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Abstract

This research project deals with constructing and analyzing the linear

dynamics and aerodynamics of an elastic missile. The aeroelastic model

was obtained using the RFA method in the commercial software ZAERO,

and was then transformed into a linear state-space model. The modes of

this model were analyzed by classifying their poles in the complex plane and

using Bode plots. V-G plots were then used to understand the aeroelastic

coupling of the system. For control and future research purposes, the model

was expanded to include moving fins, inertial (IMU) and strain sensors’

output, and the Dryden wind model. Numerical simulation of the model was

then conducted to support and verify the analytical results, focusing mainly

on the short-period dynamics of the missile. These results and simulations

will be central to future research efforts focused on controller design for

flexible missiles while better accounting for the interactions between the

various sensors in the system.
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1 Introduction

As modern missiles increasingly incorporate lightweight and flexible materials,

the interaction between structural dynamics and flight mechanics becomes more

significant. Unlike traditional rigid-body models, the aeroelastic behavior of these

flexible structures introduces complex dynamic phenomena, such as flutter, gust

response, and control-induced instabilities. Accurately modeling these interactions

is crucial for predicting flight performance, stability, and control behavior under

various operating conditions.

Following the approach described by Baldelli et al. (2006), this project develops

a linear aeroelastic model to describe the dynamics of a missile in supersonic flight.

A finite element model is first constructed to establish the missile’s structural

properties, and calculate its elastic modes. Based on this model, the aeroelastic

forces are calculated using the Doublet Lattice Method (DLM) in ZAERO. Since

the aerodynamic forces are initially computed in the frequency domain, they are

transformed into the time domain using Rational Function Approximation (RFA),

following the minimum state method introduced by Karpel (1980). This transfor-

mation enables the construction of a state-space representation, incorporating the

missiles actuators and sensors, such as IMU and optical strain sensors, enabling

improved control performance compared to traditional rigid-body models that use

only IMU, relating their reading to body states only.

To validate the model, classical analysis techniques are employed, including

eigenvalue map, Bode plots, and ω − V − g plot. Additionally, system response

simulations are conducted to verify the conclusions drawn from the model analysis

and to assess the model’s capability to accurately simulate the missile’s dynamic

behavior under various inputs.

3



2 Mathematical Model

This section presents the formulation of a linear aeroelastic model suitable for

control design and state estimation using a Kalman filter. The governing equations

of motion are derived using a modal representation, significantly reducing the

computational burden while preserving the dominant structural dynamics. The

aerodynamic forces, originally computed in the frequency domain, are transformed

into a rational function approximation (RFA) to facilitate their integration into

a state-space representation. Using the state-space representation, actuators and

sensors, such as IMU and fiber optic strain sensors are, introduced in the model.

The resulting aeroelastic state-space model provides a framework for implementing

advanced control and estimation techniques, incorporating structural damping,

control surface inputs, and atmospheric gust disturbances.

2.1 Aeroelastic Model

The basic equations of motions, that describe an aeroelastic system, containing

inertial, stiffness and unsteady aerodynamic forces are

[M ] {q̈}+
(
[K]− ρV 2 [A (ik)]

)
{q} = {0} , (1)

where q is the physical coordinates vector of the problem, [M ] is the mass matrix,

[K] is the stiffness matrix and [A(ik)] is the aerodynamic influence coefficients

matrix. k is the reduced frequency defined as k = ωL/V , where V is the airspeed,

ω is the frequency and L is a characteristic length. The aerodynamic force vector

is a nonlinear function of the airspeed. Hence, a different ASE state-space model

can be obtained for each airspeed by fixing the airspeed value. Additionally, the

dimension of these EOMs is very high, since typical finite-element models include

thousands of DOFs at best. To reduce dimensionality, the EOM is transformed

to modal coordinates

{q} = [ϕ] {ξ} , (2)

where the displacements at the physical coordinates are represented as a combi-

nation of a set of structural modes, incorporated in the structural modes matrix

[ϕ], with their modal participation coefficients {ξ} (also referred to as modal dis-

placements). In this manner, the missile can be modeled using only the dominant

structural modes, thus achieving significant order reduction. By applying (2) to

(1), the aeroelastic EOM expressed in modal coordinates are expressed as

Mhh︷ ︸︸ ︷
[ϕ]T [M ] [ϕ]

{
ξ̈
}
+

Khh︷ ︸︸ ︷
[ϕ]T [K] [ϕ] {ξ} = ρV 2

[Q(ik)]︷ ︸︸ ︷
[ϕ]T [A (ik)] [ϕ] {ξ} , (3)
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where the matrices [Mhh] and [Khh] are the generalized mass and stiffness ma-

trices, respectively, and [Q (ik)] is the aerodynamic influence coefficient matrix,

written in modal coordinates. Introducing structural damping, control surfaces

and atmospheric gust input, (3) can take a more general form

[Mhh] {ξ̈}+ [Chh] {ξ̇}+ [Khh] {ξ}+ [Mhc] {δ̈} =

= q∞ [Qhh(ik)] {ξ}+ q∞ [Qhc(ik)] {δ}+ q∞ {Qhg(ik)} (wG/V ) , (4)

where δ is the control surface deflection vector, wG/V is the vertical gust velocity,

wG, normalized by airspeed, and q∞ is the dynamic pressure. The matrix [Chh] is

the generalized damping and [Mhc] is the generalized control coupling mass ma-

trices, respectively. The subscript h and c relate to the natural structural modes

and the control surfaces, respectively. [Qhh(ik)] and [Qhc(ik)] are the Generalized

Aerodynamic Force (GAF) matrices due to structural modes and control surface

kinematic modes, respectively, and {Qhg(ik)} is the gust column.

