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This project focuses on the application of a nonlinear, pointwise minimum
norm control law for air-breathing hypersonic vehicles. Its goal is to stabilize the
aircraft about trim conditions with and without a canard. The theory behind
the control scheme is presented and discussed, alongside relevant conditions.
Several models for the aircraft are introduced: a high-fidelity model and two
control-oriented models, which are used for design. Controller forms of both
models are derived, and a control strategy is constructed and evaluated in
numerical simulations.

Nomenclature

𝛼 Angle of attack

𝛼𝑉 Desired negativity function

𝛽𝑖 ith thrust fit parameter

0 Zero matrix

𝑰 Identity matrix

𝛿𝑐 Abstract canard deflection

𝛿𝑒 Abstract elevator deflection

𝛾 Flight path angle

L Lie derivative

𝑐 Mean aerodynamic chord

Φ Stoichiometrically normalized fuel-to-
air ratio

Φ(®𝑥) Diffeomorphism transformation func-
tion

Φ𝑐 Dynamic extension command signal

𝜓0 Pointwise minimum norm switching
function

𝜌 Air density

𝜃 Pitch angle

𝑢̃ Input pertubations from trim conditions

𝑥 State pertubations from trim conditions

𝜀 Desired negativity parameter

®𝜓1 Pointwise minimum norm direction
function

®𝜉 Controller form diffeomorphism states
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®𝑙0 Non-linear, free terms in controller
form derivatives

®𝑢𝑡 Control inputs at trim conditions

®𝑢 Control inputs

®𝑥𝑡 State space states at trim conditions

®𝑥 State space states

®𝑦 State space outputs

𝑐𝑐 Canard coefficient of moment

𝐶𝐷 Coefficient of drag

𝐶0
𝐷

Constant drag coefficient

𝐶𝛼𝑖

𝐷
ith order coefficient of 𝛼 contribution
to 𝐶𝐷

𝐶
𝛿𝑖𝑐
𝐷

ith order coefficient of 𝛿𝑐 contribution
to 𝐶𝐷

𝐶
𝛿𝑖𝑒
𝐷

ith order coefficient of 𝛿𝑒 contribution
to 𝐶𝐷

𝑐𝑒 Elevator coefficient of moment

𝐶𝐿 Coefficient of lift

𝐶0
𝐿

Constant lift coefficient

𝐶𝛼
𝐿

Coefficient of 𝛼 contribution to 𝐶𝐿

𝐶
𝛿𝑖𝑐
𝐿

ith order coefficient of 𝛿𝑐 contribution
to 𝐶𝐿

𝐶
𝛿𝑖𝑒
𝐿

ith order coefficient of 𝛿𝑒 contribution
to 𝐶𝐿

𝐶𝑀 Coefficient of moment

𝐶0
𝑀

Constant pitching moment coefficient

𝐶𝛼𝑖

𝑀
ith order coefficient of 𝛼 contribution
to 𝐶𝑀

𝐶0
𝑇

Constant thrust coefficient

𝐶𝛼𝑖

𝑇
ith order coefficient of 𝛼 contribution
to thrust

𝐷 Drag

𝐹 Coefficient matrix of linear state deriva-
tives in controller form

𝐺 Coefficient matrix of nonlinear state
derivatives in controller form

𝑔 Gravitation constant

ℎ Height

𝐼𝑦 Longitudinal moment of inertia

𝐿 Lift

𝑙1 Control inputs coefficient matrix in con-
troller form derivatives

𝑀 Pitching moment

𝑚 Vehicle mass

𝑃 Algebraic Riccati equation solution

𝑄 Algebraic Riccati equation coefficient
matrix, or Pitch rate (depends on con-
text)

𝑞 Dynamic pressure

𝑅 Algebraic Riccati equation coefficient
matrix

𝑆 Reference area

𝑇 Thrust

𝑉 Air speed (magnitude)

𝑉 ( ®𝜉) Robust control Lyaponuv function

𝑧𝑇 Thrust to moment coupling coefficient
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I. Introduction

In recent years, the application of air-breathing hypersonic vehicles (AHVs) in civil and military
fields has become the center of attention of many institutes and countries alike. Such vehicles

are highly unstable and nonlinear in nature, introducing a complex set of challenges that must be
overcome to control them. These intricate characteristics, alongside their promising capabilities,
instigate interest in AHVs.

