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1 Introduction

Understanding the dynamics of rarefied gas flow is essential to predict aerodynamic forces
in low-density environments, such as the upper atmosphere [1]. This is particularly
relevant for low Earth orbit satellites, where forces due to rarefied gas interactions can
significantly influence satellite trajectories and orientation [2]. The insights gained from
this study can be applied to enhance the accuracy of force predictions and improve the
design and operation of satellite systems.

Rarefied gas flow also plays a crucial role in various engineering applications, such
as micro-fluidics and vacuum technologies, where conventional continuum assumptions
break down [3]. By modeling these interactions accurately, it becomes possible to predict
flow behavior in highly rarefied regimes, providing a bridge between molecular dynamics
and macroscopic fluid behavior [4].

2 Problem Description

This project investigates a steady-state rarefied gas flow over two straight, parallel airfoils
of length L∗, separated by a distance D∗. The top airfoil is maintained at a temperature
T ∗
t , while the bottom airfoil has a temperature T ∗

b . A uniform flow enters the system
with density ρ∗∞, temperature T ∗

∞, and velocity u∗
∞ = (u∗

∞,x, u
∗
∞,y, 0). Each gas particle

has a mass m∗. The flow interactions between the airfoil and the boundaries are modeled
using diffuse boundary conditions to predict aerodynamic behavior.

x

y

L∗

L∗

D∗

u∗
∞

Figure 1: Schematic of the problem configuration.

3 Mathematical Problem

3.1 The Boltzmann Equation

The behavior of the rarefied gas is governed by the full Boltzmann equation:

∂f ∗

∂t∗
+ ξ∗ · ∇f ∗ +

X0
∗

m∗ · ∂f
∗

∂ξ∗
= J (1)
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where f ∗ is the distribution function, ξ∗ is the molecular velocity, X0
∗ is the external

force, and J is the collision operator. For steady-state conditions and negligible external
forces, equation 1 reduces to:

ξ∗ · ∇f ∗ = J (2)

After normalization, and assuming the ballistic limit (J → 0), equation 2 simplifies
to:

ξ · ∇f = 0 (3)

Here, dimensionless variables such as ξ = ξ∗/
√
2R∗T ∗

∞ and f = f ∗/(ρ∗∞/(2πR∗T ∗
∞)3/2)

have been introduced while the other normalizations will take place using these relations:

• d = D∗/L∗

• τt = T ∗
t /T

∗
∞

• τb = T ∗
b /T

∗
∞

• ρj = ρ∗j/ρ
∗
∞

• u∞ = u∞
∗/
√

2R∗T ∗
∞

3.2 Boundary Conditions and Diffuse Wall Assumption

The diffuse wall boundary condition assumes particles are re-emitted from surfaces with
a Maxwellian distribution corresponding to the wall’s temperature and velocity which, in
our case, is zero:

f ∗
w =

ρ∗w
(2πR∗T ∗

w)
3/2

exp

(
−(ξ∗ − uw

∗)2

2R∗T ∗
w

)
. (4)

This implies that there is no memory of the direction of the incoming particles, with
properties solely dependent on the wall. Similarly, particles originating from the free
flow, rather than being re-emitted by the walls, also follow a Maxwellian distribution
with T ∗ = T ∗

∞ and u∗ = u∞
∗. Note that ρ∗w is not an actual density property of the

wall, but rather a parameter calculated for each point on the wall to ensure compliance
with impermeability conditions. Since each side of each airfoil is subject to different
conditions, I conclude that each airfoil has two re-emission distributions differing by the
property ρ∗w. Thus, the following notation will be used from now on: the subscript t will
refer to the top airfoil as with the temperatures, whereas b will be used for the bottom
airfoil. The subscript o denotes the outer side of each airfoil, and i refers to the inner
side. After accounting for the normalizations, I can use the notation for the boundary
conditions using equation 4:

• f∞ = π− 3
2 e−(ξ−uw)2

• fto = ρtoτ
− 3

2
t π− 3

2 e−ξ2/τt

• fti = ρtiτ
− 3

2
t π− 3

2 e−ξ2/τt

• fbo = ρboτ
− 3

2
b π− 3

2 e−ξ2/τb

• fbi = ρbiτ
− 3

2
b π− 3

2 e−ξ2/τb
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3.3 Solution Form

The solution to this form of the Boltzmann equation 3 is that for every point in the space
the probability distribution of finding a particle with a certain velocity ξ is equal to the
distribution of the boundary condition from which the velocity ξ originates. For example,
let us focus on the area in between the two airfoils (case 4).