2.2 Rational Function Approximation

One of the major issues in the formulation of the state-space EOM for an aeroe-

lastic system is that the GAF matrices are computed in the frequency domain.

They must be converted to a rational function form to be incorporated in the

state-space equations. The technique used to convert the GAF matrices is the

Rational Function Approximation (RFA), which transforms each element of the

GAF matrices to a rational function in the entire complex domain, using the com-

plex Laplace variable s, based on frequency-dependent tabulated data. The form

of the RFA used to convert the GAF matrices is

[Q̃(s)] = [Qhh(s), Qhc(s), Qhg(s)] = [Ahh0 , Ahc0 , Ahg0 ] +
L

V
[Ahh1 , Ahc1 , Ahg1 ] s+

+
L2

V 2
[Ahh2 , Ahc2 , Ahg2 ] s

2 + [D]

[
s[I]− V

L
[R]

]−1

[Eh, Ec, Eg] s, (5)

where [Ahg2 ] is set to zero to avoid coefficients related to the second time derivative

of the gust velocity. The augmenting aerodynamic state vector is then defined as

{xa} =

[
s[I]− V

L
[R]

]−1

[[Eh] {ξ}+ [Ec] {δ}+ [Eg] {w̄g}] s, (6)

where

w̄g =

{
wg

V
ẇg

V

}
. (7)
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2.3 Aeroelastic State Space Equations

To get the state-space EOM for the aeroelastic model, define the aeroelastic state

vector as

xae =


ξ

ξ̇

xa

 . (8)

Substituting (5) and (6) into (4), the aeroelastic state-space equations are ex-

pressed as

{ẋae} = [Aae]{xae}+ [Bae]{uae}+ [Baw]{w̄g}, (9)

{yae} = [Cae]{xae}+ [Dae]{uae}+ [Caw]{w̄g}, (10)

where

{uae} = {δ, δ̇, δ̈}, (11)

[M̄ ] =

[
[Mhh]−

q∞L2

V 2
[Ahh2 ]

]
, (12)

[Aae] = [0] [I] [0]

−[M̄ ]−1 [[Khh]− q∞ [Ahh0 ]] −[M̄ ]−1
[
[Chh]− q∞

L
V
[Ahh1 ]

]
q∞[M̄ ]−1[D]

[0] [Eh]
V
L
[R]

 ,

(13)

[Bae] =
[0] [0] [0]

q∞[M̄ ]−1 [Ahc0 ] q∞
L
V
[M̄ ]−1 [Ahc1 ] −[M̄ ]−1

[
[Mhc]− q∞L2

V 2 [Ahc2 ]
]

[0] [Ec] [0]

 , (14)

[Baw] =

 [0] [0]

q∞[M̄ ]−1 [Ahg0 ] q∞
L
V
[M̄ ]−1 [Ahg1 ]

[0] [Eg]

 . (15)
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The form of [Cae], [Dae], [Caw] is sensor-dependent. For example, for an accelera-

tion sensor, (10) is

yaei =

− ϕhi
[M̄ ]−1

[
[[Khh]− q∞ [Ahh0 ]] ,

[
[Chh]− q∞

L

V
[Ahh1 ]

]
, q∞[D]

]
{Xae}

− ϕhi
[M̄ ]−1

[
q∞ [Ahc0 ] , q∞

L

V
[Ahc1 ] ,

[
[Mhc]−

q∞L2

V 2
[Ahc2 ]

]]
{Uae}

− ϕhi
[M̄ ]−1

[
q∞ [Ahg0 ] , q∞

L

V
[Ahg1 ]

]
{w̄g} , (16)

where ϕhi
is the modal displacements of the modes at the sensor location. Focusing

on two main types of measurements, stain measurements and IMU measurements

(acceleration and angular rates), denoted accordingly by ( )st and ( )IMU , the

measurements are

{yst} = [Ψs]{ξ} =
[
[Ψs] 0 0

]
{xae}+ vstk , (17)

{yIMU} =

{
ameas

θ̇meas

}
=

{
[Φ]ξ̈

[Φr]ξ̇

}

=

[
−[Φ][M̄ ]−1 [[Khh]− q∞ [Ahh0 ]] −[Φ][M̄ ]−1

[
[Chh]− q∞

L
V
[Ahh1 ]

]
−q∞[Φ][M̄ ]−1[D]

[0] [Φr] [0]