This project is part of ongoing research regarding control systems of AHVs. Its goal is to assess
the performance of the pointwise minimum norm (PMN) control law [1] (chapter 4.2.3) when
applied to a generic longitudinal AHV model [2]. Within the scope of this work, the objective is
to stabilize the vehicle about its trim conditions. Tracking problems were not considered at this
stage and will be addressed in subsequent research efforts. The following work builds on knowledge
and infrastructure developed in [3]. Previous developments include key findings such as model
reconstruction and validation, trim conditions, symbolic and numeric utility functions, as well as
knowledge regarding the control challenges of this field. Thus, these topics will not be discussed at
the same level of detail.

First, the PMN law is presented for feedback linearizable systems. The controller design process
and conditions for its validity are discussed, as well as the relevant formulas. A specific case of the
PMN law is considered: a feedback linearizable system with no disturbances. More information on
alternative forms and the addition of disturbances can be found in [1]. The controller’s effectiveness
is mathematically demonstrated over an arbitrary robust control Lyapunov function (RCLF) [1].

Then, mathematical models of a generic AHV are introduced [2]. The first is a curve-fitted
model (CFM) based on a high-fidelity truth model (TM). From the CFM, two additional models
are derived: the extended control-oriented model (ECOM) and the canard control-oriented model
(CCOM). The former utilizes a second-order dynamic extension and disregards the canard to reduce
the number of control inputs in effect. The latter incorporates the canard but doesn’t require a
dynamic extension for transition to controller form. Both neglect some characteristics of the CFM,
which will be considered as perturbations.

Finally, the transformation to the controller form of both systems is derived, and the PMN law is
applied to them. Final results are shown, and the controller performance is evaluated at and around
trim conditions. Then, based on those findings, future work and research will be addressed.

II. The Pointwise Minimum Norm Control Law
Assume that a diffeomorphism ®𝜉 = Φ(®𝑥), Φ(®0) = ®0 exists such that an arbitrary system

¤®𝑥 = 𝑓 (®𝑥, ®𝑢, 𝑡) can be transformed into

¤®𝜉 = 𝐹 ®𝜉 + 𝐺

[
®𝑙0

(
®𝜉
)
+ 𝑙1

(
®𝜉
)
®𝑢
]
. (1)

The matrix pair (𝐹, 𝐺) is assumed to be controllable, the continuous functions ®𝑙0, 𝑙1 satisfy ®𝑙0(®0) = ®0
and 𝑙1( ®𝜉) must be nonsigular. Let 𝑃 be the symmetric PD solution of the Riccati equation,

𝐹𝑇𝑃 + 𝑃𝐹 − 𝑃𝐺𝑅−1𝐺𝑇𝑃 +𝑄 = 0, 𝑄, 𝑅 > 0. (2)

In such a case, the function𝑉 (®𝑥) = Φ(®𝑥)𝑇𝑃Φ(®𝑥) = ®𝜉 𝑇𝑃 ®𝜉 is a respective RCLF with 𝛼𝑉 (®𝑥) = 𝜀 ®𝜉𝑇𝑄 ®𝜉
for some 𝜀 ∈ (0, 1) [1]. 𝛼𝑉 acts as a design parameter. It outlines the desired upper bound of the
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RCLF derivative along the solution. The Lie derivatives of 𝑉 are

L 𝑓𝑉 ( ®𝜉) = ®𝜉 𝑇
[
𝐹𝑇𝑃 + 𝑃𝐹

] ®𝜉 + 2®𝜉 𝑇𝑃𝐺®𝑙0( ®𝜉), L𝑔𝑉 ( ®𝜉) = 2®𝜉 𝑇𝑃𝐺𝑙1( ®𝜉). (3)

Define
𝜓0( ®𝜉) = L 𝑓𝑉 ( ®𝜉) + 𝛼𝑉 ( ®𝜉) = L 𝑓𝑉 ( ®𝜉) + 𝜀 ®𝜉 𝑇𝑄 ®𝜉, ®𝜓1( ®𝜉) =

[
L𝑔𝑉 ( ®𝜉)

]𝑇
. (4)

The proposed PNM controller is ∗ [1]

𝑢( ®𝜉) =

−𝜓0( ®𝜉) ®𝜓1( ®𝜉)
®𝜓𝑇

1 ( ®𝜉) ®𝜓1( ®𝜉)
, 𝜓0( ®𝜉) > 0

0 , 𝜓0( ®𝜉) ≤ 0
=


−

𝜓0( ®𝜉)𝑙𝑇1 ( ®𝜉)𝐺
𝑇𝑃 ®𝜉

2®𝜉 𝑇𝑃𝐺𝑙1( ®𝜉)𝑙𝑇1 ( ®𝜉)𝐺𝑇𝑃 ®𝜉
, 𝜓0( ®𝜉) > 0

0 , 𝜓0( ®𝜉) ≤ 0
. (5)

This is a specific implementation of the PMN law. It could be applied to a more generalized set of
systems and account for disturbances. Moreover, it is optimal with respect to a meaningful cost
function.