f(x1, y1, ξ) =



f∞ if ξx > 0 and y1−d
x1

ξx < ξy <
y1
x1
ξx

or

if ξx < 0 and y1−d
x1−1

ξx < ξy <
y1

x1−1
ξx

fti if ξy < 0 and x1

y1−d
ξy < ξx < x1−1

y1−d
ξy

fbi if ξy > 0 and x1−1
y1

ξy < ξx < x1

y1
ξy

(5)

x

y

(x1, y1)

(0, d) (1, d)

(0, 0) (1, 0)

Figure 2: possible origins of particles based on molecular velocity
for a point between the two airfoils

While an example for a point above the top airfoil might look like this (case 2):

f(x1, y1, ξ) =


fto if ξy > 0 and x1−1

y1−d
ξy < ξx < x1

y1−d
ξy

fbi if ξy > 0 and x1−1
y1

ξy < ξx < x1−1
y1−d

ξy

f∞ otherwise

(6)

x

y
(x1, y1)

(0, d) (1, d)

(0, 0) (1, 0)

Figure 3: possible origins of particles based on molecular velocity
for a point above the top airfoil
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Therefore the only thing now needed to obtain the entire field f at any point in space
are the unknowns ρto, ρti, ρbi and ρbo. Also caution need to take place when defining the
setting the sections boundaries to avoid overlaps. in appendix A there is an explanation
of the different cases for different points in space.

4 Analytical Process

4.1 impermeability conditions

In order to enforce the impermeability conditions, I will evaluate the macroscopic ve-
locity of the gas at y = 0 and at y = d while using the four unknown functions
ρto(x), ρti(x), ρbi(x), ρbo(x) and set the expression to be equal zero. Using the solution
form from section 3.3 and plugging in y1 = 0 or y1 = d the distribution f can be found.
now it can be used together with the formula for the macroscopic velocity from section
4.2 to get the velosity. applying those steps for the top outer surface (case 1 with y1 = d)
I get the following equation:∫ ∞

−∞

∫ ∞

0

∫ ∞

−∞
ξyfto dξx dξy dξz +

∫ ∞

−∞

∫ 0

−∞

∫ ∞

−∞
ξyf∞ dξx dξy dξz = 0 (7)

Using the relations in section 3.2 I get∫ ∞

−∞

∫ ∞

0

∫ ∞

−∞
ξyρtoτ

−3/2
t π−3/2e−ξ2/τt dξx dξy dξz+

∫ ∞

−∞

∫ 0

−∞

∫ ∞

−∞
ξyπ

−3/2e−(u−−ξ)2 dξx dξy dξz = 0

(8)
and after simplification:

ρto = 2τ
−1/2
t (β−∞ − β0) (9)

where

βa = −1

2
uy∞

√
π erf(uy∞ − a)− 1

2
e−(a−uy)2 (10)

and in a similar fashion for the bottom outer surface:

ρbo = 2τ
−1/2
b (β∞ − β0) (11)

Note that these expressions are constant and do not change throughout the length of the
airfoil. Now for the inner surfaces, starting withe the top one through the same process
of using the solution form (case 4 and y1 = 1), plug in from section 3.2 and simplifying I
receive:

1

2
√
π

{
2(β∞ − β0) +

∫ ∞

0

γ(
x1

d
)dξy −

∫ ∞

0

γ(
x1 − 1

d
)dξy

}
+

1

τbπ

∫ ∞

0

ξye
−ξ2y/τb

{∫ x1
d
ξy

x1−1
d

ξy

ρbi(x1 −
ξx
ξy
d)e−ξ2x/τbdξx

}
dξy+ (12)

− 1

2
ρti(x1)

√
τt
π

= 0

where
γ(a) = ξy erf(ux∞ − aξy)e

−(uy∞−ξy)2 (13)
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Now I can switch the integrating parameter to be x2 = x1 − ξx
ξy
d and not forgetting the

Jacobian I can get together with the equation for the inner bottom surface this system
of equations:

ρti(x1) = g1(ρbi, x1) =
2

√
τt

 1

4d

√
τb

∫ 1

0

ρbi(x2)