]
{xae}

+

[
−q∞[Φ][M̄ ]−1 [Ahc0 ] −q∞

L
V
[Φ][M̄ ]−1 [Ahc1 ] −[Φ][M̄ ]−1

[
[Mhc]− q∞L2

V 2 [Ahc2 ]
]

[0] [0] [0]

]
{uae}

+

[
−q∞[Φ][M̄ ]−1 [Ahg0 ] −q∞

L
V
[Φ][M̄ ]−1 [Ahg1 ]

[0] [0]

]
{w̄g}+ vIMU

k ,

(18)

where [Ψs] is the matrix of the strain modes of the model.
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3 Test Case

To evaluate the structural and aerodynamic characteristics of the missile, a com-

prehensive test case is developed, combining finite element modeling and aerody-

namic analysis. This section details the construction of the finite element (FE)

model in MSC NASTRAN, the extraction of modal properties, and the generation

of an aerodynamic model using ZAERO.

3.1 Finite Element Model

A finite element model is generated in MSC NASTRAN, based on the model used

by Genkin and Raveh (2024). The tested modeled is a 6 meter long missile, made

out of shell elements, connected by rigid-body elements (RBE) to a beam element

in the center of the missile. Also, a concentrated mass element was added, in order

for the model to be more realistic and take the center of mass forward. Four fins

were added in an X configuration to the model. The fins were attached to the

shell elements using RBEs. The RBEs were connected to 3 nodes in the fin and

body shell. The generated model is depicted in Fig. 1

Figure 1: FE model of the missile

Using the FE model, a normal modes analysis was performed. In the analysis,

20 modes were calculated. The analysis was performed using two different solvers:

one using EIGRL which solves the equation using the Lanczos solver, and another

using EIGR using the Givens method. The differences will be discussed later in

the project.

The first six modes are rigid-body modes. Using the Lanczos solver, these

modes are computed about the principle axes. I.e., they are not purely displace-

ment/rotation about the global coordinate system axes, but rather involve coupled

displacements. Using the Givens solver produces pure modes, involving X,Y,Z
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Table 1: Calculated Normal modes - frequencies and types

Mode Number Frequency [Hz] Mode type
1-6 0 Rigid body
7-8 11.9 First bending
9-10 33.05 Second bending
11-12 65.87 Third bending
13-14 104.51 Forth bending
16 120.23 First torsion

17-18 130.38 Fifth bending
19 148.67 Compression mode

direction displacement/rotation about the aircraft center of gravity. It is also im-

portant to note that the Lanczos solver solution is much faster and as such it was

mainly used.

The modes are presented in Table 1. All bending modes appear in pairs, mean-

ing each bending frequency is associated with two modes. This occurs because the

model is three-dimensional, allowing the aircraft to bend in both principal direc-

tions perpendicular to the X-axis. These pairs of modes share the same physical

properties but are oriented 90 degrees apart (in rotation around X axis). Modes

15 and 20 were omitted in Table 1, as they correspond to fin motions that are

not physically accurate in the current model and will be properly defined later in

ZAERO during control surface setup. Since the primary focus of this work is on

modeling the overall dynamics of a missile for control system purposes, only the

first 12 modes are considered. Modes with frequencies above 100 Hz are expected

to have a negligible impact on the system’s dynamic response. The first six elastic

modes are depicted in Fig. 2.

In addition, the corresponding strain modes of the system are needed for the

analysis and sensor simulation, in order to be able to create a measurement ac-

cording to (17). As such, the NASTRAN command STRAIN, which outputs the

corresponding strain of the modes for a given set, was used. As the simulated

sensor is a Fiber-optic strain sensor, which measures the principle strain in the X

direction (stretch-compression) in specific points, a set of points along a straight

line was chosen, highlighted in the model in Fig. 3.

All of the results, particularly the strain results, need to be extracted from the

output file. The extraction is performed into a .h5 file (using MDLPRM HDF5 0), a

file that can be read easily by a dedicated MATLAB function. As with any FE

software, the data is computed at the nodes. To determine the strain value at the

center of each element, which is where the desired sensor spot is, the strain values

at the element’s nodes are located and averaged to approximate the strain at the

midpoint. The data is then organized into a matrix with 13 rows (one for each
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

Figure 2: The first six elastic modes of the system.

element-sensor) and 12 columns (one for each mode used). Finally, the sampled

strain modes can be visualized by plotting the columns of the strain matrix with

respect to position along the missile, as shown in Fig. 4.

As expected, the first six modes have numerically zero amplitude, reflecting

their association with rigid-body motion, which does not produce strain. The

subsequent six modes correspond to the first six elastic modes, consisting of three

pairs of bending modes. These show low amplitude near the tips, where deflections

are largest, which aligns with the strain distribution of a cantilever beam. This

consistency indicates that the calculated strain modes are physically accurate.

Additionally, the mode shapes are well captured, suggesting that the number and

placement of measurement points are sufficient for accurately representing these

modes.
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Figure 3: FE model of the missile – elements for which the strain was extracted
are highlighted

Figure 4: 12 First strain modes

3.2 Panel Model and ZAERO Code

The aerodynamic model is obtained by ZAERO, a commercial panel method pro-

grams that uses DLM to solve for the missile aerodynamics coefficients and matri-

ces. This subsection will explain the code and parameters of the ZAERO program.