To demonstrate the effectiveness of this controller, examine the following RCLF candidate (under
the assumptions listed above),

𝑉 ( ®𝜉) = ®𝜉 𝑇𝑃 ®𝜉. (6)

Its time derivative is

¤𝑉 ( ®𝜉) = L 𝑓𝑉 ( ®𝜉) + L𝑔𝑉 ( ®𝜉) ®𝑢 = −𝜀 ®𝜉 𝑇𝑄 ®𝜉 + 𝜓0 + ®𝜓 𝑇
1 ®𝑢. (7)

Considering the PMN law (5), when 𝜓0 is non-positive, it is guaranteed that ¤𝑉 ≤ −𝜀 ®𝜉 𝑇𝑄 ®𝜉 < 0.
This is ensured by Q being positive definite. If 𝜓0 is positive, then ®𝑢 is determined by the top
expression in (5), meaning, the time derivative of 𝑉 is

¤𝑉 ( ®𝜉) = −𝜀 ®𝜉 𝑇𝑄 ®𝜉 + 𝜓0 + ®𝜓 𝑇
1

(
− 𝜓0 ®𝜓1

®𝜓 𝑇
1
®𝜓1

)
= −𝜀 ®𝜉 𝑇𝑄 ®𝜉 + 𝜓0 − 𝜓0

®𝜓 𝑇
1
®𝜓1

®𝜓 𝑇
1
®𝜓1

= −𝜀 ®𝜉 𝑇𝑄 ®𝜉. (8)

To conclude, applying the PMN law entails that

¤𝑉 ( ®𝜉) ≤ −𝜀 ®𝜉 𝑇𝑄 ®𝜉. (9)

In effect, this mechanism activates a control signal only if it is required at the moment (pointwise).
If the system is in a state where the RCLF inherently converges to zero, the control is off
(minimum norm). Otherwise, a controller is applied such that ¤𝑉 ( ®𝜉) is held at the upper bound
−𝛼𝑉 = −𝜀 ®𝜉𝑄 ®𝜉 < 0.

∗A Warning Sign - When implementing (5), take extreme caution. A small mistake could be disastrous, as the
author of this document could testify. For the sake of one’s mental sanity, use the generalized definition on the
left of (5).
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III. Curve-Fitted AHV Model
This work considers the CFM model proposed in [2]. It is based on a rich truth model, which is

also mentioned in the same article, but not in full detail. Its geometry is depicted in Fig. 1. The

Fig. 1 Geometry of the AHV.

CFM encapsulates aerodynamic forces and thrust via

𝐿 ≈ 1
2
𝜌𝑉2𝑆𝐶𝐿 (𝛼, 𝛿𝑒, 𝛿𝑐), 𝑀 ≈ 𝑧𝑇𝑇 + 1

2
𝜌𝑉2𝑆𝑐𝐶𝑀 (𝛼, 𝛿𝑒, 𝛿𝑐),

𝐷 ≈ 1
2
𝜌𝑉2𝑆𝐶𝐷 (𝛼, 𝛿𝑒, 𝛿𝑐), 𝑇 ≈ 𝛼3𝐶𝛼3

𝑇 (Φ) + 𝛼2𝐶𝛼2

𝑇 (Φ) + 𝛼𝐶𝛼
𝑇 (Φ) + 𝐶0

𝑇 (Φ).
(10)

The normalized coefficients are of the following form,

𝐶𝐿 = 𝐶𝛼
𝐿𝛼 + 𝐶

𝛿𝑒
𝐿
𝛿𝑒 + 𝐶

𝛿𝑐
𝐿
𝛿𝑐 + 𝐶0

𝐿 , 𝐶𝐷 = 𝐶𝛼2

𝐷 𝛼2 + 𝐶𝛼
𝐷𝛼 + 𝐶

𝛿2
𝑒

𝐷
𝛿2
𝑒 + 𝐶

𝛿𝑒
𝐷
𝛿𝑒 + 𝐶

𝛿2
𝑐

𝐷
𝛿2
𝑐 + 𝐶

𝛿𝑐
𝐷
𝛿𝑐 + 𝐶0

𝐷 ,

𝐶𝑀 = 𝐶𝛼2

𝑀 𝛼2 + 𝐶𝛼
𝑀𝛼 + 𝐶0

𝑀 + 𝑐𝑒𝛿𝑒 + 𝑐𝑐𝛿𝑐,

𝐶𝛼3

𝑇 = 𝛽1(ℎ, 𝑞)Φ + 𝛽2(ℎ, 𝑞), 𝐶𝛼2

𝑇 = 𝛽3(ℎ, 𝑞)Φ + 𝛽4(ℎ, 𝑞),
𝐶𝛼
𝑇 = 𝛽5(ℎ, 𝑞)Φ + 𝛽6(ℎ, 𝑞), 𝐶0

𝑇 = 𝛽7(ℎ, 𝑞)Φ + 𝛽8(ℎ, 𝑞).
(11)