[(
x1 − x2

d

)2

+ 1

]−3/2

dx2

+
1

2

[
2(β∞ − β0) +

∫ ∞

0

γ
(x1

d

)
dξy −

∫ ∞

0

γ

(
x1 − 1

d

)
dξy

]}

ρbi(x1) = g2(ρti, x1) =
2

√
τb

 1

4d

√
τt

∫ 1

0

ρti(x2)

[(
x1 − x2

d

)2

+ 1

]−3/2

dx2

− 1

2

[
2(β0 − β−∞) +

∫ 0

−∞
γ
(
−x1

d

)
dξy −

∫ 0

−∞
γ

(
−x1 − 1

d

)
dξy

]}
(14)

And using numerical methods described in the next section (5) this system can be solved,
once these functions ρti and ρbi are known I can solve for f at any point and from that
the hydrodynamic fields can be calculated as shown in the next subsection 4.2.

4.2 Hydrodynamic Fields Expression

Using the solved distribution functions, macroscopic quantities such as velocity and den-
sity are computed. These fields are critical for evaluating aerodynamic forces and char-
acterizing flow behavior between and around the airfoils.

ρ =

∫
fdξ (15)

ux · ρ =

∫
ξxfdξ (16)

uy · ρ =

∫
ξyfdξ (17)

Pyy/m =

∫
(ξy − uy)

2fdξ (18)

Pxy/m =

∫
(ξx − ux)(ξy − uy)fdξ (19)

In order to calculate the forces acting on the airfoils there is no need to evaluate the
entire stress tensor. And more over there is no need to calculate these fields in any point
that is not at y = 0, d and 0 < x < 1. Any way, the expressions for the probability
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distribution can be plugged in to equation 15 receive for case 4:

ρ4(x, y) =− 1

2
√
π

{∫ ∞

0

[
erf

(
uy∞ − y

x
ξx

)
− erf

(
uy∞ − y − d

x
ξx

)]
e−(ux∞−ξx)2 dξx

+

∫ 0

−∞

[
erf

(
uy∞ − y

x− 1
ξx

)
− erf

(
uy∞ − y − d

x− 1
ξx

)]
e−(ux∞−ξx)2 dξx

}

+
1

2πy

∫ 1

0

ρbi(x2)

[(
x− x2

y

)2

+ 1

]−1

dx2

+
1

2π(y − d)

∫ 1

0

ρti(x3)

[(
x3 − x

y − d

)2

+ 1

]−1

dx3

(20)
In order to get the proper value of the density at a point I first need to solve for ρti

and ρbi using section 4.1. Only then its possible to use a numerical method in order to
integrate and receive an approximated value. Now this value can be used to calculate the
venosity using equations 16,17 and so on for any case described in appendix A. For the
values at y = 0, d I cannot use the calculation from equation 20 and I need to address
separately although in a very similar fashion. Once the values for the relevant stress
components have been calculated it is possible to integrate along every point on the
airfoils and get the forces acting on the configuration.

5 Numerical Calculations

5.1 Discretization and Implementation

In order to solve any of the above numerically first the space was discretisize into indi-
vidual point rather then a continuum. The point are in a constant intervals of x and
y where these intervals are hx and hy. all integrals that are not solved analytically will
be solved using the trapezoid method of integration so I’d expect to have more accurate
solutions for these when the intervals hx and hy are as small as possible.

5.2 Jacobi Method and Effects

The method used to solve the system 14 is Jacobi’s method where I start with an initial
guess for ρ

(0)
ti (x) and use that to solve for ρ

(0)
bi . Then I can iteratively plug our latest

version of functions ρ
(n)
ti (x), ρ

(n)
bi to find the next set notioned with n + 1. This iterative

process shall take place until a certain condition is met, this may be a number of different
thing but I’ve settled on:√[

ρ
(n+1)
ti (x)− ρ

(n)
ti (x)

]2
+
[
ρ
(n+1)
bi (x)− ρ

(n)
bi (x)

]2
< ε for every x (21)

After some analysis where results with different values for hx and ε were compered with
each other and a conversion to a single solution was detected (for any set of physical
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parameters τt, τb,u∞, d) I concluded that for hx < 0.01 and ε < 10−6 gives a good
balance between accurate results and a manageable run time.