First, the problem dimensions and reference values are defined. The reference

length is taken as the missile length, L = 6[m], and the reference area is defined

as the cross-sectional area, A = 2πRt, where t represents the shell thickness of the

cross-section.

Doublet panels are then placed to represent the missile aerodynamics. They

are places over the shell elements of the finite element model, using the SEGMESH

and BODY7 cards. Spline, which connects all of the structural and aerodynamic

nodes, is performed and the interpolated modes are extracted in order to verify the
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results up to this point with the results from MSC NASTRAN that were presented

earlier.

After that, the control surfaces are generated. The aerodynamic panels are be-

ing generated and distributed over the control surface using CAERO7, implementing

the NACA-0012 airfoil properties. A greater number of nodes for the aerodynamic

model of the fin than the structural one is needed, in order to match the true airfoil

aerodynamics. The control surfaces are attached to the single connecting point

in the FE model and are then defined as an aerodynamic control surface. In that

process, the axis of rotation is defined for the aerodynamic surface. Finally, the

aerodynamic surfaces modes can be extracted and inspected. An example of such

mode is shown in Fig. 5.

Figure 5: Control Surface mode

An actuator transfer function must be defined within the program. For sim-

plicity, a third-order transfer function is selected, with parameters chosen such

that its poles are placed far from the system’s other poles. This ensures minimal

interaction between the control surfaces and the overall system dynamics. The

selected transfer function is

δ

uac

=
A0

s3 + A2s2 + A1s+ A0

,

A0 = 27ω3
max, A1 = 13.5ω2

max, A2 = 4.5ω3
max,

(19)

where ωmax is the largest normal mode frequency used in the analysis.

With that, the aerodynamic modeling is completed, and the ZAERO analysis

is performed to obtain all the necessary matrices for the model presented in sub-

section section 2.3. The generated model will be tested in two subcases. In the

first subcase, a gust analysis is performed to extract all the matrices described

in section 2.3. In the second subcase, a flutter analysis is performed to validate

certain results obtained in the first case.

In the first subcase, the aerodynamic properties are first defined using the
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MKAEROZ card. The flight Mach number is set to M = 2, and a list of all non-

dimensional frequencies k to be used in the calculations is specified. Next, the gust

properties are defined using the GENGUST card, followed by the main analysis card,

GLOADS. Within the GLOADS card, the system is defined along with the control

system inputs and outputs specified in the ASECONT card. A reference is also

made to the MINSTAT card, which calculates the RFA matrices according to section

2.2. Additionally, the MLDSTAT card is referenced to define the states used in the

analysis, following Baldelli et al. (2006). The chosen states are

xrigid =
{
X, Y,H,Φ,Θ,Ψ, U, V,W, P,Q,R

}T

. (20)

By choosing to work with these states, any rigid mode calculated by the NAS-

TRAN program are essentially ignored, as it does not represent a “pure” rigid

body modes. Furthermore, it is also possible to include the angle of attack α, the

slip angle β in the state vector, instead of W,V respectively, to describe the full

aircraft state.

Next, the control system is defined. The input of the system, previously defined

as the control surfaces, is now complemented by the output of the system. To

simulate an IMU, three perpendicular accelerometers and gyros are needed. The

three accelerometers, one in each direction, are placed near the tip of the missile,

and direct measurements of P,Q,R are taken, simulating the gyros. Finally, all

matrices are exported in OUTPUT4 format using the ASEOUT card, which outputs

the control matrices A,B,C,D, or via the MINSTAT card, which exports the RFA

matrices A0, A1, A2, D,E.

In the second subcase, a classical flutter analysis is performed using the K-

method, a well-known method, thoroughly described by Bisplinghoff et al. (2013).

A predefined set of flight velocities is considered, and for each velocity, an eigen-

value problem is solved to determine the system’s aeroelastic response. Specifi-

cally, the K-method formulates the flutter analysis as a frequency-domain eigen-

value problem, where the reduced frequency is treated as an eigenvalue parameter.

From the resulting eigenvalues, the aeroelastic frequencies, damping ratios, and

corresponding flutter velocities can be extracted.

The eigenvalue problem that is solved is stated as[Mhh] + ρ
b2

k2
[Qhh(ik)]︸ ︷︷ ︸

F

− 1 + jg

ω2︸ ︷︷ ︸
λ

[Khh]

 {u0} = {0},

⇒ ωi =

√
1

Re{λi}
, gi =

Im{λi}
Re{λi}

, Vi =
ωib

ki
.

(21)
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For each velocity, a frequency ω is computed, representing the true oscillation

frequency of the system when a fictitious damping g is introduced. This ap-

proach captures the effect of unsteady aerodynamic forces, meaning the calcu-

lated frequency reflects the actual dynamic behavior of the system at that veloc-

ity—distinct from the structural modal frequencies listed in Table 1. The results

can be visualized using the PLOTVG command.
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4 Results

In this section, ZAERO results will be presented and analyzed. Subsequently, a

simulation of the system dynamics will be conducted, and the response to specific

control surface and gust inputs will be computed.