All relevant constants are listed in Appendix A. Note that while 𝛽𝑖 changes with altitude and dynamic
pressure, these functions are assumed to be constant during standard operation, or at least change at
slow rates. The equations of motion for this model are

®𝑥 =

{
𝑉 𝛼 𝑄 𝜃

}𝑇
, ®𝑢 =

{
𝛿𝑒 Φ 𝛿𝑐

}𝑇
, ®𝑦 =

{
𝑉 𝛾

}𝑇
=

{
𝑉 𝜃 − 𝛼

}𝑇
,


¤𝑉
¤𝛼
¤𝑄
¤𝜃


=



1
𝑚

(
𝑇 cos(𝛼) − 𝐷

)
− 𝑔 sin(𝜃 − 𝛼)

1
𝑚𝑉

(
− 𝑇 sin(𝛼) − 𝐿

)
+𝑄 + 𝑔

𝑉
cos(𝜃 − 𝛼)

𝑀

𝐼𝑦

𝑄


.

(12)

The original formulation includes additional flexible states, which will not be mentioned here.
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IV. Control-Oriented Models

A. Extended Control-Oriented Model
While the CFM proposes three controllers (𝛿𝑒, 𝛿𝑐, and Φ), it is preferable to use as few as

possible. Therefore, in this model, the canard is removed. It is also simulated accordingly. The
ECOM † is obtained when neglecting elevator couplings (𝐶𝛿𝑒

𝐿
, 𝐶𝛿2

𝑒

𝐷
, 𝐶𝛿𝑒

𝐷
), and the flexible states

(that will not be mentioned in detail in this paper). Flight altitude is assumed to be constant, and a
dynamic extension over Φ is added. The relevant equations of motion describing the ECOM are [2]

®𝑥 =

{
𝑉 𝛼 𝑄 𝜃

}𝑇
, ®𝑢 =

{
𝛿𝑒 Φ

}𝑇
, ®𝑦 =

{
𝑉 𝛾

}𝑇
=

{
𝑉 𝜃 − 𝛼

}𝑇
,


¤𝑉
¤𝛼
¤𝑄
¤𝜃


=



1
𝑚

(
𝑇 cos(𝛼) − 𝐷

)
− 𝑔 sin(𝜃 − 𝛼)

1
𝑚𝑉

(
− 𝑇 sin(𝛼) − 𝐿

)
+𝑄 + 𝑔

𝑉
cos(𝜃 − 𝛼)

𝑀

𝐼𝑦

𝑄


.

(13)

Note that the outputs of this model are selected to be 𝑉 and 𝛾. Recall that elevator couplings
with 𝐷 and 𝐿 were neglected, restricting the authority of 𝛿𝑒 exclusively to 𝐶𝑀,𝛿𝑒 . It is included in
the model through 𝑀 (directly), which affects the derivative ¤𝑄. Since the measurement 𝛾 = 𝜃 − 𝛼,
it can be shown that the control input 𝛿𝑒 appears only in the third time-derivative of 𝛾, meaning it
has a relative degree of 3. Φ, on the other hand, will appear in the first derivative of 𝑉 through 𝑇 ,
making its relative degree 1.

This mismatch between 𝛿𝑒 and Φ in relative degree will invalidate the transition to controller
form. Therefore, a dynamic extension over Φ is added. It introduces the control input Φ𝑐, and states
Φ and ¤Φ. These new states are associated with a second-order actuator

¥Φ = −2𝜁𝜔 ¤Φ − 𝜔2Φ + 𝜔2Φ𝑐 . (14)

Denote the model states and inputs as

®𝑥 =

{
𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

}𝑇
=

{
𝑉 𝛼 𝑄 𝜃 Φ ¤Φ

}𝑇
, ®𝑢 =

{
𝑢1 𝑢2

}𝑇
=

{
𝛿𝑒 Φ𝑐

}𝑇
.

(15)
†This model is denoted COM in [2], here it is called “extended” due to the dynamic extension.

