors reveal how state variables, such as roll, yaw, and sideslip, contribute to each mode. This 
approach helps identify the dominant motion in each mode and provides insight into how the states 
interact. Tables 1-3 summarize the results for each case (displacement of the reference point). Note that 
the order of the values in each vector  corresponds to the order of the states, which is 

𝑥̅𝑥 = [𝛽𝛽 𝑝𝑝 𝑟𝑟 𝜙𝜙]𝑇𝑇 (17) 

 

Eigenvalue -47.65 44.39 -2.896 -0.0002 
Eigenvector 0.0015 -0.0014 0.0001 0 

-0.999 -0.998 -0.945 -0.002 
0.0355 -0.0435 -0.0229 0.0065 
0.021 -0.0225 0.3263 1 

Table 1: Nominal case 

Eigenvalue -69.58 64.83 -1.42 -0.0005 
Eigenvector 0.002 -0.002 0 0 

-0.993 -0.993 -0.817 -0.0005 
0.11 0.116 -0.017 0.0065 

0.014 -0.015 0.576 1 
Table 2: Reference point deviated backward 

Eigenvalue -8.92±20.53j 11.693 0.002 
Eigenvector -0.0003±0.006j 0.0004 0 

0.998 0.996 0.0002 
0.0384±0.0072j 0.02 0.006 
-0.0178±0.041j 0.085 1 

Table 3: Reference point deviated forward 

The dominant components of the eigenvectors presented in the tables above are marked. Notably, the roll 
rate 𝑝𝑝 dominates these modes. One potential explanation for this is the absence of rate derivatives in the 
model, particularly 𝐿𝐿𝑝𝑝, which typically accounts for roll damping. This means, for example, that the Dutch-
roll mode, which normally consists of sideslip and yaw rate, is characterized by roll rate in our case. 
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Summary 
This initial phase of the research focused on gaining a deeper understanding of the dynamic model 
provided by Israel Aerospace Industries (IAI). The primary goal was to begin uncovering key behaviors in the 
model, including the response of the longitudinal and lateral modes under specified operating conditions. 
By examining uncertainties, analyzing characteristic eigenvalues, and evaluating the roles of various 
parameters, we have established a foundation for future work. Given that this is an early stage, 
adjustments and refinements are anticipated as we receive updates from the industry and hold future 
discussions with IAI. This flexible approach will ensure that the model remains aligned with evolving project 
goals. 

References 
[1] Parker, J. T., Bolender, M. A., & Doman, D. B. (2005). Control-oriented modeling of an air-breathing 
hypersonic vehicle. Journal of Guidance, Control, and Dynamics, 28(5), 886–894. 
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Appendix 
The appendix includes Tables 4 and 5, which detail the relevant model parameters and properties discussed 
in this report. 

Aerodynamic 
Coefficient 

Polynomial 
Coefficient 

Value Deviation 

𝐶𝐶𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐶𝐶𝑚𝑚𝛿𝛿  0.035 ±10% 
𝐶𝐶𝑚𝑚𝛼𝛼𝛼𝛼 0.06 
𝐶𝐶𝑚𝑚2𝛼𝛼𝛼𝛼  1.7 
𝐶𝐶𝑚𝑚𝛼𝛼2𝛿𝛿  −2.8 
𝐶𝐶𝑚𝑚3𝛿𝛿  0.5 

𝐶𝐶𝑧𝑧𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝐶𝐶𝑧𝑧0  −0.03 
𝐶𝐶𝑧𝑧𝛼𝛼  −2.25 
𝐶𝐶𝑧𝑧2𝛼𝛼  0 
𝐶𝐶𝑧𝑧3𝛼𝛼  −2 

𝐶𝐶𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  𝐶𝐶𝑧𝑧𝛿𝛿  0.02 
𝐶𝐶𝑧𝑧𝛼𝛼𝛼𝛼  0.035 
𝐶𝐶𝑧𝑧2𝛼𝛼𝛼𝛼  0.5 
𝐶𝐶𝑧𝑧𝛼𝛼2𝛿𝛿  0.55 
𝐶𝐶𝑧𝑧3𝛿𝛿  0.35 

𝐶𝐶𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝐶𝐶𝑥𝑥𝛼𝛼 −0.07 
𝐶𝐶𝑥𝑥2𝛼𝛼 −0.5 
𝐶𝐶𝑥𝑥3𝛼𝛼 −1 
𝐶𝐶𝑥𝑥0 −0.06 

𝐶𝐶𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  𝐶𝐶𝑥𝑥𝛿𝛿 0.008 
𝐶𝐶𝑥𝑥𝛼𝛼𝛼𝛼 −0.017 
𝐶𝐶𝑥𝑥2𝛼𝛼𝛼𝛼  0.3 
𝐶𝐶𝑥𝑥𝛼𝛼2𝛿𝛿  0.2 
𝐶𝐶𝑥𝑥3𝛿𝛿 0.15 

𝐶𝐶𝑙𝑙𝛽𝛽  𝐶𝐶𝑙𝑙𝛽𝛽0  0.25 
𝐶𝐶𝑙𝑙𝛽𝛽𝛽𝛽 −0.6 

𝐶𝐶𝑦𝑦𝛽𝛽  𝐶𝐶𝑦𝑦𝛽𝛽0  −3.2 
𝐶𝐶𝑦𝑦𝛽𝛽𝛽𝛽  13.6 

𝐶𝐶𝑛𝑛𝛿𝛿𝑟𝑟  𝐶𝐶𝑛𝑛𝛿𝛿𝑟𝑟0  0.04 
𝐶𝐶𝑛𝑛𝛿𝛿𝑟𝑟𝛼𝛼 −0.15 

𝐶𝐶𝑙𝑙𝛿𝛿𝑎𝑎  𝐶𝐶𝑙𝑙𝛿𝛿𝑎𝑎𝛿𝛿 −1.2 
𝐶𝐶𝑙𝑙𝛿𝛿𝑎𝑎𝛼𝛼 0.03 

𝐶𝐶𝑙𝑙𝛿𝛿𝑟𝑟  𝐶𝐶𝑙𝑙𝛿𝛿𝑟𝑟0  −0.01 ±20% 
𝐶𝐶𝑙𝑙𝛿𝛿𝑟𝑟𝛼𝛼  0.06 

𝐶𝐶𝑛𝑛𝛿𝛿𝑎𝑎  𝐶𝐶𝑛𝑛𝛿𝛿𝑎𝑎𝛿𝛿  0.4 
𝐶𝐶𝑛𝑛𝛿𝛿𝑎𝑎𝛼𝛼  0.04 
𝐶𝐶𝑛𝑛𝛿𝛿𝑎𝑎𝛿𝛿𝛿𝛿 13.5 

𝐶𝐶𝑦𝑦𝛿𝛿𝑎𝑎  𝐶𝐶𝑦𝑦𝛿𝛿𝑎𝑎0  0.013 
𝐶𝐶𝑦𝑦𝛿𝛿𝑎𝑎𝛿𝛿  −2 
𝐶𝐶𝑦𝑦𝛿𝛿𝑎𝑎𝛼𝛼  −0.04 

Table 4: Model's aerodynamic coefficients and uncertainties 
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Property Value Units 
Mass 450 [𝐾𝐾𝐾𝐾] 
Ixx  125 [𝐾𝐾𝐾𝐾 ⋅ 𝑚𝑚2] 
Iyy 125 
Izz 130 
Surface 2 [𝑚𝑚2] 
Length 0.75 [𝑚𝑚] 

Table 5: Model's properties 
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