4.1 ZAERO Results

The following linear dynamics equations for a certain velocity were retrieved using

the matrices Aae, Bae, Baw, Cae, Dae, Caw, calculated and outputted by ZAERO,

{ẋae} = [Aae]{xae}+ [Bae]{uae}+ [Baw]{w̄g}, (22)

{yae} = [Cae]{xae}+ [Dae]{uae}+ [Caw]{w̄g}, (23)

where the state vector is made out of the a rigid part as in (20), its derivatives,

normal modes participation coefficients and their respective derivatives, the aero-

dynamic lags of the RFA, according to (6), (8) and (13), and the actuator modes

according to the state space realization of the actuator transfer function (19) for

each actuator.

One way to examine and verify the results is to analyze the eigenvalues of

the dynamics matrix Aae that represent the poles of the aeroelastic system and a

future closed-loop system. Classifying the eigenvalues by their respective meaning

(e.g. structural modes, actuator modes, etc.), is the first verification step. First,

all eigenvalues are presented in the complex plane in Fig. 6.
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Figure 6: Eigenvalue map

As observed, there is a dense cluster of eigenvalues near the origin, along with

a distinct group of three eigenvalues positioned farther away (marked blue). These
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marked eigenvalues represent a set of three eigenvalues, repeated four times: one

for each actuator dynamic of a third-order model of (19). Since the actuator

dynamics were designed to avoid interaction with the system dynamics, their

poles were placed far from the origin, ensuring minimal influence. These poles

correspond to a frequency of 197Hz, which translates to a time constant of 0.005

seconds, a very short duration compared to the typical time scale of the system’s

normal modes.

The eigenvalue map can be further zoomed-in to examine additional eigen-

values in greater detail, as depicted in Fig. 7. In Fig. 7a, a group of five real

eigenvalues (doubled) is observed. These correspond to the aerodynamic lags and

gust lag roots introduced by the RFA to approximate the tabulated nonlinear ef-

fects of Qhh and Qhg. These lags exhibit much faster dynamics compared to the

main system (located near the center), but their time scale is comparable to that of

the elastic mode eigenvalues, which are highlighted in Fig. 7b. The elastic modes

eigenvalues align with expectations, having a frequency similar, though not identi-

cal, to the rigid body modes due to aeroelastic interactions between modes, which

will be discussed later. Their damping is determined by the RFA formulation.
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(a) Eigenvalue map – zoom-in 1
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(b) Eigenvalue map – zoom-in 2

Figure 7: Eigenvalue map - zoom-in views
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Finally, the rigid body dynamics eigenvalues of the system can be inspected,

in Fig. 8. Two (doubled) complex eigenvalues are observed, corresponding to the

short-period (SP) dynamics of the system. These eigenvalues appear in pairs due

to the 3D nature of the dynamics and the symmetry of the vehicle, which results

in identical SP dynamics for both longitudinal and lateral motion. Additionally, a

real pole is present with a time constant of approximately 1/7 seconds, which can

be associated with the roll dynamics of the system. Lastly, a group of numerically

zero poles is identified, representing the integration of various states into position,

as well as dynamics not yet specified, such as phugoid motion related to gravity,

which was not included in this model and will be added in future work.
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Figure 8: Eigenvalue map – zoom-in 3

For further analysis from a different perspective, the system’s Bode plots can be

examined in Figs. 9–11. The three Bode plots are of a transfer functions between

each actuator input to a different sensor: a Z-direction accelerometer, a pitch rate

sensor, and one of the many fiber optic strain sensors (FOSS), all of which are

defined in (17) and (18).

Both Figs. 10 and 11 and Figs. 6, 7a, 7b and 8 present the same results from

different perspectives. While the Bode plots make it easier to quantify amplitudes

and frequencies, the eigenvalue maps offer valuable insight into the system’s sta-

bility and modal behavior by clearly showing the location and separation of the

poles in the complex plane. Note that the main difference in the results is the

effect the zeros of each transfer functions have on the corresponding output. As

seen in all of the outputs for the different inputs in Fig. 9, the acceleration dy-

namics are dominated by four main frequencies. Three frequencies are the elastic

mode frequencies and are correlated with the results shown previously. There is

an extra frequency of ∼ 10[rad/sec] which is the short-period frequency. In the
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Figure 9: Accelerometer Bode to each input
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Figure 10: Pitch Rate Bode to each input

Bode plots Figs. 9 and 10, amplification is observed at frequencies higher than

those typically associated with flight dynamics. In a purely rigid body model, this

amplification would not be present, as it would not capture the high-frequency

dynamics introduced by the flexible modes of the system.

In Figs. 9–11, the elastic mode amplitudes are orders of magnitude smaller

than the system’s rigid-body dynamic amplitude or the zero-frequency response.

This shows that none of the sensors will measure a purely rigid-body dynamic

response. Instead, all sensors will measure both rigid-body dynamics (e.g., short-

period motion) and elastic deformations.