6



Applying this notation, and appending the state-space form of (14) to (13) yields

®𝑥 =

{
𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

}𝑇
, ®𝑢 =

{
𝑢1 𝑢2

}𝑇
, ®𝑦 =

{
𝑥1 𝑥4 − 𝑥2

}𝑇
,

¤®𝑥 =



𝑓1(®𝑥, ®𝑢)
𝑓2(®𝑥, ®𝑢)
𝑓3(®𝑥, ®𝑢)
𝑓4(®𝑥, ®𝑢)
𝑓5(®𝑥, ®𝑢)
𝑓6(®𝑥, ®𝑢)


=



1
𝑚

(
𝑇 (®𝑥, ®𝑢) cos(𝑥2) − 𝐷 (®𝑥, ®𝑢)

)
− 𝑔 sin(𝑥4 − 𝑥2)

1
𝑚𝑥1

(
− 𝑇 (®𝑥, ®𝑢) sin(𝑥2) − 𝐿 (®𝑥, ®𝑢)

)
+ 𝑥3 +

𝑔

𝑥1
cos(𝑥4 − 𝑥2)

𝑀 (®𝑥, ®𝑢)
𝐼𝑦𝑦

𝑥3

𝑥6

−2𝜁𝜔𝑥6 − 𝜔2𝑥5 + 𝜔2Φ𝑐



.

(16)

This form has six states and two control inputs, which possess a relative degree of three, meaning it
has a full vector relative degree. The trim conditions of this model were addressed in [3] and are
summarized in Table 1.

Table 1 Trim conditions of the ECOM at level flight, a speed of 7702.0808 [ft/s], and a height
of 85000 [ft].

State/Input Value Units

𝑉 7702.0808 ft/s
𝛼 3.684 deg
𝑄 0 deg/s
𝑉 3.684 deg
Φ 0.1619 —
¤Φ 1/s

𝛿𝑒 16.368 deg
Φ𝑐 0.1619 —

B. Canard Control-Oriented Model
When utilizing the canard, the problem takes a different shape, which eases the application

of some control schemes. The CCOM is obtained by making similar assumptions to the ECOM:
neglecting nonlinear control surface couplings (𝐶𝛿2

𝑒

𝐷
, 𝐶𝛿2

𝑐

𝐷
), and the flexible states. Flight altitude is
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assumed to be constant. The relevant equations of motion describing the CCOM are [2]

®𝑥 =

{
𝑥1 𝑥2 𝑥3 𝑥4

}𝑇
=

{
𝑉 𝛼 𝑄 𝜃

}𝑇
, ®𝑦 =

{
𝑥1 𝑥4 − 𝑥2

}𝑇
=

{
𝑉 𝜃 − 𝛼

}𝑇
,

®𝑢 =

{
𝑢1 𝑢2 𝑢3

}𝑇
=

{
𝛿𝑒 Φ 𝛿𝑐

}𝑇
,

¤®𝑥 =


𝑓1(®𝑥, ®𝑢)
𝑓2(®𝑥, ®𝑢)
𝑓3(®𝑥, ®𝑢)
𝑓4(®𝑥, ®𝑢)


=



1
𝑚

(
𝑇 (®𝑥, ®𝑢) cos(𝑥2) − 𝐷 (®𝑥, ®𝑢)

)
− 𝑔 sin(𝑥4 − 𝑥2)

1
𝑚𝑥1

(
− 𝑇 (®𝑥, ®𝑢) sin(𝑥2) − 𝐿 (®𝑥, ®𝑢)

)
+ 𝑥3 +

𝑔

𝑥1
cos(𝑥4 − 𝑥2)

𝑀 (®𝑥, ®𝑢)
𝐼𝑦𝑦

𝑥3


.

(17)

All states (except 𝜃) and outputs have a relative degree of 1, with respect to all controllers. In Table 2
are the trim conditions for this model.

Table 2 Trim conditions of the CCOM at level flight, a speed of 7702.0808 [ft/s], and a height
of 85000 [ft].

State/Input Value Units

𝑉 7702.0808 ft/s
𝛼 2.224 deg
𝑄 0 deg/s
𝑉 2.224 deg

𝛿𝑒 5.215 deg
Φ 0.1039 —
𝛿𝑐 5.770 deg

V. PMN Application to Generic AHV Models

A. Solution Approach
This project aims to demonstrate the use of a PMN law for a generic AHV. It can be used in a

plethora of cases, including ones with disturbances. It is assumed that trim conditions are known,
and changes in altitude and non-linear aerodynamic coefficients can be regarded as disturbances.
Consequently, all the simulations in this work were conducted using the control-oriented models.
In addition, the objective will be to stabilize the aircraft in a local environment around trim.
Tracking-error dynamics will not be discussed in this work.