5.3 Hydrodynamic Fields Calculation

To solve for the Hydrodynamic fields I used as mentioned the transposed method of
integration and for any point (x1, y1) I calculated the properties ρ and u and for the
point where y1 = 0, d the stress components Pyy and Pxy were calculated as well. With
those the forces could be evaluated in the same method of integration. A numerical
outcome of our method was that at points close to the airfoils (at y values close to 0 or
d) I get a very large values in absolute value for ρ in a way that seems to be an error
caused by the 1/2πy factor or 1/2π(y − d) that become very big while the integral that
multiply it depended on hx and isn’t sensitive to hy in the same manner. In order to fix
that problem I made sure to keep that relation

hx

hy

< 0.1 (22)

6 Results and Discussion

In order to self check My results at different stages of the project I compered it with well
known result and trivial cases. For example, indeed, when I set τt = τb = 1 and u∞ = 0
the results are the trivial solution where ρ = 1 and u = F = 0. In the same comparative
fashion, I tested the y component of the macroscopic velocity at y = 0, d to verify that
the impermeability condition is satisfied. Next I compered My solution of the force and
flow field when d was set to a very large number such as 10 or 100 and indeed My solution
converged with the solution for one flat airfoil in the free stream of rarefied gas flow. The
next few figures show some results of the flow field and My results for the forces acting on
the airfoil configuration. Figure 4 illustrates the flow field for a specific set of conditions:
the free-stream velocity is half of the most probable microscopic particle velocity. These
results are presented at various angles of attack, with the top airfoil maintained at the
free-stream temperature and the bottom airfoil heated to five times that temperature.
The vertical distance between the two airfoils is set to 0.45 times the chord length. The
figure clearly highlights the stagnation points and regions of flow separation. Notably,
while flow separation occurs between the airfoils, it is absent above them.

In addition to analyzing the flow field, the forces acting on the airfoils were calculated
under these conditions. The results of these force calculations are summarized in Table
1, providing a detailed breakdown of the forces in both the x and y directions for each
airfoil.

Angle (°) Ftop Fbottom Ftotal

Drag Lift Drag Lift Drag Lift
30 0.4361 0.5877 0.3563 0.4324 0.7924 1.0201
60 0.6176 0.4143 0.848 0.5602 1.4656 0.9745
80 0.6577 0.1585 1.0928 0.2387 1.7505 0.3972

Table 1: Forces on two airfoils at different angles.
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Figure 4: Flow field at different angles of attack
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Figures 7 and 5 present similar results for a fixed angle of attack of 60 degrees,
including a visualization of the density field and the corresponding stress distributions
on the airfoils. These figures provide further insight into the interaction of the flow with
the airfoil surfaces under this specific angle of attack.

Finally, Figures 6 and 8 explore how the forces acting on the configuration depend on
various parameters. These results highlight the sensitivity of the aerodynamic forces to
changes in the governing variables, offering valuable information for understanding the
underlying flow physics.

Pxy Pyy

Figure 5: Stress elements on the airfoils

angle of atack distance between the airfoils

Figure 6: Force dependency on geometry variables
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density field

Flow field

Figure 7: hydrodynamic fields at aoa = 60o
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Drag Lift

Figure 8: Force dependency on airfoils temperatures

Some key features that are observed include:

• The lift coefficient at zero angle of attack is not zero although the configuration
is geometrically symmetrical. this is due to the high temperature of the bottom
airfoil relative to the top one.

• The lift coefficient peaks at angle of attack around 45 degrees before flow separation
occurs.

• The maximum value for lift to drag ratio is given at angle of attack of ≈ 23o and is
approximately ≈ 1.45.

• As expected, the force has a finite limit as D goes to infinity. This limit has been
calculated and compered with the sum of the two airfoils solutions independently
(as described in the beginning of section 6), because as D grows the effect of the
airfoils on each other is diminishing.

• Most of the effect of the temperatures on the forces is from the bottom airfoils
temperature.

• Surprisingly the effect of the top airfoils temperature does not effect the forces acting
upon the configuration beyond a value around 1.5 times the ambient temperature
unlike the effect of the bottom airfoils temperature.

7 Future Work

Future work could involve a more in-depth exploration of the current results while extend-
ing the analysis to include specular wall boundary conditions. This modification would
provide insights into how different wall interaction models influence the flow dynamics
and force distributions. Additionally, a fascinating direction for further study would be

12



to compare these findings with the results obtained in the limit as Kn → 0, which cor-
responds to the continuum regime. Such a comparison could reveal the extent to which
rarefaction effects play a role in shaping the flow behavior and aerodynamic forces.