Interestingly, the FOSS sensor, shown in Fig. 11, is affected by the short-period

mode, despite being a strain sensor. Since strain is typically unaffected by rigid

body motion, this implies that the short-period mode is not purely a rigid-body
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Figure 11: FOSS Bode to each input for sensor number 4 in the sensor array

phenomenon but rather a coupled rigid-elastic interaction. This observation will

be further analyzed and confirmed later using an ω − V − g plot.

Additionally, at frequencies lower than the short-period mode, the response

exhibits a relatively constant amplitude. The absence of a distinct peak in this low-

frequency range indicates that no additional dynamic mode, such as the phugoid,

is present. This result is expected, as gravity and drag forces, which are essential

for the phugoid mode to occur, were not included in the model. Without these

forces, the energy exchange that characterizes phugoid oscillations cannot take

place. As a result, this simplified model differs from a full aircraft model and

lacks the peak in the Bode plot typically associated with the phugoid mode.

The final result that supports our previous conclusions is the ω − V − g plot.

This plot provides insight into the exact frequencies of the system, accounting

for frequency variations caused by unsteady aerodynamics. The ω − V − g plots

obtained from ZAERO are presented in Figs. 12 and 13.

In Fig. 12, in the the frequency graph, there are three upper horizontal lines.

These lines originate at zero velocity with a nonzero frequency, indicating that

they correspond to the elastic modes. The fact that these frequencies remain

nearly constant as velocity increases suggests that the elastic mode frequencies

are largely unaffected by changes in velocity. That fact can indicate that the

structure is very stiff, and as such the aerodynamic forces are not great enough to

change the missile dynamics with increase in velocity.

A closer view of the low-frequency cluster of plots is presented in Fig. 13. There

are four graphs of constant zero frequency, these are the rigid body modes that

don’t interact with elastic modes. There are another two modes that starts with

a zero frequency when the velocity is zero, and their frequency rises with velocity.
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Figure 12: ω − V − g plot of the aeroelastic system

These modes are an interaction modes between pitch/yaw and an elastic mode.

Due to the added aerodynamic stiffness, as seen in the damping (g) graph, the

modes becomes a short period mode, with a frequency of 10.628 [Hz], exactly as

seen in Figs. 9–11. These results verify the findings using the eigenvalue map and

the Bode plots.
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Figure 13: ω − V − g plot of the aeroelastic system – zoom-in
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4.2 Numerical Dynamic Simulation

This subsection prepares the model presented so far for numerical simulations

by incorporating stochastic gust and control inputs. It then presents simulation

results validating the model.

4.2.1 Implementing the Dryden Wind Model

When modeling stochastic inputs to a system, a wind turbulence model is required.

A common choice is Dryden’s wind turbulence model, which is designed as a white

noise passed through a linear system. The vertical wind model transfer function,

as defined by MIL-F-8785C, is given by

Hw(s) = σw

√
Lw

πV
·
1 +

√
3Lw

V
s(

1 + Lw

V
s
)2 , (24)

where V represents aircraft’s flight speed, and σw and Lw are case- and flight

condition-dependent parameters.

To incorporate wind input into the system model, its transfer function, Hw,

must be expressed in state-space form. Rewriting the transfer function as a stan-

dard second-order system with a zero yields

Hw(s) = σw

√
Lw

πV
·

1 +
√
3Lw

V
s

1 + 2Lw

V
s+

(
Lw

V

)2
s2

= σw

√
Lw

πV
·

√
3Lw

V
(s+ 1√

3Lw
V

)(
Lw

V

)2(
s2 + 2 V

Lw
s+

(
V
Lw

)2
) , (25)

Hw(s) = σw

√
3V

πLw

·
s+ V√

3Lw

s2 + 2 V
Lw

s+
(

V
Lw

)2 = Kw · s+ β

s2 + 2ζωns+ ω2
n

. (26)

A simulation diagram shown in Fig. 14 is used to generate its state-space rep-

resentation that will be augmented to the already existing system’s state space

model. Because of the system’s zero, the states will not directly represent the

vertical gust and its derivative.

From the simulation diagram, the wind’s state space model, derived from a

white noise input, can be written as[
ẋ1

ẋ2

]
=

[
−2ζωn 1

−ω2
n 0

]
︸ ︷︷ ︸

Adry

[
x1

x2

]
+

[
Kw

Kwβ

]
︸ ︷︷ ︸

Bdry

uw (27)
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Figure 14: Simulation diagram for the system

with the wind states being

wg = x1

ẇg = Kwu+ x2 − 2ζωnx1

⇒

[
wg

ẇg

]
=

[
1 0

−2ζωn 1

]
︸ ︷︷ ︸

Aw

[
x1

x2

]
︸ ︷︷ ︸
xw

+

[
0

Kw

]
︸ ︷︷ ︸

Bw

uw. (28)