8



B. Extended Control-Oriented Model
In this case, the transition to controller form is not trivial. First, to ensure a single equilibrium

point at the origin, define the translated system 𝑥 and 𝑢̃ as

𝑥 = ®𝑥 − ®𝑥𝑡 , 𝑢̃ = ®𝑢 − ®𝑢𝑡 . (18)

The notation 𝑡 refers to trim conditions. Denote the state space vector of controller form as ®𝜉 ∈ R6,
where 𝜉1 = 𝑉̃ and 𝜉2 = 𝛾̃. The remaining four states of ®𝜉 appear in the Lie derivatives of 𝑉 and 𝛾,
namely

®𝜉 =

{
𝑉̃ 𝛾̃ L 𝑓 𝑉̃ L 𝑓 𝛾̃ L2

𝑓
𝑉̃ L2

𝑓
𝛾̃

}𝑇
. (19)

Recall that this model has a relative degree of three with respect to both inputs and outputs. Therefore,
the transition to the controller form is possible. As a direct result of the definition made in (19), the
equations of motion for ®𝜉 are

¤𝜉1 = 𝜉3, ¤𝜉3 = 𝜉5, ¤𝜉5 = L3
𝑓 𝑉̃ +

(
LΦ𝑐

L2
𝑓 𝑉̃

)
Φ𝑐 +

(
L𝛿𝑒L2

𝑓 𝑉̃

)
𝛿𝑒,

¤𝜉2 = 𝜉4, ¤𝜉4 = 𝜉6, ¤𝜉6 = L3
𝑓 𝛾̃ +

(
LΦ𝑐

L2
𝑓 𝛾̃

)
Φ𝑐 +

(
L𝛿𝑒L2

𝑓 𝛾̃

)
𝛿𝑒 .

(20)

The notation L𝑢𝑖L2
𝑓
𝑉 (𝑢𝑖 is either Φ𝑐 or 𝛿𝑒) refers to the coefficients of the control inputs that are

discovered in the higher derivatives. The derivatives ¤𝜉5 and ¤𝜉6 in (20) are constructed using a
symbolic MATLAB code. In (20), there are four linear derivatives and two non-linear ones involving
the control inputs as well. Hence, the controller form of this system is

𝐹 =


0 𝑰 0
0 0 𝑰

0 0 0

 , 𝐺 =


0
0
𝑰

 , ®𝑙0(𝑥) =
[
L3

𝑓
𝑉

L3
𝑓
𝛾̃

]
, 𝑙1(𝑥) =

[
L𝛿𝑒L2

𝑓
𝑉̃ LΦ𝑐

L2
𝑓
𝑉̃

L𝛿𝑒L2
𝑓
𝛾̃ LΦ𝑐

L2
𝑓
𝛾̃

]
. (21)

Due to the definition of 𝑥, and analysis of this model reported in [3], the origin is an unstable
equilibrium of this system, matching 𝑢̃ = 0. The pair 𝐹 and 𝐺 is controllable, making (21) the
controller form of the system. Figure 2 depicts the determinant and condition number of 𝑙1(𝑥) along
admissible flight conditions, demostrating numerically that 𝑙1(𝑥) is a non-singular matrix. This was
also verified symbolically. The diffeomorphism used to translate 𝑥 to ®𝜉 is also validated in the same
manner. It is non-singular and globally valid. In addition, simple substitution reveals that 𝑙0(®0) = ®0.
Considering these results, the diffeomorphism to controller form and the PMN controller satisfy the
required conditions.

Although the theoretical basis is valid, there is some unknown issue with the implementation of
this controller, and no concrete results have been obtained. The error stems from a discrepancy
between the symbolic expression of ®𝜓1 and 𝜓0 and their actual values. It could arise from an improper
diffeomorphism or derivation of ®𝜓1 and 𝜓0. Both possibilities are related to implementation.

C. Canard Control-Oriented Model
A significant advantage of the CCOM is its inherent controller form. Due to the linear component

in ¤𝑥4, it is possible to encapsulate the derivatives of 𝑥1, 𝑥2, and 𝑥3 into a 3 × 1 vector. Since there
are three control inputs that affect three state derivatives, 𝑙1 can be defined as a 3 × 3 matrix. In
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Fig. 2 Condition number and determinant of 𝑙1(𝑥) along admissable flight conditions.
Matches the ECOM’s controller form.

addition, the neglections involved in the CCOM make it affine in control, and the controller form is
valid. Respectively, 𝐹 and 𝐺 are

𝐹 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0


, 𝐺 =


1 0 0
0 1 0
0 0 1
0 0 0


. (22)

All the other terms in ¤𝑥 are included in ®𝑙0 and 𝑙1. Again, their explicit functions are computed via
a symbolic MATLAB code. 𝐹 and 𝐺 are a controllable pair, and ®𝑙0 satisfies ®𝑙0(®0) = ®0. Figure 3
depicts the determinant and condition number of 𝑙1(𝑥) along admissible flight conditions. While the
condition number is relatively low and the determinant is close to zero, 𝑙1(𝑥) is not a singular matrix.
It was also verified symbolically. Hence, all the conditions required for the PMN controller are met.