Moreover, investigating the transitional regime between rarefied and continuum condi-
tions could provide a broader understanding of the problem. This might include studying
how the force coefficients, flow separation patterns, and stagnation point locations evolve
as the Knudsen number decreases. Incorporating different angles of attack, wall temper-
atures, or configurations could add valuable perspectives.

Additionally, it would be worthwhile to examine the computational challenges associ-
ated with modeling this problem in the continuum limit, such as the increased demands
for grid resolution or the need for advanced numerical methods. Comparing the accu-
racy and computational efficiency of various modeling approaches (e.g., direct simulation
Monte Carlo vs. Navier-Stokes solvers) could further contribute to the body of knowledge
in this field.
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Appendix A

case 1

In this case the point is above the top airfoil and only sees the top one.

f1(x1, y1, ξ) =

{
fto if ξy > 0 and x1−1

y1−d
ξy < ξx < x1

y1−d
ξy

f∞ otherwise

x

y
(x1, y1)

(0, d) (1, d)

(0, 0) (1, 0)

case 2 and 2’

In this case the point is above the top airfoil and sees a part of the bottom one.

f2(x1, y1, ξ) =


fto if ξy > 0 and x1−1

y1−d
ξy < ξx < x1

y1−d
ξy

fbi if ξy > 0 and x1−1
y1

ξy < ξx < x1−1
y1−d

ξy

f∞ otherwise

f ′
2(x

′
1, y

′
1, ξ) =


fto if ξy > 0 and

x′
1−1

y′1−d
ξy < ξx <

x′
1

y′1−d
ξy

fbi if ξy > 0 and
x′
1

y′1−1
ξy < ξx <

x′
1

y′1−d
ξy

f∞ otherwise

x

y
(x1, y1)

(x′
1, y

′
1) (0, d) (1, d)

(0, 0) (1, 0)
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case 3

In this case the point is above the top airfoil and sees all of the bottom one.

f3(x1, y1, ξ) =


fto if ξy > 0 and x1−1

y1−d
ξy < ξx < x1

y1−d
ξy

fbi if ξy > 0 and x1−1
y1

ξy < ξx < x1

y1
ξy

f∞ otherwise

x

y (x1, y1)

(0, d)

(1, d)

(0, 0) (1, 0)

case 4

In this case the point is between the airfoils.

f4(x1, y1, ξ) =



f∞ if ξx > 0 and y1−d
x1

ξx < ξy <
y1
x1
ξx

or

if ξx < 0 and y1−d
x1−1

ξx < ξy <
y1

x1−1
ξx

fti if ξy < 0 and x1

y1−d
ξy < ξx < x1−1

y1−d
ξy

fbi if ξy > 0 and x1−1
y1

ξy < ξx < x1

y1
ξy

x

y

(x1, y1)

(0, d) (1, d)

(0, 0) (1, 0)

case 5

In this case the point is above the top airfoil and only sees the top one.
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f5(x1, y1, ξ) =


fti if ξy < 0 and x1−1

y1−d
ξy < ξx < x1

y1−d
ξy

fbo if ξy < 0 and x1−1
y1

ξy < ξx < x1

y1
ξy

f∞ otherwise

x

y

(x1, y1)

(0, d) (1, d)

(0, 0)

(1, 0)

case 6 and 6’

In this case the point is above the top airfoil and only sees the top one.

f6(x1, y1, ξ) =


fti if ξy < 0 and x1−1

y1−d
ξy < ξx < x1−1

y1
ξy

fbo if ξy < 0 and x1−1
y1

ξy < ξx < x1−1
y1

ξy

f∞ otherwise

f ′
6(x

′
1, y

′
1, ξ) =


fti if ξy < 0 and

x′
1

y′1
ξy < ξx <

x′
1

y′1−d
ξy

fbo if ξy < 0 and
x′
1−1

y′1
ξy < ξx <

x′
1

y′1
ξy

f∞ otherwise

x

y

(x1, y1)(x′
1, y

′
1)

(0, d) (1, d)

(0, 0)

(1, 0)

case 7

In this case the point is below the bottom airfoil and only sees the bottom one.

f7(x1, y1, ξ) =

{
fbo if ξy < 0 and x1−1

y1
ξy < ξx < x1

y1
ξy

f∞ otherwise
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x

y

(x1, y1)

(0, d) (1, d)

(0, 0) (1, 0)
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