It can be seen that in this formulation, the wind derivative output depends on the

driving input noise uw. To avoid thiss undesired effect and assist in the discrete-

time formulation, a low-pass filter with a high bandwidth is added to (26) to

yield

Hw(s) = σw

√
3V

πLw

·
s+ V√

3Lw

s2 + 2 V
Lw

s+
(

V
Lw

)2

1
τ

s+ 1
τ

, (29)

where the filter’s time constant is τ . Figure 15 presents a new simulation diagram

constructed to develop the corresponding state-space representation. The state-

space model of (29) isẋ1

ẋ2

ẋ3

 =

−
(
2ζωn +

1
τ

)
1 0

−
(
2ζωn

τ
+ ω2

n

)
0 1

−ω2
n

τ
0 0


︸ ︷︷ ︸

Adry

x1

x2

x3


︸ ︷︷ ︸

xw

+

 0

Kw

Kwβ


︸ ︷︷ ︸

Bdry

uw, (30)

with the new wind states

wg = x1

ẇg = x2 − (2ζωn +
1
τ
)x1

⇒

[
wg

ẇg

]
=

[
1 0 0

−
(
2ζωn +

1
τ

)
1 0

]
︸ ︷︷ ︸

Cdry

x1

x2

x3


︸ ︷︷ ︸

xw

, (31)

In this formulation, the wind derivative output is not directly dependent on uw.

For practical implementation, Aw is multiplied by 1/V (i.e., Aw = 1
V
Aw) since it’s

always used to calculate w̄g, as defined in (7).
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Figure 15: Simulation diagram for the system- with added LPF

The Dryden state-space model can now be incorporated into the aircraft’s

state-space model derived in section 3 using the expanded state vector

xaeaug =


ξ

ξ̇

xa

xw

 , (32)

where xw is the added wind state vector. This yields the full augmented state-

space equation (based on the expended (22), (30) and (31))

{ẋae} = [Aae]{xae}+ [Bae]{uae}+ [Baw][Aw]{xw}, (33)

{ẋw} = [Adry]{xw}+ [Bdry]uw. (34)

Combining (33) and (34), the new state space for xaeaug is

{ẋaeaug} =

[
[Aae] [Baw][Aw]

[0] [Adry]

]
{xaeaug}+

[
[Bae]

[0]

]
{uae}+

[
[0]

[Bdry]

]
uw. (35)

The measurement equations in (17) and (18) can be augmented similarly, yielding

{yst} = [Cst
ae]{xae}+ vstk (36)

{yIMU} = [CIMU
ae ]{xae}+ [DIMU

ae ]{uae}+ [CIMU
aw ][Cdry]{xw}+ vIMU

k . (37)

These can be transformed into a matrix form for the measurement vector

{
yst

yIMU

}
and using the state {xaeaug}, the measurement model is expressed as

{yae} =

[
Cst

ae 0

CIMU
ae CIMU

aw Aw

]
{xaeaug}+

[
0

DIMU
ae

]
{uae}+ vk. (38)
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The system’s state-space model presented in (35) and (36) is restated as

{ẋaeaug} = [Aae]{xaeaug}+ [Bae]{uae}+ [Baw]{uw}, (39)

{yae} = [Cae]{xaeaug}+ [Dae]{uae}+ {vk}, (40)

where, {vk} ∼ N (0, R) and uw ∼ N (0, 1), assuming no correlation between wind

and measurement noise E [vu] = 0.

4.2.2 Parameter Selection

According to MIL-F-8785C (1980), the typical gust length is Lw = 1750[ft] for

medium-high altitudes (above 2000[ft]). The intensity parameter σw is chosen

according to Fig. 16. The measurement covariance matrix will be determined

using values typical of commercial sensors, as in Genkin and Raveh (2024). Strain

measurements are obtained using FOSS with a typical variance of σ2
ε = 5 · 10−6.

The IMU exhibits typical acceleration and angular velocity variances of σ2
a =

1 · 10−3 [(m/sec2)2] and σ2
θ̇
= 5 · 10−4 [(rad/sec)2], respectively. These values are

then used to construct the measurement covariance matrix

R =

σ
2
ε [I]Nε 0 0

0 σ2
a[I]Na 0

0 0 σ2
θ̇
[I]Nθ̇

 (41)

assuming that the measurement noises are independent random variables with

Gaussian distribution.

Figure 16: σw for different altitudes
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4.2.3 Deterministic Simulation

Model verification involves examining the input-output relationship during dif-

ferent maneuvers, achieved from different input combinations. Three basic ma-

neuvers - roll, pitch and yaw - are inherently coupled with aircraft translational

and rotational motions, as seen in typical aircraft behavior, for example in the

short-period mode. In the test cases examined, these maneuvers correspond to

the following actuator combination inputs, each set denoted by ∆, as follows:

∆roll = {1, 1, 1, 1}δ, (42a)

∆pitch = {−1,−1, , 1, 1}δ, (42b)

∆yaw = {1,−1,−1, 1}δ. (42c)

Where δ is a fin deflection angle, defined uniformly for all fins in the combination

∆, and its dynamics are given by (19). Each fin deflection angle is related to the

state-space according to (11). Each simulation assessed the system response to

the following input u(t):

u(t) =

1/60, if t ≤ 0.1,

0, if t > 0.1,
(43)

a 0.1-second pulse, with an amplitude of u = 1/60, for each input set ∆i. The

simulation demonstrates the coupling of aircraft motions and the amplification of

elastic modal motions in the aircraft’s response, while also enabling inspection of

actuator dynamics and comparison of their time scale to the response time scales.