Fig. 3 Condition number and determinant of 𝑙1(𝑥) along admissable flight conditions.
Matches the CCOM’s controller form.

In the current study, the controller design parameters were set to 𝜀 is 0.5, and 𝑄 = 𝑅 = 𝐼. In
future work, these parameters can be modified to tune the controller performance.
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To validate controller performance, it is first simulated at trim. The resulting system response
and control signals are presented in Figs. 4 and 5, respectively. The controller maintains trim
conditions, with some numerical errors of minuscule scales. The natural instability of the system
causes it to oscillate around trim conditions, and numerical errors arise due to the instability of the
system at trim (which constantly pulls it away). Overall, the PMN law can maintain trim. These
results match the dynamic characteristics of the underlying RCLF depicted in Fig. 6. It shows that
the RCLF, its derivative, and various components oscillate around zero as the system tends to move
away from trim, but are contained by the controller.

Fig. 4 State errors from trim over time. Simulation is initialized exactly at trim conditions.
The model used for simulation is the CCOM. Solved with ode23s (stiff Rosenbrock).

Fig. 5 Control input errors from trim over time. Simulation is initialized exactly at trim
conditions. The model used for simulation is the CCOM. Solved with ode23s (stiff Rosenbrock).
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Fig. 6 The Lyaponuv function 𝑉 (𝑥) = 𝑥𝑇𝑃𝑥 (log axis and regular scale), its derivative over
time, and 𝜓0. Simulation is initialized exactly at trim conditions. The model used for simulation
is the CCOM. ¤𝑉 is the numeric derivative of 𝑉 along the solution, the theoretical curve is
calculated using (7), the upper bound of 𝑉 is determined according to −𝛼𝑉 . 𝜀 = 0.5. Solved
with ode23s (stiff Rosenbrock).

Next, the controller performance is evaluated when the initial conditions of the system states
are deviated from their trim values, i.e., 𝑉0 = 𝑉𝑡 + 200, [ft/s] and 𝛼0 = 𝛼𝑡 + 2◦. Figures 7 and 8
displays the deviation of ®𝑥 from the trim condition (𝑥) and corresponding control signal deviations
from trim (𝑢̃), respectively. The controller successfully stabilizes the system. One can identify time
intervals where some control deviation in 𝑢̃ are zero. It agrees with the expected behavior of the
RCLF depicted in Fig. 9. It should be noted that although the canard and elevator deflections remain
within the operational bounds specified in [2], the value of Φ̃ becomes unreasonable. 𝛼̃, 𝑄̃, and
𝜃 also exceed physically acceptable ranges. Further tuning of the controller could ease the use of
control inputs.

Fig. 7 State errors from trim over time. Simulation is initialized at 𝑉0 = 𝑉𝑡 + 200[ 𝑓 𝑡/𝑠],
𝛼0 = 𝛼𝑡 + 2◦. The model used for simulation is the CCOM. Solved with ode4 (Runge Kutta).

12



Fig. 8 Control input errors from trim over time. Simulation is initialized at𝑉0 = 𝑉𝑡+200[ 𝑓 𝑡/𝑠],
𝛼0 = 𝛼𝑡 + 2◦. The model used for simulation is the CCOM. Solved with ode4 (Runge Kutta).

Fig. 9 The Lyaponuv function 𝑉 (𝑥) = 𝑥𝑇𝑃𝑥 (log axis and regular scale), its derivative over
time, and 𝜓0. Simulation is initialized at 𝑉0 = 𝑉𝑡 + 200[ 𝑓 𝑡/𝑠], 𝛼0 = 𝛼𝑡 + 2◦. The model used for
simulation is the CCOM. ¤𝑉 is the numeric derivative of 𝑉 along the solution, the theoretical
curve is calculated using (7), the upper bound of 𝑉 is determined according to −𝛼𝑉 . Solved
with ode4 (Runge Kutta).

