We study magnetomechanical instabilities in magnetoactive elastomer (MAE) composites undergoing finite strains in the presence of a magnetic field. In particular, we consider MAE composites with chain-like microstructure. We analyze the influence of the applied magnetic field along the chains on the stability of the MAE composites at both microscopic and macroscopic length scales. To this end, we develop a numerical scheme to detect the onset of instabilities at the long wave and finite length-scales. By applying the developed numerical technique, we analyze the influence of the materials microstructure geometrical parameters and applied magnetic field on the onset of instabilities in soft MAEs.
We found that identical MAE composites with periodically distributed particles can switch to a variety of new patterns with different periodicity under particular levels of the applied magnetic field. The post buckling analysis is performed to numerically realize the newly formed patterns dictated by the magnitude of the applied magnetic field.