Figure 17 illustrates the control surface deflection response during a pitching

maneuver. The fin’s settling time is approximately 0.02 seconds, an order of mag-

nitude faster than the system’s fastest rigid body pole (≈ 0.14 seconds), as shown

in the eigenvalue plot in Figure 7b. This implies that the fin response, especially

the transient response, will not have a strong impact on the system dynamics.

Furthermore, the second-order-like response suggests that the generated dynam-

ics can be represented appropriately by a third-order model with one real and two

complex poles.

In Figs. 18–20, both the rigid-body and elastic responses to different inputs

are presented, illustrating the system’s dynamic behavior. In all three cases, the

dominant motion responses align with the intended maneuver, demonstrating the

expected coupling between control inputs and aircraft motion. For example, in

Fig. 18a, the primary motion observed is roll, consistent with the applied input,

while secondary motions such as yaw and sideslip remain relatively small. Sim-

ilarly, in Fig. 19, the pitch response is dominant, with minor contributions from
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Figure 17: Fin deflection response

other degrees of freedom due to aerodynamic and structural coupling. These re-

sults highlight the fidelity of the simulation in capturing both rigid-body dynamics

and elastic deformations.

Figure 18a shows the roll response, which exhibits first-order system behavior.

This is confirmed by the stable real pole in Fig. 8, indicating a first-order system.

Additionally, the time scale matches the expected settling time of a first-order

system given by

Tsϵ = −1

p
ln

(
1

ϵ

)
, (44)

where p is the pole value (assuming a negative value for a stable converging re-

sponse), and ϵ is the convergence percentage value. For ϵ = 2%, the settling time

is

Ts2% = −3.91

p
≈ 0.75[sec], (45)

based on a pole value of p ≈ −7, as in Fig. 8.

Pitch and yaw responses, shown in Figs. 19 and 20, are similar due to the

model symmetry about the X-Y and X-Z planes. Consequently, the pitch and

yaw inputs yield nearly identical responses, differing only by sign. The significant

difference is in the elastic responses, which are in and out of phase due to the

problem geometry (up-down vs. left-right motion). This symmetry of responses

implies that it is sufficient to analyze only one of the two.

The short period response is seen in Fig. 19a with the coupled elastic response

in Fig. 19b. As expected, the only significant displacement is in the Z direction.

The short period poles in Fig. 8 are in psp ≈ −0.73± j10.62, its natural frequency

of 10.6 [rad/sec] and low damping value of ζsp = 0.0687 are shown in the ω−V −g

plot. The response is indeed only lightly damped and oscillates rapidly.

It is evident that the pitch input also excites a roll response, which can be

explained by the system’s coupling of motions in the two planes. Furthermore, the
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Figure 18: Roll input response

angular rate responses exhibit high-frequency content in addition to the dominant

short-period frequency (which is now a rigid-elastic response). However, these

higher frequency responses were of significantly smaller amplitude. The frequency

contents of the signals are present in the response were identified using FFT over

a simulation time of 100 [sec]. The results are presented in Figs. 21 and 22.

Figs. 21 and 22 show the frequency content of the system outputs for deter-

ministic excitation. As expected, the peaks in the graphs correspond to the main

aeroelastic frequencies of the system, aligning with the frequencies previously iden-

tified in the Bode plots, further verifying the accuracy of the simulation. Moreover,

the dominance of the short-period mode and the first elastic mode is evident, as

both exhibit higher amplitudes compared to the other modes. Nevertheless, all

the system’s modes are still present in the results, demonstrating that the simula-

tion successfully captures the full dynamic behavior of the system, including both
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Figure 19: Pitch input response

rigid-body and elastic contributions.

Analysis of the elastic modes confirms previous observations: pitch responses

exhibit in-phase behavior for mode pairs 1-2, 3-4, and 5-6, while yaw responses

show out-of-phase behavior. This is attributed to the geometry and the require-

ment for in- and out-of-phase control surface inputs (at 45◦) to generate these

motions. The dominant first mode is evident, confirmed by FFT analysis, with

higher modes present at significantly lower, though non-negligible, amplitudes.

5 Future Work

Future research will continue to focus on simulating both strain and rigid body

responses to control inputs, as well as estimating rigid body motions from strain
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(a) Yaw input - Rigid body response

0 1 2 3 4 5 6 7 8 9 10

t [sec]

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

A
m

p
lit

u
d
e

Elastic participation coefficients

Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

Mode 6

(b) Yaw input - Elastic response

Figure 20: Yaw input response

data using a Kalman state estimator. The simulation framework will be enhanced

to fully incorporate the stochastic wind model and gravity effects. Additionally, a

control algorithm will be developed, and the simulations will be expanded to cover

a wider range of velocities and system parameters, enabling more comprehensive

and robust analysis.
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