Figure 9 presents the Lyapunov function𝑉 (𝑥) = 𝑥𝑇𝑃𝑥 and its derivative over time. A comparison
between theoretical derivatives and simulation results is also plotted. As expected, the theoretical
and numerical derivatives of 𝑉 (𝑥) agree. In addition, due to the bound in (9), ¤𝑉 (𝑥) doesn’t exceed
−𝛼𝑉 . Between 𝑡 ≈ 1.8 [sec] and 𝑡 ≈ 2.7 [sec], ¤𝑉 (𝑥) separates from its upper bound, becoming
more negative. In this interval, 𝜓0 is negative, meaning 𝑉 (𝑥) converges towards the origin even
without applying a control signal. Therefore, 𝑢̃ is zero within this timeframe. This validates the
behavior discussed in Section II. In effect, the choice of 𝜀, 𝑄, and 𝑅 defines the lower bound of
¤𝑉 (𝑥). Consequently, it is possible to reduce the overall control effort by tuning them.
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VI. Conclusions
The PMN control law was discussed and analyzed for an arbitrary feedback linearizable system.

To meet its requirements, control-oriented models of the AHV and their controller forms were
derived. The PMN law was evaluated via numerical simulations of the system. It performed well
for the CCOM, with a reasonable account for the limitations of 𝛿𝑒 and 𝛿𝑐. However, it violated the
physical limitations of the system’s states and of Φ. Several controller characteristics were observed,
such as chattering around the equilibrium. It was noted that the PMN controller vanishes when
it is not required, which displays its core principle. The ECOM, on the other hand, proved to be
difficult to control using this method. Although the controller has a strong theoretical basis and all
the required conditions of the underlying system model are met, numerical simulations of it failed.

Further work should address the non-linear controls of the model, as well as changes in altitude.
A suitable implementation of the PMN control law for the ECOM should be sought. Alternatively,
the discrepancy presented earlier must be explained to rule out the use of a PMN law for the ECOM.
A solution involving the ECOM could pose a significant development as it would simplify the
design and construction of the vehicle. Given the results of numerical simulations, it is also advised
to develop a control scheme that prevents the system from leaving the safe range of operation.
Seeing as this work is valid only within a 2D world, it should be expanded to a more general 6
degrees-of-freedom problem.

Appendix

A. Coefficient Tables
The following tables refer to the different coefficients that comprise the CFM and COM, according

to [2]. Two more tables refer to the flexible modes of the model, but these are of no interest in this
paper.

Table A.1 Miscellaneous coefficient values

Coefficient Value Units

𝑚 3.0000 × 102 lb · ft−1

𝐼𝑦 5.0000 × 105 lb · ft
𝑆 1.7000 × 101 ft2 · ft−1

𝜌0 6.7429 × 10−5 slugs · ft−3

ℎ0 8.5000 × 104 ft
ℎ𝑠 2.1358 × 104 ft
𝜔 20.000 × 101 1/s
𝜁 7 × 10−1 —

Table A.2 Drag coefficient values

Coefficient Value Units

𝐶𝛼2

𝐷
5.8224 × 100 rad−2

𝐶𝛼
𝐷

−4.5315 × 10−2 rad−1

𝐶
𝛿2
𝑒

𝐷
8.1993 × 10−1 rad−2

𝐶
𝛿𝑒
𝐷

2.7699 × 10−4 rad−1

𝐶
𝛿2
𝑐

𝐷
5.4662 × 10−1 rad−2

𝐶
𝛿𝑐
𝐷

1.8466 × 10−4 rad−1

𝐶0
𝐷

1.0131 × 10−2 —
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Table A.3 Lift coefficient values

Coefficient Value Units

𝐶𝛼
𝐿

4.6773 × 100 rad−1

𝐶
𝛿𝑒
𝐿

7.6224 × 10−1 rad−1

𝐶
𝛿𝑐
𝐿

5.0816 × 10−1 rad−1

𝐶0
𝐿

−1.8714 × 10−2 —

Table A.4 Thrust coefficient values

Coefficient Value Units

𝛽1 −3.7693 × 105 lb · ft−1 · rad−3

𝛽2 −3.7225 × 104 lb · ft−1 · rad−3

𝛽3 2.6814 × 104 lb · ft−1 · rad−2

𝛽4 −1.7277 × 104 lb · ft−1 · rad−2

𝛽5 3.5542 × 104 lb · ft−1 · rad−1

𝛽6 −2.4216 × 103 lb · ft−1 · rad−1

𝛽7 6.3785 × 103 lb · ft−1

𝛽8 −1.0090 × 102 lb · ft−1

Table A.5 Moment coefficient values

Coefficient Value Units

𝑍𝑡 8.3600 × 100 ft
𝑐 1.7000 × 101 ft

𝐶𝛼2

𝑀
6.2926 × 100 rad−2

𝐶𝛼
𝑀

2.1335 × 100 rad−1

𝐶0
𝑀

1.8979 × 10−1 —
𝑐𝑒 −1.2897 × 100 rad−1

𝑐𝑐 −1.7196 × 100 rad−1
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