Satellite navigation constellations orbit the Earth in medium and geosynchronous orbits. These high altitudes raise the operational and launching costs, but provide wide coverage, which may be redundant if only regional coverage is needed. Low Earth orbit satellites, on the other hand, suffer from reduced coverage capabilities, among other issues.
This research develops methods for designing low Earth orbit satellite constellations, aimed at position determination at a predefined geodetic region. This problem is solved by two strategies: spreading the satellites in a time-varying latitude strip, or spreading them over few orbital planes. The former strategy produces a relatively high revisit frequency, but requires a relatively high number of orbital planes, and produces a relatively low coverage duration. The latter strategy produces long coverage durations, requires significantly fewer orbital planes, but produces a lower revisit frequency.